System Facilities
for
Assembler Pr ogrémmets

Marian 6. Moore

Boston University
Computlng Center

Foreword

This is the first draft of a new manual scheduled for publication
by the Boston University Computing Center in the Fall of 1977. Since
it is directed to a more sophisticated audience and since it is the
first technical document on the VPS system services, it is being made
available at this time. As a reader of this draft, your commments and
criticisms of the material presented and the manner of presentation
are essential to the wusefulness of this manual in its final form. A
special tail sheet has been provided for your comments. Please send
it to the Computing Center or drop it off in Room 3.

This manual was prepared 1in machine readable form using the VPS
Editor and Script facilities. These text editing facilities are
available to users of the system and are documented in detail in the
VPS User’s Guide.

I would like to thank John Porter who not only acted as my editor
during the writing of this manual but also designed the cover. Thanks
also go to Lewis Nathan who kept me honest by scrupulously comparing
the documentation to the actual macros.

Marian G. Moore
Senior Systems Programmer
June, 1977

Introduction

This manual is intended mainly for assembler language programmers
who wish to employ VPS system facilities in their programs. It
attempts to describe the facilities available, the macro instructions
which can be used to request these facilities from the control
program, and related data areas.

This manual is divided into two parts. Part I, “System
Facilities’, provides explanations and examples for wuse of the
facilities provided. Part 1I, ‘Macro Instructions’, contains a
description and definition of each VPS macro making it possible for
assembler programmers to successfully request services from the VPS
control program. The manual was arranged in this manner so that Part
11, which is ordered alphabetically, could be used as a quick
reference when coding programs.

At the writing of this manual the VPS system is still in an
embryonic state. The structure of the macros and documented data
areas will undoubtedly change as new facilities are added. The use of
these macros does not absolutely guarantee that future enhancements to
the system will not impact your programs = BUT IT IS YOUR BEST BET.

Contents

PART I: System Facilities. .

CHAPTER 1: Attention Handling.

The SETATTN Macro. « + «
VPS Attention Modes. « .+
SETATTIN Parameter List . .
Attention Exit List. . .
SETATTN Example. « « + « &

CHAPTER 2: Data Management .
Introduction « « ¢ ¢ « &

File Record Formats. . « .
VPS File Types « « « & o« &

Files on Direct Access Devices

QI0 Access Method.

Reading the Conversational Read Unit . .

QIO Example. e e+ 8 8 & &

Reading and Writing using QIO Record

QIO Record Addressing Example.

DIO Access Method. « « «

-

Addressing. . .

« = 8 & @& »

* ® ® = ® @

DIO Example = Processing a File without Keys
DIO Example = Processing a File with Keys. . « « + .

CHAPTER 3: Load Modules. . .
Load Module Creation « « «

Load Module File Structure .
Loading a Load Module into Virtual Storage « « « « &
Passing Control to a Load Module
Example - Loading a Load Module.
Loading By Directory Entry . . .
Example - Reading the Directory.

CHAPTER 4: Message Facilities. .

Sending Messages « « o« o« &

Building Messages with MESCV .
Generating Messages with BLDMSG.
Sending Messages and Receiving Replies .

CHAPTER 5: Timing Services .
Time of Days « o o o o o &
Execution Timing « « « « &
Interval Timing. - « + &

PART I1: Macro Instructions.
Macro Instruction Formats.
VPS Macro Restrictions . .
ABCODE - Abend Code. . . .
ABEOQJ - Abend/End of Job .

ACCMOD = Access Modifier Area.

BLDMSG -~ Build a Variable Length

CLRSTOR - Clear Storage. .

s & & &

. = & @

= s & &
. ® . ®

=+ 8 @

Message

. * 8

" & & = & &

.« = @ LI N

from a Pattern.

BRANCH - Branch and Set Condition Code/Program Mask.
BRTRAP - Branch and Trap SVCs.

a & 8 ® ® @

e s & @& = »

DADSM = Direct Access Device Space Management. . .
DADSMARG - DADSM Argument List .

= & @ @ = @®

16
16
16
16
17
17
18
18

20
20
20
21
22

24
24
24
25

27
27

30
31
32
34
36
37
38
39
41

o

Ter A sel

iR, <

P S S

Bk e 2

DFLARG - DFLIBIN Argument List + «+ « ¢ « o « o o &
DFLIBIN - Define the Library Input File. . «. « « o
DFTARG - DFTERMIN Argument List. « « o« o o « o o =
DFTERMIN - Set Terminal Input Stream Parameters. .
DIO - Direct I/0 o « o o & ¢ o o o & o & s s s & o
DIORB - DIO Request Block. « « « « & & ¢ o o o o o
DYLEXC - Delay Execution « &« o« o o o o & s o o o o
EXTIME - Execution Time. « « « « « o« s o« s & o o o
LCLARG = LIBRCLS Argument List « « « o &« o ¢ o o &
LIBARG - LIBRARY Argument List . + « o « o & o o &
LIBRARY = Library File Management. + « o« o« o o o &
LIBRCLS = Output Library File Close. « « « & o o+ o
LMARG - Load Module Argument List. + « &« & o o o o
LMBLDL - Load Module Build List. . + « ¢ & & = & &
LMBLIST = LMBLDL List. « « o « « & s &« & s &8 o o &
LMLOAD - Load a Load Modules « « o o o & = = « & &
MESGB = Build a BLDMSG Pattern o« « « o s o s & =« =
MESGV - Generate a Variable Length Message . . « «
PSTCOD - Retrieve Post Code. « « & & ¢ o o o o o &
QBSP - Backspace File (QIO)s o o &+ o« o« o o o o & &
QEOF - Write EOF (QIO) o o o o o o o o s s s & o =
QGET - Get Record (QIO)s « « ¢ o &« o o o o o » o
QIORB - QIO Request Blocks o« « & « o« o o o o ¢ o o
QPUT - Write Record (QI0). « « o o« o s o o o o o
QREW - Rewind File (QIO) & o & o o o o o & = « o
SALIST - SETATTN Parameter Liste. « « « & & o « o &
SETATTN - Set Terminal Attention Exite o o o & o &
SETIMER - Set Timer Interrupt. « « « o« o ¢ s o = =
SETTRP — Set Trap ATea « = + o s o + s « o s o & =
SMSG = Send Message. « « s s s s o s s s o o s o »
SMSGR - Send Message with Reply. « « « + o« o « & &«
SMSGRARG - SMSGR Argument List « o « o o o o o & &
SYSLIB = System Library and Work File List . . « .
TESTIMER - Test Timer. o« « o+ o s o« o s & o s & o =
TOD = Time of Day. + o o o o o o o ¢ ¢ o o o o &
TRAPAREA - User Defined SVC/ABEND/PI Trapping Area
TWAIT = Task Waits o« o o o & o & o o o o s & o o

Appendix A: Data Areas « « « ¢« s & s & 3 3 s s & & »

IndE}{- B = & & = & & @ . e « & & & 8 LI T s 8 & @& @

42

45
46
48
51
54
25
56
58
60
63

67
69
70

77
78
79
8l
83
86
88
91
93
94
96
97
98
100
102
103
104
105
106
108

109

111

Part I: System Facilities

Introduction

VPS (Virtual Processor System) is a timesharing operating system
designed and implemented by the systems staff of the Boston University
Computing Center. The main goals of VPS are to make available a large
number of resources to the timesharing user while, at the same time,
provide quick reponse time and efficient use of the hardware

facilities.

Many of the internal features of VPS are available to assembler
language programmers through the use of macro instructions (described
in detail in Part II). These ‘system facilities® include: program
controlled terminal attention handling, data and file manipulation,
extensive message generation and sending facilities, and timing
services. In the following section some of the more extensive and
complex system facilities are explained and examples of their use

shown.

Chapter l: Attention Handling

This chapter discusses the facilities available in VPS for user
attention handling.

The SETATTN Macro

Under normal operation, if the terminal user strikes the attention
key during the execution of a program, a system attention interrupt
occurs and the control program handles the attention. After the
attention key is struck, the user has a choice of canceling the output
of the program, canceling the program, skipping lines of output, etc.
In certain circumstances the assembler language programmer may find it
advantageous to handle attentions in the program.

The VPS5 macro, SETATIN, has been provided to allow assembler
programmers the ability to establish an attention exit routine in
their programs. After the SETATTN macro has been issued, informing
the control program of the existence of an exit routine, control will
be passed to that routine each time a program attention interrupt
occurs during the execution of that program.

The SETATTN macro can also be used to cancel an attention exit
routine, which will cause future attentions to be handled by the
control program.

VPS Attention Modes

VPS supports two attention mode settings, system mode and program
mode. The attention mode desired is set with the /CIL command (see
the VPS User’s Guide). After an attention exit routine has been
established using the SETATTN macro, the exit routine will not receive
control until a program attention interrupt occurs. The procedure the
terminal user must follow to cause a program attention interrupt
depends upon the attention mode setting.

If system mode is set = striking the attention key once causes a
system attention interrupt; at this point, typing /ATTN when the
keyboard unlocks will cause a program attention interrupt. A program
attention interrupt can also be caused 1in system mode by rapidly
striking the attention key twice.

If program mode is set = striking the attention key once causes a
program attention interrupt. Striking it rapidly twice will cause a
system attention interrupt.

The SETATTN Parameter List

The SETATTN macro requires a parameter list which may be built
using the SALIST macro. The list specifies an output buffer address
and its length, and an input buffer address and its length. If an
output buffer address and length are coded, the contents of the buffer
will be printed on the user’s terminal when the attention key is
struck. If the input buffer address and length are coded, when the
attention key is struck, the output message will appear (if coded) and
the terminal will unlock awaiting a reply from the user. If either of
these options 1is used, the attention exit routine will not be given

control until after the message is printed and/or the reply has been
placed in the buffer.

The parameter 1list also provides a means of passing a user data

address to the exit routine. If this operand is coded, upon entry to
the exit routine, register 1 will contain the address of this area.

The Attention Exit Routine

When control is passed to the attention exit routine, registers 0,
1, 13, 14, and 15 will contain the following:

r0O - the address of the Attention Communications Area (defined by
the ATTNCOMM DSECT). The area contains, among other things,
the register contents when the user’s program was interrupted
and, at offset +72, a copy of the parameter list.

rl - the address of the user data area (if specified).

rl3 - the save area address.

rl4 - the return address.

rl5 - the address of the attention exit routine.

The attention exit routine should save its registers in the save area
provided in register 13 upon entry and restore them upon exit. If the
attention routine exits to the address in register l4, the control
program will pass control to the next instruction to be executed in
the main program after the attention interrupt was taken.

On entry to the attention exit routine the control program will
automatically suppress all program attentions until the exit routine
has returned control. If the programmer wishes to allow attentions
during the execution of the exit routine, the SETATTN macro with the
SO0FF operand may be issued upon entry to turn off attention
suppression. This will cause re-entry to the exit routine if a
program attention interrupt occurs during the execution of the exit
routine.

Example

In the following example, an attention exit routine is established
for the first phase of a two phase program. If the user causes a
program attention interrupt during phase 1, the following message will
appear:

type: phase2 or cancel

If “cancel” 1is entered, the program will be terminated using the
ABEOJ macro. If ‘“phase2” is entered, a switch is set and control is
returned to the main program = the next test of switch in the main
program will cause phase2 to be entered. If anything else is entered,
control will be returned to the main program and phase 1 will
continue.

The exit routine allows attentions to be processed during its
execution by issuing the SETATTIN macro with the SOFF operand. When
phase 2 is entered, the attention exit is canceled.

i

phasel

phase2

attnexit

cancel

abmsg

savearea
alist
output
exitlist
switch

input

setattn list=alist,exit=attnexit,save=savearea

ds Oh

tm switch,x’01°
bo phase?

b phasel

ds Oh

setattn cancel
using attnexit,rlb
ds Oh

save (14,12)
setattn soff

la r2,4(,rl)

clc 0(6,r2),=c“cancel”

be cancel

cle 0(6,r2),=c’phase2’

bne *4-8

oi O(rl),x"01”
return (l14,12)

ds Oh

abeoj abmsg

should phase 2 be entered?

yes, branch

cancel exit routine

addressability for
attention exit routine

allow attentions

input buffer address
request to cancel?
yes, branch

request for phase 27?7
no, branch

yes, set switch

return to main program

cancel program

abcode u200,” program canceled in phase 1°

ds 18f

salist obuf=(output,23),ibuf=(input,6),usaddr=exitlist
type: phase2 or cancel’

dc 123"
ds 0f

dc x700"
ds Of

ds clé

I
I
|
I
i
I
|
I
l
I
|
I
|
I
[
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
|
I
I
I
I
I
I
!
|
I
I

Chapter 2: Data Management

This chapter discusses the data management services available in
VPS as well as the physical and logical characteristics of the storage
media used at Boston University.

Introduction

The data management programs of the VPS operating system allow the
assembler language programmer the ability to efficiently transfer data
between the program and direct-access volumes (disks), tape volumes,
the user terminal (for programs being run at terminals), and unit
record devices - card readers, card punches, and printers (for
programs being run on the batch). Using VPS, the programmer may
organize and access files in two ways:

- Sequential. Records are placed 1in physical sequence. Given one
record, the location of the next record accessed is determined by
its physical position in the file. Sequential organization 1is
used for tape files, wunit record devices, terminal input and
output, and may be selected for direct-access devices.

- Direct. The records within the file, which must be on a direct-
access device, may be accessed in any order. Records may be
arranged in sequence according toc a key.

The data management programs of VPS comprise two "access methods' =
QIO (Queued Input/Output) and DIO (Direct Input/Output). QIO can be
used to access sequential files, read direct files either sequentially
or randomly by record number, and write direct files. QIO allows
device independence when processing sequential files. DIO can be used
to read and write direct files and to search direct files by key.

File Record Formats

A file 1is composed of a collection of records that normally have
some logical relationship to one another. The record is the basic
unit of information used by the processing program.

The process of grouping a number of records before writing them on
a volume is called ‘blocking”. Each block consists of one or more
records. Blocking conserves space on direct-access devices and tape
volumes because it reduces the number of interrecord gaps (IRGs) in
the file. (IRGs are written by the hardware between adjacent blocks
of a disk or tape file.) It can also increase the efficiency of
reading or writing a file by reducing the number of input/output
operations required to process it.

Records may exist in one of three formats: fixed-length (format F),
variable~length (format V), and, for tape only, undefined (format U).
The record format of the file is specified on the /FILE statement.

Fixed-Length Records

The size of fixed-length (format F) records is constant for all
records in the file. The number of records within a block is constant
for every block in the data set, unless the file contains truncated
(short) blocks. 1f the file contains unblocked format F records, one
record constitutes one block.

Block

Blocked | | I | IRG | | I I
I | I I I | I |

Unblocked | | IRG | | IRG | | IRG | |
| | | I I

Variable=-Length Records

The variable-length format (format V) provides for variable length
records and variable length blocks. The first 4 bytes of each record
and each block make up a descriptor word containing control
information. Assembler programmers must allow for these additional 4
bytes in both input and output operations in programs.

~ Block Descriptor Word. A variable length block consists of a Block
Descriptor Word (BDW) followed by 1 or more logical records. The
first 2 bytes specify the block length (4, for the BDW, plus the
total length of all the records within the block) followed by 2
bytes of zeroes. This length can be from 8 to 32,760 bytes. QIO
will automatically provide the BDW when the file is written.

- Record Descriptor Word. A variable length record consists of a
Record Descriptor Word (RDW) followed by data. The Record
Descriptor Word is a 4-byte field describing the record. The
first 2 bytes contain the length of the record including the RDW
length of 4. The second 2 bytes are zeroes. The length can be
from 4 to 32,756. The programmer must provide the RDW when
supplying V-format records to QIO.

Block
I — N
BDW LL
f \ s i N
| ¢ | | | I [| I
Blocked |LL:00] | J | IRG |LL:00| I |
RPN T R S B S S A
\ ® o
\ .
\ORDW e
\\I \‘\.
I & i |
Record [11:00| Data |
| | I
N V4
% ‘/
\\ ./J'
\ #

| & | I I = | I
Unblocked |LL:0O]| | IRG |LL:00]| |
N S l_: | |

Undefined Records
Format U permits processing of records that do not conform to the F
or V formats for tape files only. Each block is treated as a record.

Block Block Block

| IRG | | IRG | |

VPS File Types

VPS provides two types of files for data storage - library files
and work files. Library files are sequential files which reside in
VPS libraries on direct-access storage devices. Work files are IBM/VS
compatible data sets and may reside on tape as sequential files or on
disk as direct files.

The choice of file type is dependent upon the size, frequency of
use, mode of access, etc. of the file. A complete discussion of VPS
file types can be found in the VPS User’s Guide.

Files on Direct-Access Devices

Regardless of their organization, files <created using VPS can be
stored on direct-access devices. Each block has a distinct location
and a unique address, making it possible to locate any record without
extensive searching.

Although direct-access devices differ in physical appearance,
capacity, and speed, they are similar in data recording, data
checking, and data format. The recording surfaces of each device are
divided into many concentric “tracks”. The number of tracks and their
capacity vary with the device.

Information is recorded on all direct-access devices in a standard
format. In addition to device data, each track contains a Track
Descriptor Record (capacity record or RO) followed by data blocks.
There are two possible data formats - count-data and count-key-data.

Track formats

[| I | |1 | I

|
| RO | | count | data | | count | data | | count | data |
I

. l || [|1 I |

|
| RO | | count | key | data | | count | key | data |
| [| | [| | |

Count Area
The count area contains the location of a data block on a specific
track, and defines the =size of the key and data areas of that block.

The count area is 9 bytes in length and is defined as follows:

Byte

0 Track condition flag

1-5 Block location on the volume in CCHHR format

6 Length of the key in bytes (0-255)

7-8 Length of the data in bytes (l=-track capacity)
Key Area

Use of the key area is optional and at the discretion of the
programmer. When wused, the key area of the block contains the
identification of the data portion of the block (such as subject code,
social sercurity number, or any other wuniquely identifying
information). The length of the key area is specified in byte 6 of
the count area. If the key length is zero, no key area will appear in
the block. The maximum key length is 255 bytes. Generally, file
organization determines whether keys are used. For example, if a
sequential file is processed sequentially, there 1is no point in
writing the file with keys. I1f, however, there is an appreciable
amount of searching required, the blocks should be written with keys.

Data Area
The data area contains the information identified by the count and

key areas of the block. The length of the area is specified in the
count area.

The QIO Access Method

The QIO access method provides several macro instructions for
manipulating sequential and direct files. QIO provides automatic
blocking and deblocking of the records written and read. Because the
control program synchronizes input/output with processing, programs
need not test for completion, errors, or exceptional conditions.
After a QGET or QPUT macro instruction is executed, control is not
returned to your program until an input area is filled or an output
area has been written. Exits to error analysis (SYNAD) and
end~of-file (EODAD) routines are automatically taken when necessary.

With QIO the record format wused in a program for reading and/or
writing is independent of the actual record format of the file. The
actual record format of the file is specified on the /FILE statement
with the RECFM parameter. The format of the records built by a
program for writing, or the record format expected by a program for
reading, 1is specified in the QIO Request Block. QIO will
automatically make the appropriate conversion depending upon the
request. This allows the assembler program to process a file as
format F when it may actually be format V and vice versa.

All QIO operations require a QIO Request Block (QIORB) which
informs the control program of the operation to be performed, the unit
on which the operation is to be performed, buffer location and length,
etcs The QIORB may be built using the QIORB macro or as an inline
expansion of the QIO access macros. In the former case, the QIORB can
be dynamically modified at execution time by the QIO access macros.
The following is a list of the QIO access macros and a description of
their function,

QGET - Retrieve a Record

The QGET macro instruction obtains a record from an input file
whether it be a disk file, tape file, conversational read unit,
etc. QGET allows sequential reading of all unit types and random
reading by using relative or absolute record address on disk files
and relative record address on tape files. 1f a direct file with
keys is being read with QGET, the key will be read as part of the
data. If an end-of-file condition is reached on the file, control
will automatically be passed to the user specified EODAD exit
routine. Note that for QIO this EODAD exit will only be takenm if
the end-of-file is encountered when reading a file sequentially.
When reading a direct file randomly that has been written
sequentially and an end-of-file is encountered, the EOF record
(EOFEOFEUF) is placed in the user storage area and control is
returned to the user progranm in the normal way.

QPUT - Write a Record
The QPUT macro instruction places a record into an output file
whether it be a disk or tape file, the user terminal, the printer,
etc. QPUT allows sequential writing of all unit types, random
writing by using relative or absolute record address on direct
files, and random writing by using negative relative block address
on tapes.

QREW - Rewind a File

The QREW macro instruction repositions a file to the first record
in the file regardless of the type of processing. Issuing a QREW
macro on a tape file where the last operation to the file was a
write will cause an end-of-file (EUF) mark to be written before
the tape 1is repositioned. Issuing the QREW macro on the
conversational read unit causes the stack to be cleared. QREW may
not be used when processing unit record devices. It should be
noted that issuing a QREV macro on a tape file effectively
‘closes” that file so that another file on that tape volume may be
accessed.

QBSP - Backspace File
The QBSP macro backspaces a file 1 logical record. For example,
if a record of a file was read and a QBSP macro was then executed
on that file, the next record read would be the same record. QBSP
may not be used when processing unit record devices.

QEOF = Write End-of-File

The QEOF macro writes an end-of-file mark in a file which is being
processed for output - i.e. records are being written into the
file. The QEOF macro can be used only with tape and disk files.
If the file was being read, issuing the QEOF macro on the file
will reposition to the end of the file. As with QREW, issuing a
QEOF macro on a tape file effectively “closes” the file - allowing
another file on that tape volume to be accessed.

Reading the Conversational Read Unit

Assembler language programs, when run at a terminal, may request
information to be entered by the terminal user. This is accomplished
by executing a QGET macro on the conversational read unit (UNIT=TERMIN
is specified on the /FILE statement). 1f variable length reads are
used on the conversational read unit, the Record Descriptor Word (RDW)
can be used to detect data overruns. Normally, the second halfword of
the RDW (bytes 2 and 3 of the program read area) will be zero. If,

however, a variable length read is issued to the conversational read
unit and the typed-in data 1is larger than the area specified, upon
completion of the QCET macro the second halfword of the RDW will
contain the difference between the length of the data read and the
area specified to receive the data.

QIO Example

In the following example, wunit 3, a disk file, is read with
variable length reads. If the first byte of the actual record is an
EBCDIC “A” the record is written to a tape file using fixed length
writes. When the end-of-file is reached on unit 3, processing will
continue at CONT. HNote that the actual record formats of the disk and
tape file need not be variable and fixed respectively.

read ds Ch
qget rb=readrb read a record
cli buff,c’a’ should the record be written
bne read no, branch
qput rb=writerb yes, write it
b read go read next record
cont ds Oh

readrb qiorb bufad=vbuff,buflen=100,recfm=v,unit=3,eodad=cont
writerb qiorb bufad=buff,buflen=96,utype=tape

vbuff ds x12 rdw

buff ds cl96 actual buffer

Reading and Writing Using QIO Record Addressing

Besides sequential reading and writing, disk files may be randomly
accessed using the QIO record addressing mode and tape files may be
randomly read. It should be noted that tape drives are sequential
devices and the use of record addressing on tape files for anything
other than reading forward in the file can be highly inefficient. In
this mode, the next record read or written is not defined as the next
sequential record in the file, but located through a number specified
on the QGET or QPUT macro instruction. The two types of record
addressing are: ‘

- Absolute. The number of the record specified on the QGET or QPUT
macro is relative to the beginning of the file - the first record
in the file being record number l. If, while reading a file using
absolute record addressing, a record number of 26 was specified on

10

the QGET macro, the 26th record of the file would be retrieved.

- Relative. The number of the record specified in the QGET or (QPUT
macro is relative to the record following the last record read or
written. For example, if, while writing a file wusing relative
record addressing, a record number of -1 was specified in the QPUT
macro, the QPUT macro would write in the same location of the file
as the last record written = i.e. the last record would be
overwritten. (This is equivalent to a single backspace and a
write.)

Note that relative record addressing can be used when writing tape
files provided the record number specified on the QPUT macro is
negative.

QIO Record Addressing Example

In the following example every other record of a disk file, unit 2,
is read using absolute addressing beginning with the first record.
When the end-of-file is reached, the tape 1is rewound and read again -
this time using relative addressing and reading every other record
beginning with the second record. The file is processed by the
program as fixed-length records.

la r3,l1 first record number
readl ds Oh
gqget rb=rddisk,recno=(3)

la r3,2(,r3) next record number
b readl go read it

endl ds Oh
qrew rb=rddisk rewind the disk

* now re-format the qiorb to change rntype and eodad
gget rb=rdtape,rntype=rel,eodad=end2,svc=no
read2 ds Ch
qget rb=rddisk,recno=l

b read?
end2 ds Oh

rddisk giorb bufad=buff,buflen=80,unit=2,rntype=abs,eodad=endl
buff ds cl80

—— . — — — — ———— — — T — — — T — T T — — —— — — — — — — —

11

The DIO Access Method

The DIO access method can be used to process direct files 1in a
more basic manner than QIO. DIO processes blocks, not records.
Therefore, blocking and deblocking of records is the programmer’s
responsibility. DI0 does synchronize I/0 scheduling with program
execution, so testing for completion is unnecessary. It also provides
some facilities for processing direct files which are unavailable with
QI0O, With DIO the count (as well as key and data) area of the blocks
may be read and, for files with keys, key searching can be performed
for more efficient random access to the file.

The DIO macro is wused to request the control program to perform a
specified operation on a direct file. All DIO operations require a
DIO Request Block (DIORB) which informs the control program of the
type of operation to be performed, the unit number on which the
operation is to be performed, buffer location and length, etc. DIORBs
may be ‘chained”’ together to perform multiple operations with one DIO
macro call. An alternative form of the DIU macro allows the assembler
program to modify DIORBs at execution time.

Reading With DIO

Through options specified in the DIORB, the count and/or key and/or
data areas of a block may be read. Regardless of whether the file was
written with or without keys the amount of data read is dependent on
the buffer length specified in the DIORB. If COUNT and KEY are
specified and the buffer 1is large enough, the count-key-data areas
will be placed in the buffer. Multiple blocks may also be read by
specifying an appropriately large buffer. The block read is the block
having the number specified in the BLKNO keyword of the DIO macro
instruction - where the first block of the file has BLKNO=l.

Writing With DIO

Blocks may be written randomly into direct files with DIO by using
the WRITE option of the DIO or DIORB macro. The block will be
written at the block number specified by the BLEKNO keyword of the DIO
macro. If the file is being written with keys, the key must precede
the data in the buffer. As with reading, specifying an appropriately
large buffer will allow multiple blocks to be written.

Searching With DIO

Key searches may be performed on direct files by wusing the search
options of the DIORB macro. The key, in the specified buffer, will be
compared against the block keys of the file. Depending upon the
search option specified - SKEYL, SKEYH, SKEYL - a relationship of true
will cause the control program to place the number of the block
matched into the first word of the DIURB header, the DIOSBLK field.
If the search is unsuccessful, the DIOSBLK field will contain zero.
(See the DIORB formats section for information on DIORB differences.
Also note that block number feedback will only occur if the search
DIORB is the first or only DIUORB in the chain. Therefore, placing a
search DIORB other than first in a chain will cause unpredictable
results.) If READ or WRITE is specified along with one or more of the
search options and the search is successful, the data portion of the
block will be placed in the buffer area, immediately following the
search key (for READ), or the data portion of the block will be
replaced by the contents of the buffer area immediately following the
search key (for WRITE).

12

DIURB Formats
As stated previously, DIORBs may be chained together to perform

multiple operations. The first 2 positional parameters of the DIORB
macro can be used to indicate chained DIORBs, as well as the
relationship to the beginning and end of the chain. Chained DIORBs
must appear as successive statements in the assembler language
program. Chained DIORB lengths differ and are dependent wupon their
position in the chain. First, or single, DIORBs are generated as - a
DIORB header (8 bytes) and a DIORB proper (16 bytes). All other
DIORBs in a chain are generated as a single DIORB proper and are 16
bytes in length. The symbols produced by the DSECT option of the
DIORB macro should be used to reference information in DIORBs.

Testing For Exceptional Conditions

DIO provides neither EODAD nor SYNAD exits. It is the programmer’s
responsibility to check for exceptions and errors. After completion
of & DIO request, the DIOREQ2 field (offset +l1 into the DIORB proper)
will be set indicating the completion status of the operation. The

relevant bits are:

Bit Position
012345612
I DIOCOMP Request complete
v li v E DIOIOERR 1/0 error occurred
e o w1 @ &% a DIORQERR Request in error
e o0 0 e owa DIOEOF EOF read on file

DIO Example Processing A File Without Keys

In the following example, a direct file, created without keys, 1is
processed using DIO. On each pass through the code, 3 blocks of the
file are read, processed, and the second of the 3 is modified and
rewritten. The file is format F with a block length of 50 bytes. The
alternate form of the DIO macro is wused each time to update the block
numbers in the read DIORBs before the request is issued. The DSECT
option of the DIORB macro is used to address the DIOREQZ field in the
read and write DIORBs to test for successful completion. Note that
the read operation in done with chained DIORBs = 1it could also be
accomplished with 1 read of 150 bytes. When an EOF is encountered om
the file, processing continues at FINISH.

la r4,readrb addressability to read diorb
la r5,writerb and to write diorb
la r3,1 first block number

read ds Oh

dic +2,rb=readrb,blkno=2(r3),svc=no format last read
dio +l,rb=readrb,blkno=1(r3),svc=no format middle
dio rb=readrb,blkno=(r3) format first and issue req
using diorb,r4

tm dioreq2,diorqerr end=of-file?

bo finish yes, branch

—— — — . S—— —— — —— —
T e e e e — e e —

13

tm dioreqZ,diciocerr error?
bnz readerr yes, branch
drop r4

dio rb=writerb,blkno=1(r3) write the second of the set
using diorb,r>

tm dioreq2,dicioerr+diorqerr error?

bnz writerr yes,branch

la 33 (e3) increment block pointer

b read and read next set of blocks
drop r5

finish ds Oh

readrb diorb s,+,unit=4,bufad=buffl,buflen=50,0pt=read
diorb +,+,bufad=buff?,buflen=50,0pt=read

diorb +,e,bufad=buff3,buflen=50,0pt=read
writerb diorb unit=4,bufad=buff2,buflen=50,0pt=write
buffl ds c¢l50

buff?2 ds cl50

buff3 ds cl50

diorb dsect

.
e e e e e e s s T — — — — — — — ——— — —— — — — — — —

DI0 Example - Processing A File With Keys

In the following example, a direct file (unit 4), created with
keys, is processed with DIO. A sequential file (unit 3), consisting
of 80 byte records, is read using format F QILO. Each record contains
update information for the direct file - uniquely identified by a 10
byte key. As each record from the sequential file is read, the key
from the record is used to search the direct file. If a match occurs,
the data area of the matching block is read into the buffer, updated
from information on the sequential record, and the block is rewritten.
The direct file contains less than 3000 Y0-byte records (10 bytes for
the key followed by 80 bytes of data). When an EOF condition is
encountered on the sequential file, processing continues at FINISH.

la r3,directr addressability to read diorb
la r4,directw and to write diorb
read ds Oh
qget rb=update read an update record
mve key(l0),record move the key to the buffer

die rb=directr search for matching block

14

finish

update
directr

directw
record
buffer
key
buff

using
tm

bo
icm
bz
drop

qiorb
diorb

diorb
ds
ds
ds
ds
diorb

diorb,r3

dioreq2,dicicerr+diorqerr error?

readerr yes, branch
r2,b"1111°,diosblk was the search successful?
not found no, branch

3

rb=directw,blkno=(r2) write the updated block

diorb,rd

dioreq2,dicicerrt+diorqerr error?
writerr yes, branch

read continue updating
ré

Oh

bufad=record,buflen=80,unit=3,eodad=finish
unit=4,bufad=buffer,buflen=90,blkno=1,scope=3000,
opt=(skeye,read)
unit=4,bufad=buffer,buflen=90,opt=write

cl&l

0cl90

cllo

cl&0

dsect

e e R B o S o o T o o e o o i e o i o i S o . i o T

Chapter 3: Load Modules

This chapter discusses the VPS facilities that allow assembler
programs access to load modules that reside 1in system libraries or
user work files.

Load Module Creation

Each time object. decks are loaded into wvirtual storage for
execution by the VPS LOADER, they must be processed to resolve
external references, relocate addresses, etc. This process is called
loading, and it creates a load module in wvirtual storage which is
ready for execution. After execution of the load module 1in virtual
storage, it is deleted.

Since object decks must be processed in this way each time they are
loaded, for object decks which are modified infrequently and executed
often, this mean a large amount of redundant processing. Much of this
redundant processing may be alleviated by linkage editing the object
deck(s). Linkage editing involves most of the same processing as
loading but instead of creating the load module in virtual storage and
executing it, the linkage editor places the load module in a direct
access work file. The load module is then ready for use in execution
in place of the object decks.

Load modules may be created from an object deck, or set of object
decks, and placed in a direct access work file using the VPS /LOAD
LINKEDIT command (see the VPS User’s Cuide for details). The product
of the linkage editor is a self-contained “unit” which, when loaded
into virtual storage by the control program, is ready for execution.

Load Module File Structure

Work files which contain load modules are divided into two
sections. The first section 1is the file directory. The directory
contains an entry for each load module in the file. Each entry
contains information specific to that load module - the load module
name, location in the file, entry point location, type of load module,
etc. (see the DSECT LKDSECTS for detailed information). Each directory
entry is 32 bytes in length.

The second section of the file «contains the actual load modules.
The location of each load module is specified in its directory entry.

Loading A Load Module Into Virtual Storage

Load modules may be loaded into virtual storage either from work
files containing load modules or from system libraries. System
libraries are files known to the VPS control program, such as, the
system link library (SYS.LINKLIE) and system subroutine libraries
(SYS,FORTLIB, SYS.PLIXLIB, etc.).

The VPS macros used to load a load module into virtual storage from
an assembler language program are - LMLOAD, LMARG, and SYSLIB. LMLOAD
requests the control program to search the file directory for a load
module and load it into virtual storage at an address specified by the
program. The LMARG macro builds the LMLOAD argument list. The SYSLIB

16

macro may be used if the programmer wishes the control program to
search a list of system libraries and/or work files for the directory
entry of the specified load module. lote that if a work file unit
number is specified using LMLOAD a valid /FILE command must also be
present defining that work file.

Specifying The Load Address

Load modules may be loaded into virtual storage at any location
specified by the program - with the exception of low core addresses
used by VPS. The standard technique is to load load modules at the
next available storage location past the program which is issuing the
LMLOAD macro. Acquiring this address dynamically may be accomplished
by including a “dummy” CSECT as ths last CSECT of the program and
using a V-type address constant for that CSECT name in the CSECT
issuing the LMLOAD macro.

Specifying The Length

Besides the load address. the LMLOAD macro also requires the length
of the storage area into which the load module is to be loaded. If
the load module is to be loaded at the next available storage location
past your program, the length of the available storage area may be
found by using a special low core cell, defined by the LOCORE DSECT,
called SFUBOUND (see Appendix A for further information). $FUBOUND is
a fullword containing the upper boundary storage location. If the
next available address in user storage is subtracted from the value in
SFUBOUND the result will be the length of the available storage area.

Searching The SYSLIB List

A list of system libraries and/or werk files may be specified using
the SYSLIB macro. The list will be searched in the order specified in
the list and the control program will load the first occurrence of the

load module.

Passing Control To A Load Module

At the completion of the LMLOAD macro, if the module has been
loaded successfully, register 0 will contain the amount of storage
actually used by the load module and register 1 will contain the entry
point address =° the load module. The load medule is now ready for
execution. Passing control to the load medule can, and should, be
accomplished using standard linkage conveantions - register 13 should
contain tle address of an available save area; register 1 should
contain the address of the parameter list if the load module 1is
expecting onej register 14 should contain the return address; and
registes i3 should coacain the entry point address of the load module.

Example

In the following example, a load module - COSIN - 1is to be loaded
into the next availa'l: s:torage location. The ccntrol pregram will
search SYS.PLIXLIB zc< +he work file units 3 and 4. The program will
then pass contrel tu 1!+ load module.

17

| |
| I
I |
| 1 r5,=v (dumnyc) get start of free storage |
| 1r ré,rs retain a copy |
| 1 r7,S$fubound end of available storage |
| ST r7irs length of free storage |
| lmload lmarg=loada,addr=(r6),len=(r7) |
| ltr rl5,rl5 was load successful? |
| bnz loaderr no, branch |
| 1r r15,r1 entry address to rl5 |
| la rl3,save new save area address |
| la rl,parms parameters for cosin |
| balr rlé4,rl5 call cosin |
| ’ |
| . |
J . |
| loada Imarg modname=cosin,syslib=list |
I list syslib list=(sys.plixlib,3,4) %
| |
l |

Loading By Directory Entry

In certain cases the programmer may wish to read a load module
directory entry into storage before loading the actual 1load module.
For example, if more than one module is to be loaded and executed from
the same set of libraries and/or work files, acquiring all of the
directory entries in one search and then loading each separately, is
more efficient than searching for and loading each independently. The
VPS macro LMBLDL - in conjunction with LMBLIST, LMARG, and SYSLIB -
should be used to read directory entries into virtual storage.

Using The Directory Entry After It Is KRead

The LMBLIST macro instruction constructs an area into which a
directory entry, or entries, are read by the control program during
execution of the LMBLDL macro. After a directory entry has been
brought inte wvirtual storage, it can be wused with the LMLOAD macro
instruction to load the specified module. In this case the control
program will not search any libraries since the information it needs
to load the module is found in the directory entry. But before the
LMLOAD macro can be successfully executed, the directory entry must be
moved to the LMLOAD argument list. See the LMBLIST macro description
for further information.

Example

In the following example, two load modules, COKVERT] and CONVERTZ,
are to be loaded from work file unit 3. Control is to be passed to
each load module in turn. LMBLDL 1is used te read the directory
entries into storage before each is loaded with LMLUAD.

18

I
I
I
I
|
I
I
I
|
I
I
|
I
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
|
|
I
I
I
|

——

— - = s i e . s e N e e S s e e 0 e T B S A

J r5,=v(dummyc) get start of free storage
1r r6,r5 retain a copy

1 r7,$fubound end of available storage
ST r7,rd length of free storage
lmbldl lmarg=barg,addr=bldlst

ltr rl5,rlb bldl successful?

bnz bldlerr no, branch

mve larg+4(32),bldlst+4 move first directory entry
lmload lmarg=larg,addr=(r6),len=(r7)

ler rl5;rl5 load successful?

bnz loaderr no, branch

ir t15,51 entry address to rlb

la rl3,save new save area address

la rl,parmsl parm address for convertl
balr «rlé4,rl5 call convertl

mve larg+4(32),bldlst+36 move in next directory entry
Imload lmarg=larg,addr=(rb6),len=(r7)

ltr rl5,rl5 load successful?
bnz loaderr no, branch
1r rl5,rl entry address to rl5
la rl3,save new save area address
la rl,parms2 parm address for convert?2
balr rlé4,rl5 call convert?
barg lmarg bldl,unit=3

bldlst Imblist modname=(convertl,convert2)
larg Imarg dir,unit=3

.

19

Chapter 4: Message Facilities

This chapter discusses the VPS message building and sending
facilities which can be used in assembler language programs.

Sending Messages

Assembler language programs may send messages to the terminal user
(to the printer, if-the program is being run in batch), to another
terminal user (another account), or to the system operator using the
SMSG macro. The VPS message facility sends messages having a variable
length format; that 1is, the message area, or buffer must be
constructed as follows:

Message Area
(LL bytes)

N

14 A}

| B
|LL |00
||

|

| Message text I
o]
22

Length (in bytes)

Where the first 2 bytes of the area contain the length (LL) of the
area, and the second 2 bytes must contain hexadecimal zeros followed

by the message text.

Variable length messages may be built either with the MESGV macro
or with the BLDMSG macro operating on a MESGB pattern macro. Note
that the above format is the same as required by the QIO access method
and messages built with these macros can be used by QIO (see Chapter 2
for further information).

Building Messages With MESGV

The MESGV macro may be wused to build simple messages - messages
which require minimal editing. The MESGV macro can be coded to leave
blank spaces in a message and assign a user-specified symbol to that
area - allowing easy text insertion during execution.

In the following example 2 messages are sent, the first to the
terminal user and the second to the system operator. Before the first
message is sent, a converted number is inserted into the message.

| l
| !
| . l
| 1 r2,numrecs get number of records |
[cvd r2,dfield convert it to decimal |
I unpk msgal(4),dfield unpack it into the message |
| mvz msgal+3(l),msgal+Z clear sign |
| smsg *,msga send it to terminal |
| Ttr rl5,rl5 sent successfully? |
| |

bnz msgerr no, branch

20

smsg op,msgb send message to operator
1tr rl5,rlS sent successfully?
bnz msgerr no,branch

dfield ds d

numrecs ds f
msga mesgv ° phase 1: “,msgal,(4),” records read’

msgh mesgv ‘please mount tape - data02”

In this example, the terminal user would receive the message:
phase 1: 0038 records read
The system operator would receive the message:

please mount tape - data(Z

Generating Messages With BLDMSG

VPS provides extensive facilities for complex message generation
through the use of the BLDMSG macro. The BLDMSG macro generates
variable length messages by editing data areas, specified in a list on
the BLDMSG macro, into a programmer-specified message buffer under the
control of a MESGE message pattern. The MESCB macro defines the text
information, data conversion controls, and formats for the message
being built.

Through operands coded on the MESGB macro, BLDMSG provides data
conversion - data areas can be automatically converted to decimal and
edited into a message; leading zero and leading and trailing blank
truncation = significant digits or non-blank characters can be
automatically edited into a message; and, for often used information =~
such as date and time - automatic retrieval, conversion, and editing
of this information into the message. OUther operands on the MESGB
macro can also provide absolute and relative tabbing during message
generation, and conversion of data areas to a ‘dollars and cents”’
format. A full description of these and other facilities can be found
in the MESGB macro description in Part II of this manual.

After BLDMSG has generated a message in a buffer, the SMSG macro
can be used to send the message. Note that since BLDMSG stores the
buffer length into the first Z bytes of the buffer, the actual
variable length message begins at offset +2 into the buffer.

The following is an example of BLDMSG message generation. The date
and time are to be retrieved, converted, and placed in the message
buffer. PHASE, a halfword, is to be converted to decimal and the
significant digits placed in the message; as is NUMRECS, a fullword.

21

bldmsg buffer,pattern, (phase,numrecs),buflen=135

ler rl5,rl5 msg built successfully?
bnz msgerr no, branch
smsg *,buffer+2 send it
1tr rl5,rl$5 sent successfully?
bnz msgerr no, branch
phase ds h phase number
numrecs ds £ number of records

buffer ds cll35
pattern mesgb ° ‘,date,” ‘,time,” phase °,(dec,2),’: °, *
(dec,4),’ records read’

In this example, the terminal user would receive a message that might
look like the following:

thu mar 03, 1977 13:11:42 phase 3: 472 records read

Sending Messages and Receiving Replies

Assembler language programs may not only send variable length
messages but also receive and process replies from these messages
using the SMSGR, SMSGRARG, and TWAIT macros. Messages may be sent to
and corresponding replies received from the terminal user (1f the
program is run in the batch, the VPS operator will receive the
message), the VPS operator, or another terminal user (another

account).

The SMSGR macro is used to send the message and notify the control
program that a reply is to be expected. The SMSGR macro passes

information to the control program using an argument list. The
argument list, which is built using the SMSGRARG macro or constructed

as part of the inline expansion of the SMSGR macro, contains: the
address of the variable length message, the address and length of the
reply area, and posting information to be used by the control program
(see below). Messages sent by SMSGR are standard variable length
messages which may be built using the MESGV or BLDMSG macros.

Posting the User Program

When the SMSGR macro is executed, the VPS control program receives
control and sends the message to the desired destination. Control is
then returned to the user program, which will continue execution while
the control program awaits the reply from the destination user. When
the reply is received and placed in the reply area the control program
‘posts’ the user program by “ORing” 1°s into a post byte whose address
is passed in the SMSGR argument list under the control of a posting

22

mask, also passed in the argument list.

Therefore, if the programmer wishes to process the reply, the user
program must be made to wait until the reply has been received (i.e.
the user program has been “posted’). This can be accomplished using
the Test=under=Mask /TWAIT combination (see the TWAIT macro
description).

Example using SMSGR and TWAIT

In the following example a message 1s sent to the VPS operator
asking if tape “DATAl4” is ready for mounting. The SMSGRARG macro is
used to build the argument list. If the message is sent successfully
(see the SMSGR macro description for a list of return codes), the
Test-under-Mask /TWAIT combination are used to wait on the post byte
STAT until the reply is received. The reply is then checked in the
following manner: if the reply is “yes”, execution continues; if it is
‘no”, execution is terminated; and if it is mneither of these, the
message 1s repeated.

msgloop ds Oh

,
or no

| |
| |
I |
| |
| ni stat,x"7f° clear the reply posting bit |
| SMSEr Op,smarg=msgarg |
| ltr 5,15 message sent successfully? |
| bnz msgerr no, branch |
| tm stat,x 807 |
| twait wait for the reply |
| cle reparea(3),=cl3’no ° is it "no”? |
| be end yes, branch |
| cle reparea(3),=cl3’yes” if it is not “yes’ ... |
| bne msgloop send it again I
| .

| . |
I . |
| msgarg smsgrarg ,opmsg,reply=reparea,replen=3,post=stat, * |
| pbits=x"80" |
| reparea dc cl3” * |
| stat dc x’ 00’ |
| opmsg mesgv “is tape - datal4 - ready for mounting? reply yes *|
I i
I |
l |
| |

——— S ——————————————————— e e T T

23

Chapter 5: Timing Services

This chapter discusses the timing facilities available to assembler
language programs in VPS. Besides providing time of day, VPS also
provides execution and interval timing facilities.

Time of Day

The time of day may be requested by issuing the TOD macre which
returns the time of day in 300ths of a second units in register O.
Below is an example where the time of day is requested and then
converted to seconds.

.

tod
d r0,=£f 300" convert to seconds
st rl,seconds store it

|
|
|
|
srdl r0,32 move tod to rl |
|
I
|
|
|

- S] . o B S S T o T

Execution Timing

The VPS control program provides the ability to request the
accumulated CPU time for a terminal session or batch job wusing the
EXTIME macro. EXTIME will return the accumulated CPU time, in 300ths
of a second units, in register 0. By issuing the EXTIME macro at
different places in a program and subtracting the last value from the
new value, the CPU time for different sections of a program can be
calculated. In the following example a loop is timed by issuing an
EXTIME macro before the loop is entered, after the loop is ended, and
then storing the difference.

extime
st rO,timer store accumulated cpu time
loop ds Uh start loop

bxh 4,6,lo0p

extime

s rO,timer calculate difference

st r0, looptime store cpu time for loop

24

Interval Timing

A time interval can be established in a program by using the
SETIMER macro, and the time remaining can be tested or canceled by
using the TESTIMER macro. Only one time interval can be active at a
time.

By issuing the SETIMER macro the programmer may specify either a
time of day or an interval value (both in 300ths of a second units)
indicating when the time interval is to expire. At that point, the
control program will give control to the timer completion routine
specified by the SETIMER macro instruction.

The timer completion routine must save and restore registers and,
if appropriate, return control to the address in register 1l4. When
the timer completion routine returns, control will be passed to the
next instruction in the main program after which the time interval
expired. Also specified on the SETIMER macro instruction is the
address of a save area which will be passed to the timer completion
routine in register 13.

In the following example a time interval of 4 seconds is set for a
loop in a program. If the time interval expires before the loop is
completed, the timer completion routine will be given control. If the
loop completes before the interval expires, the interval will be
canceled with the TESTIMER macro. If the timer completion routine is
entered, it will save its registers in the save area addressed by
register 13 and turn on a switch tested in the loop. At the end of
the timer completion routine the registers will be restored and
control returned to the address in register ld4. The control program
will then return control to the next instruction in the loop. When
the switch is tested again the loop will terminate.

e e e e e —— —_—— R — s

setimer save,clock=1200,exit=timexit

loop ds Oh start loop
tm timer,x"01° has interval expired?
bo loopexit yes, leave loop

bxh 2,4,1lo00p
testimer cancel

loopexit ds Uh
using timexit,rl> addressability for
timexit ds Oh timer interrupt routine
save (l4,12) save registers

oi timer,x"01" say time has expired

. — —— ——— — — ——— ——— — S T— — — —

25

return (l4,12) restore registers

save ds 18f savearea for timer routine
timer de x"00° timer switch

26

Part I11: Macro Instructions

Introduction

Service requests are communicated to the VPS control program using
a set of macro instructions. These macro instructions are available
only when programming in assembler language. All VPS macros and
DSECTs reside under the VPS library index - VPSHAC.

The processing of the macro instructions by the assembler results
in a macro expansion generally consisting of data and executable
instructions in the form of assembler language statements. The data
fields are the parameters to be passed to the requested control
program routine; the executable instructions generally comnsist of
(where applicable) a branch around the data, instructions to load
registers, and a supervisor call (SVC) to give control to the proper
control program routine.

Macro Instruction Forms

When written in the standard form, some of the macro instructions
result in instructions that store into an in-line parameter 1list.
Out-of-line parameter lists are also supported through the use of a
separate set of macros which, instead of generating assembler language
instructions, generate data areas which can be used by the various
macro instructions requiring parameter lists and generating 5SVCs.
These macros are also documented in the following section.

Macro Instruction Formats

The symbols (], {}, __, and ... are used to indicate how a macro
instruction may be written. DO NOT CODE THESE SYMBOLS. Their general
definitions are given below:

[] indicates optional operands. The operand enclosed in brackets may

or may not be.coded, depending on whether or not the associated
option is desired or whether a default 1s to be taken. If more

than one item 1is enclosed in brackets, one or none of the items
may be coded.

{) indicates that a choice must be made. OUne of the operands from
the wvertical stack must be coded, depending on which of the
assoclated services 1is desired.

indicates a value that is used in default of a specified value.
This value is assumed if the operand is not coded.

.. indicates that an operand, or set of operands, may be repeated.
The number of repetitions is dependent upon the function desired.

VPS macro instructions follow the rules of 0S/VS Assembler
Language. When writing VPS macro instructions using the format
defined in the focllowing section, write them using the general rules
listed below:

-- If a selected operand is written 1in all capital letters (for
example DIR, SOFF, SET), code the operand exactly as shown.

27

—— If the selected operand is written in lower case, substitute the
indicated value, address, or name. '

—- If the selected operand is a combination of capital and lower case
letters separated by an equal sign (for example LENGTH=number)
code the capital letters and equal sign exactly as shown, then
make the indicated substitution.

-- Code commas and parentheses exactly as shown, only omit the comma
following the last operand coded. The use of commas and
parentheses is indicated by brackets and braces following the
afore mentioned rules.

Note: Capital letters are used in this manual only to differentiate
between symbols and keywords required by the macros and symbols and
names selected by the programmer. If a macro definition is being
typed in on a terminal it should not be typed in upper case.

VPS Macro Restrictions

In general, the VPS service macros may use registers 0, 1, 14, and
15 in generated code. The programmer is forewarned that dependence
upon the contents of one of these registers across the execution of a
service macro can lead to disaster. A small number of macros will use
other registers. These registers are noted in the section describing
that macro.

The VPS service macros are supplied to aid the knowledgeable
assembler programmer 1in writing sophisticated programs. The macros
which generate executable code and the macros that generate data areas
and parameter lists could be replaced by their assembler language
equivalents. THIS IS NOT RECOMMENDED. The executable code and data
areas generated by the VPS service macros are subject to change and
should, therefore, not be replaced by their assembler language
equivalents.

The VPS service macros recognize the equated symbols “r0° through
‘r15° as equates for registers 0 through 15. If equated symbols “r0”
through ‘rl5° are used in programs that issue VPS service macros they
must have the absolute values O through 15 respectively to ensure
correct execution of the code generated by the macros.

28

i

Macro Instructions

The following are the VPS service macro instructions. They are
arranged in alphabetical order.

ot

e .

ABCODE - Abend Code

The ABCODE macro builds a parameter list used by the ABEOJ macro to
abnormally terminate a program. The ABCODE macro does not generate
any instructions. The standard form of the ABCODE macro is written
below.

[symbol] ABCODE {Unnn} {, ‘message’)}

Unnn
specifies the user abend code. The abend code may be any number
between O and 255 and must be preceded by a U to indicate a user
abend.

‘message’
specifies a message which the programmer wishes to have printed at
the time of the abend. The message must be enclosed in quotes.

30

ABEOJ = Abend/End Of Job

The ABEOJ macro instruction is wused to terminate a program
abnormally. It will cause the abend condition flag to be set, a
message specified in the program to be printed, and the program to be
terminated. The standard form of the ABEOJ macro instruction is
written as follows.

[symbol] ABEOJ addr
(reg)

addr

specifies the address of an area containing the user abend code
and message to be printed (see the description of the ABCODE macro
for information on defining the area). Alternatively, a register
may be specified containing the address of this area. If a
register is specified, the register must be enclosed in
parentheses and may be designated either symbolically or as an
absolute expression.

Note:

Besides the abend message, the control program will also print the
contents of the registers and the PSW which were in effect at the
point in the macro expansion where the ABEOJ SVC was issued. Since
the ABEOJ macro uses register 1, if the programmer wishes to have the
contents of register 1 (before the execution of the macro) to be
displayed, it should be loaded into another register prior to the
issuance of the macro.

31

ACCMOD - Access Modifier Area

The ACCMOD macro is used to define an Access Modifier Area. The
area is used to specify file access attributes for library files
created and changed with the LIBRARY and LIBRCLS macros. The Access
Modifier Area is addressed through the LIBRARY argument list (LIBARG)
or is generated as part of the LIBRCLS argument list (LCLARG). In
both cases the Access Modifier Area must be initialized by the user
program. The standard form of the ACCMOD macro is written below.

[symbol] ACCMOD |DSECT
GEN

first positional parameter
specifies whether the Access Modifier Area should be defined. If
DSECT is specified the area is not defined. Instead, an Access
Modifier DSECT is generated. If GEN is specified, a zeroed Access
Modifier Area is generated. GEN is the default.

Notes:
Since it is the programmer’s responsibility to initialize the area,
the Access Modifier Area DSECT is described below.

LAACCFLD DSECT

LAACDL DC XL2°0" ON/OFF BYTES FOR ACCODEL
LAACD2 DC XL2°0’ ON/OFF BYTES FOR ACCODE2
DC XL2°0° RESERVED
LAAPTYPE DC S PERMIT FIELD TYPE
Dc X’0° RESERVED
LAAPFLDS DC 2CL8" ° PERMIT FLELDS

LAALNGTH EQU *-LAACCFLD

LAACDI1

defines the permitted file access for all accounts other than
those specified in the LAAFLDS field. The first byte (the ON
byte) will be ‘“ORed” to the default (for new files), or existing
(for replaced files), access byte. Then the second byte (the OFF
byte) will be “ANDed’ to the first result. The result of the last
operation will define the access codes. If, for each bit position
in the access byte, there is a 1 then that type of access will be
allowed. The access byte has the following format:

it Position

i % o e ow 1 Read access
s & @ et ocwn oy ko ow Execute access
T T Purge access

For example, if the default read and purge access is to be kept
and execute access is to be allowed, then the program should
initialize the first byte with X“02° and the second byte with
X077,

32

LAACDZ
defines the permitted file access for the account(s) specified in
the LAAPFLDS field. These 2 bytes are structured and used in the
same manner as the LAACD1 field.

LAAPTYPE
indicates whether the LAAPFLDS field contains an account range.
X‘0° specifies that the LAAPFLDS field is not being used (the
LAACD2 field is also not needed). X‘01° specifies that the
LAAPFLDS field does contain an account range whose access 1is
defined in the LAACDZ field.

LAAPFLDS

defines an account range which is to have the access attributes to
the file as specified in the LAACD2 field. The first 8-character
field specifies the first account of the range. It may contain an
actual B-character account or from 1l to 7 characters of an account
followed by hexadecimal zeroes indicating where the account
comparison is to stop (this corresponds to a “#” in the PERMIT=
keyword of the associated VPS terminal commands - see the VPS
User’s Guide). The second 8-character field specifies the last
account of the range. It may contain an actual 8-character
account or from 1 to 7 characters of an account followed by
hexadecimal FF’s 1indicating where the account comparison is to
stop. Obviously, the first account of the range must compare low
or equal to the last account of the range.

BLDMSG = Build A Variable Length liessage From A Pattern

The BLDMSG macro is used to build a standard v-format message in an
area, or buffer, in user storage using a pattern constructed with the
MESGB macro. After the BLDMSG macro is executed, the message in the
buffer can be sent using the SMSG macro or written using the QIO
access method. For further information on the BLDMSG macro, see the
description of the MESGB macro. The standard form of the MESGB macro
is written below.

[symbol] BLDMSG buffer address|),pattern address
(regl) s (reg2)

[(data address[,data address]...)]
s BUFLEN=1length
»BUFLEN=(reg)

buffer address
specifies the address of the buffer in which the control program
is to build the message.

(regl)
specifies a register containing the address of the message buffer.

pattern address
specifies the address of the MESGE message pattern.

(reg?)
specifies a register containing the address of the MESGB message

pattern. J

(data address[,data address]...)

specifies a list of data addresses either in the form of a symbol
or base and displacement = D(B). Each points to an area
containing dinformation which will be converted to EBCDIC text
based on options specified in the pattern and inserted into the
message buffer at locations also specified in the pattern. If
only one data address is specified, the parentheses may be
omitted.

BUFLEN=
specifies the length of the message buffer in bytes. If a
register is specified, it must be enclosed in parentheses and the
value in the register will be used as the buffer length. If
BUFLEN is not coded the first 2 bytes of the area specified by
buffer address must contain the length of the buffer.

Notes:

34

When control is returned to the program, register 15 will contain 3
one of the following return codes:

Hexadecimal
Code Meaning
0 Message built successfully.
4 Buffer too small.
8 Too few data elements.
e

Invalid argument.

BRANCH = Branch and Set Condition Code/Program hask

The BRANCH macro is wused to branch to a specified address in user
storage without the use of registers., In addition, it will also set
the condtion code and the prograr mask in the PSW when the branch is
effected. The standard form of the BEANCH macro instruction is
written below.

(reg ,CCPlI=(reg)

[symbol] BRANCH addr y CCPti=number
)
, CCPM=00

addr
is the location to which the branch is to be made. 1f (reg) is

specified, the address in the designated register 1is wused.
Execution of the macro causes the “branch to” address to be stored
in bytes 5-7 of the resume PSW effecting the branch.

CCPl=
specifies the condition code ana program mask. The condition

code/program mask can be coded as either a 2 digit hexadecimal
number or as a register. If a register is specified, it must be
enclosed in parentheses and the condition code/program mask must
be in the leftmost byte of the register. The condition
code/program mask will replace byte 2 of the resume PSW. Below is
a chart of each bit location 1in the condition code/program mask
and its meaning.

Condition Code Program hask
Bit|] © 1 2 3 | 4 5 6 72
| ignored 0 Q0 zero/fequal | | Fxd. Pr. Overflow
| 0 1 <zero/low | 1 Dec. Overflow
| 1 0 >zero/fhigh | 1 Expon. Overflow
| 1 1 overilow | 1 Significance

When the program mask bit is one, the exception results in an
interruption. When the mask bit is zere, no interruption occurs.

36

BRTRAP = Branch and Trap SVCs

The BRTRAP macro instruction is wused to branch to a specified
address in user storage without the use of registers and turn on the
user SVC trapping bit in the JCB. In addition, it will also set the
condition code and program mask in the PSW when the branch is
effected. The standard form of the BRTRAP macro is written below.

(reg ,CCPM=(reg)

[symbol] BRTRAP addr:} ,CCPM=number
)
,CCPM=00

addr
is the location to which the branch is to be made. 1If (reg) is
specified, the address in the designated register 1is used.
Execution of the macro causes the ‘branch to’ address to be stored
in bytes 5-7 of the resume PSW effecting the branch.

CCPM=

specifies the condition code and program mask. The condition
code /program mask can be coded as either a 2 digit hexadecimal
number or as a register. If a register is specified, it must be
enclosed in parentheses and the condition code/program mask must
be in the leftmost byte of the register. The condition
code/program mask will replace byte 2 of the resume PSW. Below is
a chart of each bit location in the condition code/program mask
and its meaning.

Condition Code Program Mask
Bit| 0 1 2 3 | 5 6 7
| ignored 0 0 zero/equal | 1 Fxd. Pt. Overflow
| 0 1 <zero/low | 1 Dec. Overflow
| 1 0 >zero/high | 1 Expon. Uverflow
| 1 1 overflow | 1 Significance

When the program mask bit is one, the exception results in an
interruption. When the mask bit is zero, no interruption occurs.

37

CLRSTOR - Clear Storage

The CLRSTOR macro instruction is used to clear an area in user
storage. The storage is “cleared” by setting it to binary zeroes.
Note that the control program will also release any complete virtual
pages cleared by the macro. The standard form of the CLRSTOR macro
instruction is written below.

[symbol] CLRSTOR [addr ,LENGTH=number
(reg)(|, LENGTH=(reg)

addr
is the address of the first byte of the area in user storage to be
cleared. If (reg) is specified, the address in the designated

register is used.

LENGTH=
is the number of bytes to be cleared. It can be coded either as a
number or non-relocatable symbol, or as a specific register
containing the number of bytes to be cleared. If a register is
specified, it must be enclosed in parentheses. The register may
be designated symbolically or with an absolute expression. 1f
this keyword is omitted the length defaults to the length of addr.

38

DADSM = Direct Access Device Space lManagement

The DADSM macro may be used to scratch (delete) or rename a VPS
disk work file. The standard form of the DADSM macro is written
below.

[symbol] DADSM RENAHE:' {,DADARG=addr}
H s)

SCRATC DADARG=(reg
[, VOLSER=addr ,NAME=addr
, VOLSER=(reg) s NANE=(reg)

, VOLSER="volid"’ ,NAME='filename'

[NEWNAME=addr
,HEWNANHE=(reg)
,NEWNAME="newfilename”

RENAME
is written as shown and specifies that the work file is to be
renamed. Note that this parameter will override the TYPE
parameter of the DADSM argument list macro.

SCRATCH
is written as shown and specifies that the work file is to be
scratched (deleted) from the volume. Note that this parameter
will override the TYPE parameter of the DADSM argument list macro.

DADARG=
specifies the address of the DADSM argument list, It may be
specified either as an address or as a register containing the
address of the argument list., If a register is coded, it must be
enclosed in parentheses. The DADSM argument list should be built
using the DADSMARG macro.

VOLSER=

specifies the volume serial number of the device on which the work
file resides. It may be specified as: an address of a 6-byte area
containing the volume serial number; a register holding the
address of a 6-byte area containing the volume serial number; or
the actual volume serial number enclosed in quotes. If this
parameter is specified, it will replace the volume serial number
in the DADSM argument list. Note, VOLSER=(1l) may not be coded.

NAME=
specifies the name of the work file to be scratched or renamed.
It may be specified as: an address of a 44-byte area containing
the name of the work file; a register, holding the address of a
L4=byte area containing the work file name; or the actual work
file name enclosed in quotes. If this parameter is specified, it
will replace the work file name in the DADSM argument list. Note,

NAME=(l) may not be coded.

39

40

NEWNAME =
(For RENAME requests only)
specifies the new name of the work file. It may be specified as:
an address of a 44~byte area containing the new work file name; a

register, holding the address of a &44-byte area containing the new
work file name; or the actual new name of the work file enclosed
in quotes. Note, NEWNAME=(l) may not be coded.

Note:
When control is returned to the program, register 15 will contain
one of the following return codes:

Hexadecimal
Code Meaning
0 Operation successfully completed.
4 Invalid argument.
8 1/0 error.
C Volume not mounted.
10 Work file not found.
14 Access not allowed.

18 Duplicate name on volume.

41

DADSHARG - DADSM Arpument List

lio instructions

The DADSMARG macro builds the DADSH argument list.
are generated by this macro. The standard form of the DADSMARG macro

is written below.

[symbol] DADSMARG [DSECT] , TYPE=RENANE
» TYPE=SCRATC

,NAME=addr , NEWNAME=addr
,NAME="filename”’ ,NEWNAME="newfilename”

] [,VOLSER="volid”"]
H

DSECT
specifies that the actual DADSH argument list should not be built.
Instead, a DADSMARG DSECT is generated.

to delete a

Either SCRATCH,
be

TYPE=
specifies the type of DADSM request.
work file, or KENAME, to change a work file name, may
specified.

VOLSER=
specifies the 6-character volume serial nunber of the device on
which the work file resides. The volume serial number must be
enclosed in quotes.
as either

NAME=
of the work file. It may be coded
the work file name or as

specifies the name
the address of a f44-byte area containing

the actual work file name enclosed in quotes.

NEWNAME=

(For RENAME requests only)

specifies the new work file name. It may be coded as either the
address of a 44-byte area containing the new work file name or as
the actual new work file name enclosed in quotes.

may be overridden at

Note:
All of the keywords on the DADSHARG macro
execution time using the corresponding keywords on the DADSM macro.

DFLARG - DFLIBIN Argument List

The DFLARG macro is used to construct the DFLIBIN argument list.
The DFLARG macro does not generate any instructions. The standard
form of the DFLARG macro is written below.

[symbol] DFLARG [DSECT] ,UNIT=number ,LEVELS=number
,UNIT=0 ,LEVELS=1

,INDEX="indexname’ [,NAME="filename "]
,INDEX="USERLIB”

DSECT
specifies that the actual DFLIBIN argument list should not be
built. Instead, a DFLARG DSECT is generated.

UNIT=
specifies the unit number of the LIBIN unit.

LEVELS=
specifies the resolution 1limit of the “/INCLUDE® statements read
from the file. If a LEVELS parameter is also specified on the
JFILE statement for the LIBIN wunit, the actual resolution limit
will be the smaller of the two values. The default is l.

INDEX=
specifies the index name of the file to be used as the library
input file. It may be from 1l to 8 characters in length and
enclosed in quotes. The default index name is USEKLIB.

NAME=
specifies the file name of the file to be wused as the library
input file. It may be from 1 to 8 characters in length and
enclosed in quotes.

Note:
All of the keywords on the DFLARGC macro may be overridden at
execution time using the corresponding keywords on the DFLIBIN macro.

DFTARG - DFTERMIN Argument List

The DFTARG macro may be used to derine a termination line for the

DFTERMIN macro. No instructions are generated by this macro.
standard form of the DFTARG macro is written below.

[symbol] DFTAKRG {“terminationline’}

‘terminationline”

The

specifies a 1 to 8 character termination line which will be used

to identify the last line to be placed in the terminal

input

stream. Data lines will be accepted from the user terminal and
placed in the terminal input stream until the termination line is

entered. The termination line nmust be enclosed in quotes.

45

DFTERMIN = Set Terminal Input Stream Parameters

The DFTERMIN macro is used to set, or change, the terminal input
stream parameters of a conversational read unit. A conversational
read unit is identified by the TERMIN parameter on a /FILE statement -
the default for programs run at user terminals is unit 9. Data from a
user terminal may be placed in the terminal input stream using the
/CLIST command (see the VPS User’s Guide) and/or after the program has
begun execution by issuing the DFTERMIN macro to set the stream
parameters and then reading from the conversational read unit (see the
QGET macro). As long as data remains in the terminal input stream,
consecutive reads of the conversational read unit will present
consecutive lines of data from the terminal input stream to the user
program without interaction with the terminal user. The standard form

of the DFTERMIN macro is written below.

[symbol] DFTERMIN UNIT=number , COUNT=number
UNIT=(reg) ,COUNT=(reg)
UNIT=9 ,TLINE="terminationline”’
,TLINE"ZEND'
,DFTARG=addr
»DFTARG=(reg)

UNIT=
specifies the conversational read unit number., It may be coded as
either a number or non=-relocatable symbol or as a register
containing the unit number. If a register is specified, it must

be enclosed in parentheses. The default is 9.

COUNT=
specifies the number of lines which are to be subsequently read

from the wuser terminal and placed 1in the terminal input stream.
It may be coded as either a number or non-relocatable symbol or as
a register containing the number. If a register is specified, it
must be enclosed in parentheses.

TLINE=
specifies a 1 to 8 character termination line which will be used
to identify the last line to be placed in the terminal input
stream. Data lines will be accepted from the user terminal and
placed in the terminal input stream until the termination line is
entered. The termination line rmust be enclosed in quotes. If
DFTARG is coded the TLINE parameter will replace the termination

line specified in the DFTERMIN argument list (see below). 1f
DFTARG is not coded, the argument list will be built in-line.

DFTARG=
specifies the add-c¢:: of an DFTERMIN argument list containing the

termination line. It wmay be coded as either an address or as a
register containing the address of the DFTERMIN argument list. If
a register is sjyecified, it must be enclosed in parentheses. The
DFTARG macro should be used to build a DFTERMIN argument list.

46

Notes:

COUNT is mutually exclusive of TLILE and DFTARG. That is, the last
line to be placed in the terminal input stream is either after the
denoted number of lines are read from the user terminal (COUNT) or
when the termination line is received (TLINLC and/or DFTARG). If none
of the three parameters are coded on an DFTERMIN macro, the control
program will use - /END - as the termination line.

47

DIO = Direct I/0

The DIO macro instruction can be used to read, write, or search for
information in a direct access disk file (DSORG=DA is coded on the
/FILE statement). The operation(s) performed on the file depend upon

the information specified in operands on the DIO macro and in the DIO
Request Block(s) which are built with the DIORB macro. DIORBs may be
chained together to perform mnultiple operations on a file with one
issuance of the DIO macro. (See the description of the DIORB macro
for further information on chaining DIORBs.) Hote that the DIO macro
alters the contents of register 15. The standard form of the DIO
macro is written below.

I+number| {,RB=(reg)(|,UNIT=(reg) ,BUFAD=(reg
L 3 ,SYSLIb=addr
,SYSLIB=(reg)

[symbol] DIO |+0] CRB=addr:} ,UNIT=number [EBUFAD=addr]
r))

— o —
|, BUFLEN=number | {,5COPE=nunber i,BLKNU=number
LBUFLEN=(reg) LSCOPE=(rEg) I,BLKNU={reg)

[OPT=(READ [,COUKT] [,KEY])

,OPT=WRITE
,OPT=([SKEYE] [,SKEYH] [,SKEYL] [,READ] [,WRITE])

,SVC=YES
,SVC=NO

——

first positional parameter
specifies the DIOKB, offset from the beginning of the DIORB chain
(specified by the RB= operand), which is to be modified by the
information specified on this DIO macro call. It is coded as a
plus sign (+) followed by a number or non-relocatable symbol. +0
is the default denoting the first or only DIURB.

RB=
specifies the address of the first or only DIO Request Block. It
may be coded either as an address or as a register, enclosed in
parentheses, containing the address of the DIORB.

UNIT=
specifies the wunit number defining the file which is to be
processed. It may be specified either as a number or
non-relocatable symbol or as a register. If a register is
specified, it must be enclosed in parentheses. If this operand 1is
coded, it will replace the unit number specified in the DIORB.
This parameter can be specified only when referencing the first or
only DIORB in a chain (e.g. first positional parameter is +0).
lote, UNIT=(l) may not be coded.

SYSLIB=

specifies the address of either a fullword containing the unit

48

number defining the file to be processed or a doubleword
containing a systen library mname as built by the SYSLIB macro
instruction. It may be cocded eitner as an address or as a
register, enclosed in parenthescs, containing the address of the
area. If this operand is codea, it will replace the unit number
specified in the DIUKB. lote, 5YSLib=(1l) may not be coded.

BUFAD= :

specifies the address of either an area into which a block is to
be placed on a read or search operation; or an area containing a
block which is to be written orn a write operation. It may be
specified either as an address or as a register, enclosed in
parentheses, containing the address of the area. 1f this operand
is coded, it will replace the ‘bufad” specified in the DIORB,
Note, BUFAD=(1) may not be coded.

BUFLEN=
specifies the length of the “bufad”’ area. It may be specified
either as a number or non-relocatable symbol or as a register
containing the lengtih. If & register is specified, it must be
enclosed in parentheses. If tnis operand 1is coded, it will
replace tiie ‘buflen” specified in the DIURB. Hote, BUFLEL=(1l) may
not be coded.

BLKKO=
specifies the starting block number for a search, read, or write
operation. It may be specified either as a nurnber or
non-relocatable symbol or as & register containing the block
number. If a register 1is specified, it must be enclosed in
parentheses. If this operand 1is coded, it will replace the
‘blkno” specified in the DIUKB. Note, bLKNO=(1l) may not be coded.

SCOPE=
specifies the number of blocks to search when performing a key
search. It may be specified either as a number or non-relocatable
symbol or as a register containing the number. If a register is
specified, it must be enclosed in parentheses. If this operand is
coded, it will replace the “scope” specified in the DIUKRB. Note,
SCOPE=(1) may not be coded.

OPT=
specifies the operation to be performed.

WRITLE -
specifies that the contents of the “bufad’ area are to be
written into the file. If thie 1ile is being written with keys,

the area must contain the key followed by the block to be
written. For files written without keys, the area contains only
the block of data and will D¢ written at the block number
location specified by the bLiliC= operand.

READ [,COUNT] [,KEY]) -
specifies that a read operation is to be performed. 1f READ is
specified, and the file is being read with keys, the key of the

requested block must appear at the beginning of the ‘bufad”’
area. Upon completion of the operation, the key will be
immediately followed by the data block. For reading without
keys, the block having the number specified by the BLKNO=
operand will be placed in the ’bufad” area. If READ,COUNT or
READ,COUNT,KEY is specified, the count, key, and data block will
be placed in the “bufad’ area. The block read will be the block
whose number corresponds to the BLKNO= operand. If READ,KEY is
specified, the key and block portion of the record having the
number specified in the BLKNO= operand will be placed in the
area. :

[SKEYE] [,SKEYH] [,SKEYL] [,KEAD] [,WRITE] =
specifies a search operation is to be performed. The key in the
‘bufad” area is compared against the block keys using the
comparison operand specified - SKEYE (equal), SKEYH (high), or
SKEYL (low) - until a match is found. The matching block number
will be returned in the first word of the DIORB header. (See
the DIORB macro for information on DIORB lengths.) Note, that
the comparison operands may be used in combination (e.g.
SKEYE,SKEYH implies a match will be made when the block key is
equal to or higher than the one specified in the “bufad” area).
The search starts at the block number specified by the BLKNO=
operand and continues for the number of blocks specified in the
SCOPE= operand. If READ is specified and a match is found, the
data portion of the block will be placed in the ‘bufad’ area.
If WRITE is specified and a match is found, the data portion of
the block will be replaced with the contents of the ‘bufad”

dred.

If this operand is coded, it will replace the options specified in
the DIORB.

SvVC=
specifies whether the DIO macro expansion 1is to include the DIO
SVC to perform the operation. The default is YES. If NO is
specified, the macro expansion will contain all the necessary
instructions - except for the SVC,. This form of the macro should
be used when formatting chained DIOURbs.

Notes:

In general, the amount of data read or written is dependent upon
the length of the “bufad’ area specified by the EUFLEL= operand. For
example, if OPT=(READ,COUNT,KEY) is specified, and the ‘bufad” area is
only large enough to contain the count and key; only the count and key
will be placed in the area. Alternately, multiple block reads and
writes may be performed by specifying an appropriately large “bufad”’
area. liote also that when reading or writing with keys, the BUFLEN=
operand should have a value equal to n*(key length + data length),
where n is the number of blocks to be read or written.

For further information on direct access disk I/U refer to Chapter
2.

50

DIORB - Build A DIO Request Block

The DIORE macro builds a DIO Kequest Block which is used with the
DIO macro to perform input/output operations on direct access disk
files. DIO Request Blocks may be ’chained” together to perform
multiple operations on a direct access file with one issuance of the
DIO macro. Chained DIORBs must appear as successive statements in an
assembler language program. The DIORB macro does not generate any
instructions. The standard form of the DIORB macro is written below.

,E | [UNIT=number | [,BUFAD=addr

,+ | [,UNIT=0 , BUFAD=0

, BUFLEN=number , SCOPE=number , BLKNO=number
,BUFLEN=0 ,SCOPE=0 , BLKNO=0
,OPT=(READ [,COUNT] [,KEY])

,OPT=WRITE
,OPT=([SKEYE] [,SKEYH] [,SKEYL) [,READ] [,WRITE])

[symbol] DIORB

SECT

1M+

first positional parameter
specifies the location of this DIORB in a chain of DIORBs. 5 is

the default and indicates that this is the first or only DIORB in
the chain - depending on the second positional parameter. A plus
sign (4) indicates that this DIORE is a member of a DIORB chain -
other than the first. If DSECT is specified, the actual DIO
Request Block is not built; insteaa, a DIORBE DSECT is generated.

second positional parameter
specifies whether a chained DIURB follows the one currently being

built. The default is E indicating that this is the last (or
only) DIORB in the chain. A plus sign (+) indicates that another
DIORB follows this one in the chain. Note that if the defaults
are taken for the first and second positional parameters, the DIO
Request Block is built as a single, unchained DIORB.

UNIT=
specifies the unit number defining the file which is to be

processed. It may be specified either as a number or as a
non-relocatable symbol. UNIT can be specified only on the first
DIORB macro of a chain or on a single, unchained DIORB.

BUFAD=
specifies the address of either an area into which a block is to

be placed on a read or search operation; or an area containing a
block which is to be written on a write operation.

BUFLEN=
specifies the length of the ‘bufad” area. It may be specified

either as a number or as a non-relocatable symbol.

51

BLENO=
specifies the starting block number for a search, read, or write

operation. 1t may be specified either as a number or as a
non-relocatable symbol.

SCOPE=
specifies the number of blocks to search when performing a key
search. It may be specified either as a number or as a

non-relocatable symbol,

OPT=
specifies the operation to be performed.

WRITE -
specifies that the contents of the ‘bufad’ area are to be
written into the file. If the file is being written with keys,
the area must contain the key followed by the block to be
written. For files written without keys, the area contains only
the block of data and will be written at the block number
location specified by the BLKwU= operand.

READ [,COUNT] [,KEY] -
specifies that a read operation is to be performed. If READ is
specified, and the file is being read with keys, the key of the
requested block must appear at the beginning of the ‘bufad’
area. Upon completion of the operation, the key will be
immediately followed by the data block. For reading without
keys, the block having the naumber specified by the BLKNO=
operand will be placed in the ‘bufad” area. If READ,COUNT or
READ,COUNT,KEY is specified, the count, key, and data block will
be placed in the ‘bufad” area. The block read will be the block
whose number corresponds to the BLKNO= operand. If READ,KEY is
specified, the key and block portion of the record having the
number specified in the BLKNO= operand will be placed 1in the

area.

[SKEYE]) [,SKEYH] [,SKEYL) [,READ] [,WKITE]} -

specifies a search operation is to be performed. The key in the
‘hufad”’ area is compared against the block keys wusing the
comparison operand specified - SKEYE (equal), SKEYH (high), or
SKEYL (low) — until a match is found. The matching block number
is placed iu the first word of the DIURB header (see the Notes
section). Nate, that the comparison operands may be used in
comhinatioi (e.g. SKEYE,SKEYH implies a match will be made when
tie block key 1is equal to or higher than the one specified in
the ‘hufac’ area). The search starts at the block number
specified by the BI.KNO= operand and continues for the number of
blocks specified in the SCOPE= operand. If READ is specifed and
a match is fuin’. rhe data portion of the block will be placed
1in the ‘bufa.” avea. If WRITE is specified and a match is
tound, the dat3 nvortion of the block will be replaced with the
contents of the ‘bufad” area.

If this operand is coded, it will replace the options specified in

the DIORB.

Notes:

All of the keywords on the DIORE may be overridden at execution
time using the corresponding keywords on the DIO macro.

The length of the DIOKB génerated by tnis macro is dependent on its
position in the chain. First or single DIORBs consist of a header (8
bytes) and a DIORB proper (l6 bytes). Chain members consist of only a
DIORB proper. The symbols produced by the DSECT option of this macro
should be used to reference information in a DIORB.

53

DLYEXC - Delay Execution

The DLYEXC macro instruction is used to delay the execution of the
next instruction for a specified number of seconds. DLYEXC generates
a supervisor call. When the time interval has elapsed, execution
continues at the instruction following the SVC. The standard form of
the DLYEXC macro is written below.

[symbol] DYLEXC |SECS=number
SECS=(reg)
SECS=0

SECS=

specifies the number of seconds execution is to be delayed. It
can be coded either as a number or non-relocatable symbol, or as a
specific register containing the number of seconds to delay
execution. If a register is specified, it must be enclosed in
parentheses. The register may be designated symbolically or with
an absolute expression. If this keyword is omitted the default of
SECS=0 is used and the execution of the macro is effectively a
no=op.

54

EXTIME - Execution Time

The EXTIME macro is used to obtain the accumulated CPU time for the
current batch job or terminal session. The CPU time is returned in
300ths of a second in register 0. The EXTIME macro instruction is
coded as follows.

[symbol] EXTIME

55

LCLARG = LIBRCLS Argument List

The LCLARG macro builds a LIBRCLS argument 1list. No instructions
are generated by this macro. The standard form of the LCLARG macro is
written below.

[symbol] LCLARG [DSECT] » TYPE=SAVE [,UNIT=number]
- » TYPE=RSAV
» TYPE=CLEAR

,INDEX="indexname’ | [,NAME="filename]
,INDEX="USERLIB’

[,ACHNAME=symbol]

DSECT
specifies that the actual LIBRCLS argument list should not be

built. Instead, an LCLARG DSECT is generated.

TYPE=
specifies the type of LIBRCLS operation to be performed. SAVE
indicates that the current contents of the output library file is
to be saved as a permanent file. RSAV indicates that the current
contents of the output library file 1is to replace an existing
library file. CLEAR indicates that the contents of the output
library file is to be cleared.

UNIT=
specifies the unit number of the LIBOUT file on which the LIBRCLS

operation is to be performed.

INDEX=
(For SAVE or RSAV only)
specifies a 1 to 8 character index name under which the library
output file is to be saved or the index name of the file which the
library output file is to replace. The index name must be
enclosed in quotes. The default index name is USERLIB.

NAME=
(For SAVE or RSAV only)
specifies a 1 to 8 character file name under which the library

output file is to be saved or the file name of the file which the
library output file is to replace. The file name must be enclosed

in quotes.

ACMNAME=

(For SAVE or RSAV only)
specifies the symbol to be used in the label field of the Access

Modifier Area of the argument list. This parameter should be
specified only when the programmer wishes to specify something

56

other than the default file attributes for an output library file
which is to be saved or is to replace an existing library file.
The default file attributes for a saved file are the same as those
in the user profile (see the VPS User’s Guide). The default file
attributes for a replacement file are the same as the file it is
replacing. The symbol specified may be used to easily address the
Access Modifier Area since the user’s program is responsible for
initializing the area. See the ACCHOD macro for information on
initializing and modifying the area.

57

LIBARG - LIBRARY Argument List

The LIBARG macro builds the LIBRARY argument list. No instructions
are generated by this macro. The standard form of the LIBARG macro is
written below.

[symbol] LIBARG [DSECT) , TYPE=PURGE ,INDEXH’indexname'
, TYPE=RENAME , INDEX="USERLIB"
,TYPE=ACCESS
[,NAME="filename "] L,HEWINDX="indexname”’
,NEWINDX='USERLIB'

[,NEWHAME="filename "] [,NEWACCT="account”]

[,ACCHOD=addr]

DSECT
specifies that the actual LIBRARY argument list should not be
built. Instead, a LIBARG DSECT is generated.

TYPE=
specifies the type of LIBRARY request. PURGE indicates that the

file is to be purged from the VPS library. RENAME indicates that
the library file is to be renamed. ACCESS indicates that the file
attributes of the library file are are to be replaced by those in
the Access Modifier Area (see below).

INDEX=
specifies the 1 to 8 character index name of the file being
purged, renamed, or modified. The index name must be enclosed in

quotes. The default is USERLIE.

NAME=
specifies the 1l to & character file name of the file being purged,
renamed, or modified. The file name must be enclosed in quotes.

NEWINDX=

(RENAME only)
specifies the new index name of the renamed file. It must be from
1 to 8 characters in length and enclosed in quotes. The default

is USERLIB.

NEWNAME=
(RENAME only)
specifies the new file name of the renamed file. It must be from
1 to 8 characters in length and enclosed in quotes.

NEWACCT=

58

(RENAME only)
specifies the new account of the renamed file. It must be from 1

to 8 characters in length and enclosed in quotes.

ACCMOD=
(For RENAME or ACCESS only)
specifies the address of the Access Modifier Area. This parameter

need only be used when ACCESS is specified or when RENAME 1is
specified and the programmer wishes to also change the file
attributes of the file being renamed. The Access Modifier Area

should be built using the ACCMOD macro.

Note:
All of the keywords on the LIBARG macro may be overridden at

execution time using the corresponding keywords on the LIBRARY macro.

59

LIBRARY — Library File Management

The LIBRARY macro may be used to purge, rename, or change the file
attributes of an existing library file. The standard form of the
LIBRARY macro is written below.

[symbol] LIBRARY [PURGE ELIBARG=addr} , INDEX=addr
)

RENAME , LIBARG=(reg , INDEX=(reg)
_ﬁCCESS , INDEX="indexname *
[,NAME=addr ,NEWINDX=addr
,NAME=(reg) JNEWINDX=(reg)

s NAME="filename’ s NEWINDX="indexname’
[,NEWNAME=addr ,NEWACCT=addr
sNEWNAME=(reg) yNEWACCT=(reg)

,NEWNAME="filename” ,NEWACCT="account”

ACCMOD=(reg

—_

ECCMOD=addr:|
)

PURGE
is written as shown and specifies that the library file is to be
purged from the VPS library. Note that this parameter will
override the TYPE parameter of the LIBRARY argument list.

RENAME
is written as shown and specifies that the library file 1is to be
renamed. Note that this parameter will override the TYPE
parameter of the LIBRARY argument list.

ACCESS
is written as shown and specifies that the file attributes of the
library file are to be replaced by those specified 1in the Access
Modifier Area (see below). Note that this parameter will override
the TYPE parameter of the LIBRARY argument list.

LIBARG=
specifies the address of the LIBRARY argument list. It may be
specified either as an address or as a register containing the
address of the argument list. If a register is coded, it must be
enclosed in parentheses. The LIBRARY argument list should be

built using the LIBARG macro.

INDEX=
specifies the index name of the file to be purged, renamed, or
modified. It may be specified as: an address of an 8-byte area
containing the index name; a register holding the address of an
8-byte area containing the index name; or the actual index name
enclosed in quotes. If this parameter is specified, it will
replace the index name field of the LIBRARY argument list. Note,

INDEX=(l) may not be coded.

NAME=
specifies the file name of the library file to be purged, renamed,
or modified. It may be specified as: an address of an 8-byte area
containing the file name; a register holding the address of an
8-byte area containing the file name; or the actual file name
enclosed in quotes. If this parameter is specified, it will
replace the file name field of the LIBRARY argument list. Note,

NAME=(l) may not be coded.

NEWINDX=

(RENAME only)

specifies the new index name which the library file is to be
renamed to. It may be specified as: an address of an 8-byte area
containing the new index name; a register holding the address of
an 8-byte area containing the new index name; or the actual new
index name enclosed in quotes. If this parameter is specified, it
will replace the new index name field of the LIBRARY argument
list. Note, NEWINDX=(l) may not be coded.

NEWNAME=

(RENAME only)

specifies the new file name which the library file is to be
renamed to. It may be specified as: an address of an 8-byte area
containing the new file name; a register holding the address of an
8-byte area containing the new file name; or the actual new file
name enclosed in quotes. It this parameter is specified, it will
replace the new file name field of the LIBRARY argument 1list.

Note, NEWNAME=(l) may not be coded.

NEWACCT=

(RENAME only)

specifies the new account for the renamed library file. It may be
specified as: an address of an &8-byte area containing the new
account; a register holding the address of an 8-byte area
containing the new account; or the actual new account enclosed in
quotes. If this parameter is specified, it will replace the new
account field of the LIBRARY argument list. The unprivileged user
may specify only her/his own account for this parameter. Note,
NEWACCT=(1) may not be coded.

ACCMOD=

(For RENAME or ACCESS only)

specifies the address of the Access Modifier Area. It may be
specified either as an address or as a register containing the
address of the area. If a register is coded, it must be enclosed
in parentheses. The Access Modifier Area need only be supplied
when ACCESS is specified or when RENAME is specified and the
programmer wishes to also change the file attributes of the file
being renamed. The Access Modifier Area should be built using the
ACCMOD macro. If this parameter is specified, it will replace the
address of the Access Modifier Area specified in the LIBRARY
argument list. Note, ACCMOD=(1) may not be coded.

Note:

When control is returned to the program register 15 will contain
one of the following return codes:

Hexadecimal
Code lleaning

0 LIBRARY operation successfully completed.
4 Not enough core available.
8 ~ 1/0 error.
c Access not allowed.

10 Index not found.

14 File not found.

18 Invalid library file name.

1C Account over library limit.

20 Invalid new library file name (RENAME).

24 Name already in use.

28 No space in index.

62

LIBRCLS - Qutput Library File Close

The LIBRCLS macro may be used to close an output library file with
one of the following options: save the current contents of the output
library file as a permanent library file; replace an existing library
file with the current contents of the output library file; or clear
the current contents of the output library file. An output library
file is identified as a unit having LIBOUT specified in the UNIT
keyword of the /FILE statement (see the VPS User’s Guide). The
standard form of the LIBRCLS macro is written below.

[symbol] LIBRCLS [SAVE {LCLARG=addr} Tur¢11=numbej
] L

RSAV ,LCLARG=(reg UNIT=(reg)
CLEAR

s INDEX=addr ,NAME=addr

» INDEX=(reg) ,NAME=(reg)

,INDEX="indexname’ ,NAME="filename”’

SAVE
is written as shown and specifies that the current contents of the
library output file is to be saved as a permanent library file.
If this parameter is coded, it will override the TYPE parameter
specified in the LIBRCLS argument list.

RSAV
is written as shown and specifies that the current contents of the
output library file is to replace an existing library file. If
this parameter is coded, it will override the TYPE parameter
specified in the LIBRCLS argument list.

CLEAR
is written as shown and specifies that the current contents of the
output library file is to be cleared. If this parameter is coded,

it will override the TYPE parameter specified in the LIBRCLS
argument list.

LCLARG=
specifies the address of an area containing the LIBRCLS argument

list. It may be coded as an address or as a register containing
the address of the argument list. If a register is specified, it
must be enclosed in parentheses. The LIBRCLS argument list should
be built using the LCLARG macro.

UNIT=
specifies the unit number of a LIBUUT unit on which the LIBRCLS

operation is to be performed. It may be coded either as a number
or non-relocatable symbol or as a register containing the unit
number. If a register is specified, it nust be enclosed in
parentheses. If this parameter is coded, it will override the
unit number specified in the LIBRCLS argument list. Note,

63

UNIT=(l) may not be coded.

INDEX=

(For SAVE and RSAV only)

specifies the index name under which the library output file is to
be saved or the index name of the file which the output library
file is to replace. It may be specified as: an address of an
8-byte area containing the index name; a register holding the
address of an 8-byte area containing the index name; or the actual
index name enclosed in quotes. If this parameter is specified, it
will replace the index name specified in the LIBRCLS argument
list. Note, INDEX=(1l) may not be coded.

NAME=

(For SAVE and RSAV only)

specifies the file name under which the library output file is to
be saved or the file name of the file which the output library
file is to replace. It may be specified as: an address of an
8-byte area containing the file name; a register holding the
address of an 8-byte area containing the file name; or the actual
file name enclosed in qoutes. 1If this parameter is specified, it
will replace the file name specified in the LIBRCLS argument list.
Note, NAME=(l) may not be coded.

Notes:
File attributes may be specified for saved and replaced library
files through the use of the LCLARG and ACCHMOD macros.

When control is returned to the program register 15 will contain
one of the following return codes:

Hexadecimal
Code Meaning
0 LIBRCLS operation successfully completed.
4 Argument invalid.
8 Unit number invalid.
C Library output file empty.
10 Unable to obtain core.
14 1/0 error.
18 Access to file not allowed.
1C Index not found.
20 Name already in use (SAVE).
24 Invalid file name.
28 Account over library limit.

2C No space in index.

64

LMARG - Load Module Argument List

The LMARG macro constructs an argument list for either the LMBLDL
or the LMLOAD macro instruction. The LMARG macro does not generate
any instructions. The LMARG macro instruction is written as follows:

BLDL ,SYSLIB=addr

[symbol] LMARG [DIR |[,MODNAME=name] |fUNIT=numbej
LOAD

BLDL
is written as shown and specifies that the macro is to construct
an argument list for the LMBLDL macro instruction. Note, if BLDL
is specified, MODNAME may not be coded.

DIR

is written as shown and specifies that the macro is to construct
an argument list for the LMLUOAD macro instruction containing a
32-byte area into which the programmer must move a valid directory
entry before execution of the LMLOAD macro instruction. (See the
LMBLIST macro for more information on moving the directory entry
to the argument list.) Note, if DIR is specified, MODNAME may not
be coded.

LOAD
is written as shown and specifies that the macro 1is to construct
an argument list for the LMLUAD macro instruction indicating that
the load module search is by load module name. LOAD is the
default.

MODNAME=
specifies a 1 to & character alphanumeric load module name which
the macro will place in the LMLUAD argument list. If MODNAME is
not specified the field will be initialized to blanks. Note that
the keyword may be overridden at execution time by the
corresponding keyword on the LMLUAD macro instruction.

UNIT=

specifies the work file unit number the control program is to
search for the directory entry (if the argument list is being
constructed for the LMBLDL macro instruction) or the actual load
module (if the argument list is being constructed for the LMLOAD
macro instruction). Note that the keyword may be overridden at
execution time by the corresponding keyword on the LMBLDL or
LMLOAD macro instruction.

SYSLIB=
specifies the address of a list of libraries and/or work file
units the control program is to search. The list is built using
the SYSLIB macro instruction. Note that the keyword may be

overridden at execution time by the corresponding keyword on the
LMBLDL or LMLOAD macro instruction.

I1f neither UNIT nor SYSLIB are specified, the system link library
(SYS.LINKLIB) will be searched - this also may be overridden at
execution time by either the UNIT or SYSLIB keywords on the LMBLDL or

LMLOAD macro instructions.

66

LMBLDL = Load Module Build List

The LMBLDL macro instruction is used to read a directory entry of
a load module, or list of load modules, into user storage. A
directory entry may be read from the system link library
(SYS.LINKLIB), one of the system subroutine 1libraries (e.g.
SYS.FORTLIB, SYS.PLIXLIB, etc.), or a work file. The programmer can
alternatively specify a 1list of system libraries and/or work file
units which the control program will search as a concatenated list -
loading the first occurrence of the directory entry. Note, the LMBLDL
macro will destroy the contents of register 13, The standard form of
the LMBLDL macro is written as follows.

[symbol] LMBLDL |LMARG=addr yADDR=1Imb1ldl list address
LMARG=(reg)| |,ADDR=(reg)
,UNIT=number
yUNIT=(reg)
,SYSLIB=addr
»SYSLIB=(reg)
»SYSLIB=(LIST,sys library | unit,...)

LMARG=
specifies the address of an area containing the LMBLDL argument
list. It may be specified either as an address or as a register.
If a register is used, it must be enclosed in parentheses and the
address in the register will be used as the address of the
argument list. The LMBLDL argument list is built using the LMARG
macro and contains request information. If LMARG is not specified,
an in-line argument list is built. Note, LMARC=(l) may not be

coded.

ADDR=
specifies the address of the LMBLDL list where the directory entry
(or entries) is to be placed. The LMBLDL 1list is constructed
using the LMBLIST macro. If (reg) is specified, the LMBLDL list
address will be taken from the register specified. Note, ADDR=(1l)
may not be coded.

UNIT=
specifies a work file unit which the control program is to search
for the directory entry of the load module specified. It may be
coded either as a number or non-relocatable symbol or as a
register. If a register is coded, it must be enclosed in
parentheses and the value in that register will be used as the
work file unit number.

SYSLIB=
specifies a list of libraries the control program is to search to
find the load module directory entry. It may be coded either as
an address or as a register (enclosed in parentheses) containing
the address of a concatenation list. This list is built using the

67

SYSLIB macro instruction and can contain either system library
names and/or work file unit numbers. An alternative form of this
keyword may be used to code the actual list. If this form is
used, the list must be enclosed 1in parentheses and the first
subparameter must be LIST followed by a list of system library
names and/or work file unit numbers - arranged in the order that
they are to be searched. In this case the concatenation list will
be built in-line.

Notes:

If neither the UNIT nor the SYSLIB keywords are coded, the system

link library (SYS.LINKLIB) will be searched. When control is returned
to the program, register 15 will contain one of the following return

codes:
Hexadecimal
Code Meaning
0 Directory entries loaded successfully.
4 Not all of the directory entries were found.
8 None of the directory entries were found.

10 I1/0 error reading directory entry.
14 Invalid argument.

68

LMBLIST - LMBLDL List

The LMBLIST macro is used to construct the LMBLDL directory entry
list for the LMBLDL macro. The LMBLIST macro does not generate
instructions. The LMBLIST macro instruction is written below.

[symbol] LMBLIST [MODNAME=(load module name,load module name,...)
MODNAME=number

ELEN=number
ELEN=32
MODNAME =

specifies a list of load module names enclosed in parentheses.
For each load module name the LMBLIST macro will generate a
directory entry (or partial directory entry) consisting of an
8-byte field containing the load module name followed by the data
portion of the directory entry to be filled in by the execution of
the LMBLDL macro. 1f number is coded, that value of directory
entries will be constructed with each name field dinitialized to
blanks.

ELEN=
specifies the entry length in bytes to be used when constructing
each directory entry. If ELEN is not coded = each directory entry
will be 32 bytes = the maximum directory entry length. The
minimum length is 9 bytes. Note, if the directory emtry is to be
used (after it has been completed by the LMBLDL macro) by a LMLOAD
macro to load a load module - the maximum length must be specified

(or defaulted to).

Notes:
The LMBLIST macro constructs a list structure of the following

format:

List Entry
(LL bytes)
= & \
14 f | |
|FF|LL| Name 1 | bData portion | Name 2 |
1| I | |
2 2 8

Length (in bytes)

where =
FF contains the number of entries in the list.

LL contains the length of ecach entry.

1f after execu'‘cn of the LMBLDL macro the programmer wishes to use
a directory entry in the execution of the LMLOAD macro to load a load
module, the specified directory entry must be moved to the LMLOAD
argument list at offset +4 (the FF and LL fields should not be moved).

LMLOAD -~ Load A Load Module

The LMLOAD macro is used to load a load module into user storage. A
load module may be loaded from the system link library (SYS.LINKLIB),
one of the system subroutine libraries (e.g. SYS.FORTLIB, SYS.PLIXLIB,
etc.), or a work file. The programmer can alternatively specify a
list of system libraries and/or work file units which the control
program will search as a concatenated list = loading the first
occurrence of the load module. An alternative form of the LMLOAD
macro allows the programmer to specify a directory entry (obtained
using the LMBLDL macro) instead of the load module name thereby
avoiding a search of the file directory. Upon completion of the
macro, register 0 will contain the actual length of the load module
and register 1 will contain the load module entry point address.
NOTE, LMLOAD will destroy the contents of register 13. The standard
form of the LMLOAD macro is written below.

,LMARG=(reg) |{,ADDR=(reg LEN=(reg
,HHODNAME=name

» MODLOC=addr

JMUDLUG=(reg)

[symbol] ~ LMLOAD [DIR] [,LMARG=addr ,ADDR=addr} {LEN=addr
) ’)

—

,UNIT=number

yUNIT=(reg)

,SYSLIB=addr

,SYSLIB=(reg)

,SYSLIB=(LIST,sys library | unit,...)

DIR
is written as shown. If DIR is coded, a valid directory entry
must be included in the LMLOAD parameter list (see the macros
LMBLDL and LMARG) and the MUODNAME and SYSLIB parameters may not be
specified. If DIR is not specified, 1library directory or
directories will be searched for the load module.

LMARG=

specifies the address of an area containing the LMLOAD argument
list. It may be specified either as an address or as a register.
If a register is coded it must be enclosed in parentheses and the
address in the register will be used. The LMLOAD argument list is
built using the LMARG macro and contains request information, a
load module name and, if DIR is specifed, a directory entry (see
the LMBLIST macro for information on moving the directory entry to
the LMLOAD argument list). If LMARG 1is not specified, an in=line
parameter list is built. Note, LMARG=(1) may not be coded.

MODNAME=
specifies a 1 to 8 character alphanumeric load module name which

the control program is to load into user storage. If the MODNAME
keyword is coded and the LMARG keyword is also coded, the module
name specified replaces the one in the LMLOAD parameter list.

70

MODLOC=
specifies the address of an 8 byte area containing the load module

name left-justified and padded to the right with blanks. It may
be coded either as an address or as a register. I1f a register is
coded, it must be enclosed in parentheses and the address in the
register specified will be used.

ADDR=
specifies the address of the area into which the load module is to
be loaded. It may be coded either as a relocatable or
non-relocatable symbol or as a register. If a register is
specified, it must be enclosed in parentheses and the address in
the register is used. Note, ADDR=(l) may not be coded.

LEN=
specifies the length of the area into which the load module is to
be loaded. It may be coded either as a number or non-relocatable
symbol or as a register. If a register is specified, it must be
enclosed in parentheses and the value in the register will be used
as the length. Note, LEN=(l) may not be coded.

UNIT=
specifies a work file unit which the control program is to search

for the load module. It may be coded either as a number or
non-relocatable symbol or as a register. If a register 1is
specified, it must be enclosed in parentheses and the value in the
register will be used as the unit number.

SYSLIB=
specifies a list of libraries the control program is to search to
find the load module. It may be coded either as an address or as
a register (enclosed in parentheses) containing the address of a
concatenation list. This list is built wusing the SYSLIB macro
instruction and can contain either system library names and/or
work file unit numbers. An alternative form of this keyword may
be used to code the actual list. If this form is used, the list
must be enclosed in parentheses and the first subparameter in the
1ist must be LIST followed by a list of system library names

and/or work file unit numbers - arranged in the order they should
be searched. In this case the concatenation list will be built
in-line.

Notes:

I1f neither the UNIT nor the SYSLIB keywords are coded, the system
link library (SYS.LINKLIB) will be searched. When control is returned
to the program, register 15 will contain one of the following return

codes:

Hexadecimal
Code Meaning
0 Module loaded successfully.

4 Module name not found.

71

10
14

Module found but could not be relocated.
Area length too small.

1/0 error while reading load module from disk.
Invalid load argument or load module.

72

MESGB - Build A BLDMSG Pattern

73

The MESGB macro is used to build a pattern which when referenced by
the BLDMSG macro constructs a variable length message. The MESGE

macro does not generate any instructions. The standard form of the
MESGB macro is written below.

[symbol] MESGB (‘message”’ i
DATE

TIME

TVAL

CPUTM

(DEC,length[,L])

(FDEC, length,column[,L])
(HEX, length)

¢ SVAL

ACCT

(CHAR, length)
(FCHAR, length)
VMSG

FVMSG

(ATAB, location)
M(RTAB,location)

” r
message

specifies a message (or portion of a message) and must be enclosed
in quotes.

DATE

specifies that the next 16 bytes of the message are to contain the
current date in the format:

www_mmm_dd,_yyyy
where,
ww - is the weekday - abbreviated.
mmm - is the month - abbreviated if necessary.
dd - is the day of the month.
yyyy — is the year.

The control program will automatically convert the current date to
this format and place it in the message when the BLDMSG macro is
executed referencing this pattern.

TIME

specifies that the next 8 bytes of the message are to contain the
current time in the format:

hh:mm:ss
where,
hh = is the hour (0-24).
mm - is the minute.
ss = is the second.

The control program will automatically convert the current time
(the time at execution of the BLDMSG macro) to this format and
place it in the message when the BLDMSG macro is executed.

TVAL
specifies that the next data address in the BLDMSG data address
list is the address of a fullword containing a timer value in
300ths of a second units. The control program will convert the
value automatically to the format = hhimmiss = placing the
significant digits starting at the next location in the message
buffer.

CPUTM
specifies that the next data address in the BLDMSG data list is
the address of a fullword containing CPU timer units (1 wunit =
4096 microseconds) which is to be converted to the format:

ss.hh
where,
ss - is seconds.
hh - is hundredths of seconds.

The siginificant digits of which will be placed starting at the
next location of the message buffer.

(DEC,length([,L])
specifies that the next data address in the BLDMSG data address
list is the address of a binary number which is to be converted to

decimal and the significant digits placed starting at the next
location in the message buffer (at execution of the BLDMSG macro).

The length of the data in bytes is specified by length. The
length must be between 1 and 4, and the default is 4. If L is
specified the data will be taken as an unsigned binary number. If
L is not coded and the data is negative, a minus sign will precede
the converted number in the message buffer.

(FDEC, length,column[,L])
specifies that the next data address in the BLDMSG data address
list is the address of a binary number which is to be converted to
decimal and placed in the next location in the message buffer.
The length of the data is specified by length. The length must be
between 1 and 4, and 4 is the default. The width of the converted
field in the message buffer is specified by column. The field
will be right justified and padded to the left with blanks. The
default for column is 10. If L 1is specified the data will be
taken as an unsigned binary number. If L is not coded and the data
is negative, a minus sign will precede the converted number in the

message buffer.

(HEX,length)
specifies that the next data address in the BLDMSG data address
list is the address of a unsigned binary number which is to be
converted to a printable hexadecimal number and placed starting at

the next location in the message buffer. The length of the data
in bytes is specified by length. The length must be between | and
255,

$VAL
specifies that the next data address in the BLDMSG data address

list is the address of a fullword containing a value in cents
which the control program will convert to dollars and cents and
place in the next location of the message buffer in the format:

$dd...d.cc

Leading zeros will be suppressed.

ACCT
specifies that the account number 1is to be moved to the next
locations in the message buffer. Trailing blanks will be
truncated.

(CHAR, length)

specifies that the next data address in the BLDMSG data address
list points to a character string which is to be moved to the next
location in the message buffer. Length specifies the number of
bytes in the string. Leading and trailing blanks will not be
moved.

(FCHAR, length)
specifies that the next data address in the BLDMSGC data address

list points to a character string which is to be moved to the next
location in the message buffer. Length specifies the number of
bytes to be moved. Leading and trailing blanks will be moved.

VMSG
specifies that the next data address in the BLDMSG data list is
the address of a standard v-format message (e.g. built using the
MESGV macro), and that it is to be placed in the message buffer
starting at the next location. Leading and trailing blanks will
not be moved.

FVMSG
specifies that the next data address 1in the BLDMSG data 1list is

the address of a standard v-format message, and that it 1is to be
placed in the message buffer starting at the next location.

Leading and trailing blanks will be moved.

(ATAB,location)
specifies the next message text location in the buffer relative to
the beginning of the message (0). This operand provides an

absolute “tab” facility during messsage generation.

(RTAB,location)

75

specifies the next message text location in the buffer relative to
the current location. The location field must be a number between
-128 and 127. This operand provides a relative ‘tab” facility
during message generation.

Notes:
The MESGE macro allows multiple operands. Any of the MESGB
operands - ‘message’, DATL, TIME, etc. - may appear more than once.

Care should be taken in building the data address list for the BLDMSG
macro since the order and number of data address entries is controlled
by the operands in the NESGB macro expansion.

76

MESGV_=- GCenerate A Variable Length Message

The MESGV macro is used to build a variable length message which is

to be sent using the SMSG macro or written using the QIO access
method. The MESGV macro does not generate any instructions. The

standard form of the MESGV macro is written below.

[symbol] MESGV [[symbol], ‘message” | ... [,symbol], ‘message’
[symbol], (length) [,symbol], (length)

‘message’
specifies a message (or portion of a message) and must be enclosed

in quotes.

(length)
specifies that the MESGV macro is to initialize an area at the
current location in the message to blanks for a length of (length)

in bytes.

symbol
specifies a relocatable symbol the MESCV macro is to assign to the

next byte location of the message being built. The symbol will
have a length attribute of (length) or the number of characters in

‘message’, whichever it precedes.

Notes:
The MESGV macro allows multiple operands - message text operands

and (length) operands may appear more than once. Symbols preceding
any of the operands must be unique. The symbol operand allows the
programmer addressability to field(s) in the message which are to be
dynamically created or modified during the execution of the program.

77

PSTCOD - Retrieve Post Code

The PSTCOD macro instruction is used to retrieve the post code from
the JCB and zero the field. The post code is set by means of the
/POST command entered from the terminal during execution of the
program. The /POST command is entered as follows:

/POST code
where code is a zero to 8 byte alphanumeric character string.

Note that since the execution of the PSTCUD macro zeroes the field,
a unique post code may be retrieved only once. The standard form of
the PSTCOD macro instruction is written below.

[symbol] PSTCOD addr
(reg)

addr

is the address of an 8 byte area in which the post code will be
returned. Upon completion of the macro the 8 byte area will
contain either the post code - 1left justified and padded to the
right with blanks; or 8 bytes of hexadecimal zeroces indicating
that no /POST command has been entered at all or no /POST command
has been entered since the last execution of the PSTCOD macro. If
(reg) is specified, the address in the designated register is used
as the post code return area.

78

QBSP - Backspace File (QIO)

The QBSP macro instruction causes a file to be backspaced. If a
file is being read, a backspace operation will reposition the file so
that a subsequent sequential read will read the same record as the
last read previous to the backspace. If a file is being written, a
backspace operation will cause the next sequential write to write a
record in the file at the same location as the last write previous to
the backspace. The file must be a tape or direct access file. The
standard form of the QBSP macro is written below.

[symbol] QBSP unit ,RB=addr » 3¥YNAD=addr
(regl) [?B=(regg] EAYNAD=(regﬂ
“ddname”’
UTYPE=DISK
UTYPE=TAPE

unit

,SVC=YES
,SVC=NO

specifies the unit number defining the file which is to be
backspaced. It may be specified either as a number or as a
non-relocatable symbol. If this operand is coded, it will replace
the unit number specified in the QIORB.

(regl)

specifies a register containing the unit number of the file which
is to be backspaced. If this operand is coded, it will replace
the unit number specified in the QIORB.

“ddname”’

specifies a ddname (see the VPS User’s Guide for a description of
the ddname parameter on the /FILE statement) defining the file
which is to be backspaced. 1f this operand is coded, it will
replace the ddname specified in the QIORB.

UTYPE=

RE=

specifies the unit type (see the VPS User’s Guide for a
description of the unit type parameter on the /FILE statement)
defining the file which is to be backspaced. 1f this operand is
coded, it will replace the unit type specified in the QIORB. Note
that the control program will search (in unit number order) the
/FILE statements and choose the first occurrence of the specified
unit type.

specifies the address of a QI0 Request Block (the QIORB can be
built with the QIORB macro). It may be coded either as an address
or as a register, enclosed in parentheses, containing the address
of the QIORB. If this operand is not coded, the QBSP macro will

79

build the QIORB as part of the inline expansion of the macro.

SYNAD=

SVC=

specifies the address of a routine which is to be given control if
the backspace operation could not be completed successfully. It
may be specified either as an address or as a register, enclosed
in parentheses, containing the address of the routine. If this
operand is coded, it will replace the address specified in the
QIORB.

specifies whether the (QBSP macro expansion is to include the QIO
SVC to perform the backspace operation. The default is YES. If
NO is specified, the macro expansion will contain all the
necessary instructions = except for the SVC. This form of the
macro can be used to format the (ILORB.

80

QEOF - Write EOF (QI0)

The QEOF macro causes an end-of-file (EOF) record to be written at
the next record location in a file. The file must be a tape or direct
access file being used for output - records are being written into the
file. If the file has been used as an input file, issuing the QEOF
macro on the file will cause an error. The standard form of the QEOF
macro is written below.

[symbol] QEOF unit ,RB=addr ,SYNAD=addr
(regl) ,RB=(reg) E;YNAD=(reg)
*ddname”’
UTYPE=DISK
UTYPE=TAPE

, SVC=YES
,SVC=NO
unit

specifies the unit number defining the file into which the EOF
record is to be written. It may be specified either as a number
or as a non-relocatable symbol. If this operand is coded, it will
replace the unit number specified in the QIORE.

(regl)
specifies a register containing the unit number of the file into
which the EOF record is to be written. If this operand is coded,
it will replace the unit number specified in the QIURE.

‘ddname ”
specifies a ddname (see the VPS User’s Guide for a description of
the ddname parameter on the /FILE statement) defining the file
into which the EOF record is to be written. If this operand is
coded, it will replace the ddname specified in the QIURB.

UTYPE=

specifies the unit type (see the VPS User’s Guide for a
description of the unit type parameter on the /FILE statement)
defining the file into which the EOF record is to be written. If
this operand is coded, it will replace the unit type specified in
the QILORB. Note that the control program will search (in unit
number order) the /FILE statements and choose the first occurrence
of the specified unit type.

specifies the address of a QI0 Request Block (the QIORE can be
built with the QIURB macro). It may be coded either as an address
or as a register, enclosed in parentheses, containing the address
of the QIORB. If this operand is not coded, the QEUF macro will
build the QIORB as part of the inline expansion of the macro.

81

e

SYNAD=
specifies the address of a routine which is to be given control if

the EOF operation could not be completed successfully. It may be
specified either as an address or as a register, enclosed in
parentheses, containing the address of the routine. If this
operand is coded, it will replace the address specified in the
QIORB.

SVC=
specifies whether the QEOF macro expansion is to include the QIO
SVC to perform the EOF operation. The default is YES. If NO is
specified, the macro expansion will contain all the necessary
instructions - except for the SVC. This form of the macro can be
used to format the QIORB.

QGET = Get Record (QIO)

The QGET macro instruction causes a record to be read from a file
and placed in a designated area of user storage. The location of the
record in the file which is to be read depends wupon the physical
structure of the file and information specified in the QIO Request
Block (QIORB). If the file is being read sequentially, the next
logical record will be placed in user storage. If the file is a
direct access file and a record number is specified, the record placed
in the user storage area will depend upon its physical location in the
file (if absolute addressing is used) or location from the last record
read (if relative addressing is used). The standard form of the QGET
macro is written below.

(symbol] QGET [%ddr] riengtﬁ] (unit 7 fas=addrj
(regl) ,(reg2) , (reg3) ,RB=(reg)
- |, “ddname” :
,UTYPE=DISK
,UTYPE=LIBIN
,UTYPE=LIBOUT
LUTYPE=SYSIN
,UTYPE=SYSOUT
,UTYPE=TAPE
,UTYPE=TERMIN
|, UTYPE=TERMOUT |

s RECFM=F ,EODAD=addr , SYNAD=addr
» RECFM=V ,EODAD=(reg)| |,SYNAD=(reg)

,RECNO=number , RNTYPE=ABS 5 SVC=YES
sRECNU=(reg) s RNTY PE=REL , SVC=NOU

addr
specifies the address of an area in user storage into which the

record is to be read. If this operand is coded, it will replace
the “bufad’ field in the QIORE.

(regl)
specifies a register containing the address of an area 1in user
storage into which the record is to be read. If this operand is
coded, it will replace the “bufad’ field in the QIORE.

length
specifies the length of the area into which the record is to be
read. It may be specified as either a number or a non-relocatable
symbol. If this operand is coded, it will replace the ‘buflen”
field specified in the QIORB.

(reg2)
specifies a register containing the length of the area into which
the record is to be read. If this operand is coded, it will

replace the ‘buflen” field specified in the QIORB.

83

unit

(reg

“ddn

specifies the unit number defining the file from which the record
is to be read. It may be specified either as a number or as a
non-relocatable symbol. 1If this operand is coded, it will replace

the unit number specified in the QIORB.

3)

specifies a register containing the unit number from which the
record is to be read. If this operand is coded, it will replace
the unit number specified in the QLORB.

ame

specifies a ddname (see the VPS User’s Guide for a description of
the ddname parameter on the /FILE statement) defining a file from
which the record is to be read. If this operand is coded, it will
replace the ddname specified in the QILORB.

UTYPE=

specifies the wunit type (see the VPS User’s Guide for a
description of the unit type parameter on the /FILE statement)
defining a file from which the record is to be read. I1f this
operand is coded, it will replace the unit type specified in the
QIORB. Note that the control program will search (in unit number
order) the /FILE statements and choose the first occurrence of the
specified unit type.

specifies the address of a QIO Request block (the QIORB can be
built with the QIORB macro). It may be coded either as an address
or as a register, enclosed in parentheses, containing the address
of the QIORB. If this operand is not coded, the QGET macro will
build the QIORE as part of the inline expansion of the macro.

RECFM=

specifies the format of the record as it is ¢to appear 1in user
storage. If F (fixed) 1is specified, the record will appear
left-justified in the user storage area, truncated or padded with
blanks as necessary. 1f V (variable) 1is specified, the user area
will contain a standard v-format record (see Chapter 2 for a

description of a v-format record). If this operand is coded, it
will replace the record format specified in the QIORB.

EODAD=

specifies the address of a routine which is to be given control if
the end-of-file is reached. It may be coded either as an address
or as a register, enclosed in parentheses, containing the address
of the routine. If this operand is coded, it will replace the
address specified in the QIORB.

84

SYNAD=
specifies the address of a routine which is to be given control if
the read operation could not be completed successfully. It may be
specified either as an address or as a register, enclosed in
parentheses, containing the address of the routine. If this
operand is coded, it will replace the address specifed in the
QIORB.

RECNO=

specifies either the absolute or relative record number, depending
upon the RNTYPE specified in the QIORB, of the record to be read
from the file. It may be coded as a number or a non-relocatable
symbol or as a register, enclosed in parentheses, containing the
record number. This operand can be coded only when reading direct
access files (i.e. DSORG=DA appears on the associated /FILE
statement) and reading tapes with relative record addressing.

RNTYPE=

specifies whether the record number in the RECNO keyword is an
absolute record number (relative to the beginning of the file -
the first record being record number 1) or a record number
relative to the current position in the file. If this operand is
coded, it will replace the RNTYPE field in the QIORB. This
operand can be coded only when reading direct access files (i.e.
DSORG=DA appears on the associated /FILE statement) and tapes with
relative record addressing.

svc=
specifies whether the QGET macro expansion is to include the QIO
SVC to perform the read operation. The default is YES. If NO is

specified, the macro expansion will contain all the necessary
instructions - except for the SVC. This form of the macro can be
used to format a QIORB.

QIORB - Build A QIO Request Block

The QIORB macro builds a QIO Request Block which is to be used with
the QGET, QPUT, QEOF, QREW, and Q(BSP macros to perform input /output
operations on files using the QIO access method. The (QIORB macro does
not generate any 1instructions. The standard form of the QIORB macro
is written below.

[symbol] QIORB [DSECT] [,BUFAD=addr] EBUFLEN=numberi|

, BUFLEN=0
4RECFM=F TUNIT=number] [,EODAD=addr]
,RECFM=V | |,UNIT=0

- |,DDNAME=ddname
,UTYPE=DISK
yUTYPE=LIBIN
, UTYPE=LIBUUT
yUTYPE=5YSIN
,UTYPE=SYSOUT
,UTYPE=TAPE
» UTYPE=TERMIN
L,UTYPEITERHUUIJ

[,SYNAD=addr] ,RNTYPE=ABS
, RNTYPE=REL

[,OPT=([NOEDIT] [,NOTRAN])]

DSECT
specifies that the actual QIU Request Block should not be built.
Instead, a QIORB DSECT is generated.

BUFAD=
specifies the address of an area in user storage where the control
program is to place a record, if a QGET operation is performed, or
retrieve a record for writing, if a QPUT operation is performed.

BUFLEN=
specifies the length of the BUFAD area. It may be coded either as
a number or as a non-relocatable symbol. If this operand is not
coded, a default of 0 is used.

RECFM=
specifies the format of the records to be processed. 1f F is
specified, the file will be processed as a standard f-format file.
If V is specified, the file will be processed as a standard
v-format file. See Chapter 2 for a description of record and file
formats.

UNIT=
specifies the unit number defining the file to be processed. It

86

may be coded as either a number or a non-relocatable symbol.

DDNAME=
specifies a ddname (see the VPS User’s Guide for a description of
the ddname parameter on the /FILE statement) defining the file to
be processed.

UTYPE=
specifies the unit type (see the VPS User’s Guide for a
description of the unit type parameter on the /FILE statement)
defining the file to be processed. Note the control program will
search (in unit number order) the /FILE statements and choose the
first occurrence of the specified file type.

EODAD=
specifies the address of a routine which is to be given control if

an end-of-file condition is encountered while processing the file.

SYNAD=
specifies the address of a routine which is to be given control if
an operation could not be completed successfully.

RNTYPE=
(for direct access files only)
specifies whether the file is to be processed in absolute
addressing mode or relative addressing mode. See Chapter 2 for a
description of randomly accessing direct access files.

OPT=

(for the conversational read unit only)

specifies the type of internal processing the control program will
not perform when reading or writing conversationally from the
terminal. If NOEDIT is specified, the control characters will not
be removed from the a line when reading, and not inserted into the
line when writing. If NOTRAN is specified, the line will not be
translated to EBCDIC from terminal code when reading, and will not
be translated to terminal code when writing. If NOTRAN is
specified, NOEDIT is assumed. If only ome option is specified, it
need not be enclosed in parentheses.

Note:
Many of the keywords on the QIORB macro may be overridden at

execution time using the corresponding keywords on the QGET, QPUT,
QEOF, QREW, and QBSP macro instructions.

87

QPUT - Write Record (QIO)

The QPUT macro instruction causes a record to be written to a file
from a designated area in user storage. The location of the record
written in the file depends upon the physical structure of the file
and information specified in the QIO Request Block (QIORB). If the
file is being written sequentially, the record will be placed in the
next logical location in the file. 1If the file is a direct access
file and a record number is specified, the record will be placed in
the file relative to the beginning of the file (if absolute addressing
is wused) or relative to the last record written (if relative
addressing is being used). The standard form of the QPUT macro is
written below.

[symbol] QPUT |addr ylength ,unit ,RB=addr
(regl) s (reg2) , (reg3) sRB=(reg)
, “ddname”
,UTYPE=DISK
,UTYPE=LIBIN
,UTYPE=LIBOUT
,UTYPE=SYSIN
,UTYPE=SYSOUT
,UTYPE=TAPE
,UTYPE=TERMIN
s, UTYPE=TERMOUT

,RECFM=F | |,EODAD=addr | |,SYNAD=addr
,RECFM=V | |,EODAD=(reg)| |, SYNAD=(reg)

RECNO=number| [,RNTYPE=ABS| [,SVC=YES
,RECNO=(reg) ,RNTYPE=REL.J ,SVC=NO

vt

addr
specifies the address of an area 1in user storage from which the

record is to be written. If this operand is coded, it will
replace the “bufad” field in the QIORB.

(regl)
specifies a register containing the address of an area in user
storage from which the record is to be written. If this operand
is coded, it will replace the “bufad’ field in the QIORB.

length
specifies the length of the area from which the record is to be
written. It may be specified as either a number or a
non-relocatable symbol. If this operand 1is coded, it will replace
the “buflen” field specified in the QIURB.

(reg2)
specifies a register containing the length of the area from which
the record is to be written. If this operand is coded, it will

replace the “buflen” field specified in the QIORB.

88

unit

specifies the unit number defining the file into which the record
is to be written. It may be specified either as a number or as a
non-relocatable symbol. If this operand is coded, it will replace

the unit number specified in the QIORB.

(reg3)

specifies a register containing the unit number into which the
record 1is to be written. If this operand 1is coded, it will

replace the unit number specified in the QIORB.

‘ddname ’

specifies a ddname (see the VPS User’s Guide for a description of
the ddname parameter on the /FILE statement) defining a file into
which the record is to be written. If this operand is coded, it
will replace the ddname specified in the QIORB.

UTYPE=

RB=

specifies the unit type (see the VPS User’s Guide for a
description of the unit type parameter on the /FILE statement)
defining a file into which the record is to be written. If this
operand is coded, it will replace the unit type specified in the
QIORB. Note that the control program will search (in unit number
order) the /FILE statements and choose the first occurrence of the

specified unit type.

specifies the address of a QIU Request block (the QIORB can be
built with the QIORB macro). It may be coded either as an address
or as a register, enclosed 1in parentheses, containing the address
of the QIORB. 1f this operand is not coded, the QPUT macro will
build the QIORB as part of the inline expansion of the macro.

RECFM=

specifies the format of the record as it appears in user storage.
1f F (fixed) is specified, the record appears left=justified in
the user storage area. 1f V (variable) 1is specified, the user
area contains a standard v-format record (see Chapter Z for a
description of a v-format record). I1f this operand 1is coded, it

will replace the record format specified in the QIORB.

EODAD=

specifies the address of a routine which is to be given control 1if
the end-of-file is reached. It may be coded either as an address
or as a register, enclosed 1in parentheses, containing the address
of the routine. I this operand is coded, it will replace the

address specified in the QLORB.

SYNAD=

89

specifies the address of a routine which is to be given control if
the write operation could not be completed successfully. It may
be specified either as an address or as a register, enclosed in

parentheses, containing the address of the routine. If this
operand is coded, it will replace the address specifed in the
QIORB.

RECNO=

specifies either the absolute or relative record number, depending
upon the RNTYPE specified in the QIORB, of the record to be
written into the file. It may be coded as a number or a
non-relocatable symbol or as a register, enclosed in parentheses,
containing the record number. This operand can be coded only when
writing direct access files (i.e. DSORG=DA appears on the
associated /FILE statement).

RNTYPE=

specifies whether the record number in the RECHO keyword is an
absolute record number (relative to the beginning of the file -
the first record being record number 1) or a record number
relative to the current position in the file. If this operand is
coded, it will replace the RNTYPE field in the QIORB. This
operand can be coded only when writing direct access files (i.e.
DSORG=DA appears on the associated /FILE statement).

SvVC=
specifies whether the QPUT macro expansion is to include the QIO
SVC to perform the write operation. The default is YES. If NU is
specified, the macro expansion will contain all the necessary
instructions = except for the SVC. This form of the macro can be
used to format a QIORB.

QREW - Rewind File (QIO)

The QREW macro instruction causes a file to be rewound. The QREW
macro may be used to rewind tape files, direct access files, and the
conversational read wunit (which effectively clears the stack). For
tapes and direct access files that are being written, an end-of-file
(EOF) record is written before the file is rewound. The standard form
of the QREW macro is written below.

(symbol) QREW [unit 7] ,RB=addr | [,SYNAD=addr
(regl) ,RB=(reg)| |,SYNAD=(reg)
‘ddnane”’
UTYPE=DISK
UTYPE=TAPE
h_!JT'!:'l:“E'.-TERI'lII*rl

» SVC=YES
» SVC=NO
unit

specifies the unit number defining the file which is to be
rewound. It may be specified either as a number or as a
non-relocatable symbol. If this operand is coded, it will replace
the unit number specified in the QIORB.

(regl)
specifies a register containing the unit number of the file which
is to be rewound. 1f this operand is coded, it will replace the
unit number specified in the QIORB.

“ddname”
specifies a ddname (see the VPS User’s Guide for a description of

the ddname parameter on the /FILE statement) defining the file
which is to be rewound. 1f this operand is coded, it will replace
the ddname specified in the QILORB.

UTYPE=
specifies the unit type (see the VPS User’s Guide for a
description of the unit type parameter on the /FILE statement)
defining the file which 1is to be rewound. If this operand is
coded, it will replace the unit type specified in the QIORB. Note
that the coantrol program will search (in unit number order) the
/FILE statements and choose the first occurrence of the specified

unit type.

RB=
specifies the address of a QIU Request Block (the QIORB can be
built with the QIORE macro). It may be coded either as an address
or as a register, euclosed 1in parentheses, containing the address
of the QIORB. 1f tnis operand is not coded, the QREW macro will
build the QIORB as part of the inline expansion of the macro.

91

SYNAD=

specifies the address of a routine which is to be given control if
the rewind operation could not be completed successfully. It may
be specified either as an address or as a register, enclosed in
parentheses, containing the address of the routine. If this
operand is coded, it will replace the address specified in the
QIURB.

specifies whether the QREW macro expansion is to include the QIO
SVC to perform the rewind operation. The default is YES. If NO
is specified, the macro expansion will contain all the necessary
instructions - except for the SVC. This form of the macro can be
used to format the QIURB.

92

e

93
SALIST - Set Atteution Parancter List

The SALIST macro is used to build the SETATIN parameter list. The
SETATTN macro instruction 1is wused to specify an attention exit
routine. The SALIST macro instruction does not generate instructions.
The format of the SALIST macro is coded below.

[symbol] SALIST |OBUF=(output buffer address,length)
OBUF=(0,0)

,1BUF=(0,0)

—

:USADDR=user addresé}

TIBUFc{input buffer address,length?

,USADDR=0
OBUF=
specifies the output buffer address and length of the output
buffer. The output buffer contains a mnessage which is to be

printed at the user’s terminal when a program attention interrupt
occurs. This message is printed before the attention exit routine
is given control. If UBUF is not coeded, the address and length
will be initialized to O,

IBUF=
specifies the input buffer address and the length of the input
buffer. The input buffer will be used for responses from the
terminal wuser after the output buffer has been printed. The
attention exit routine will not be given control until the control
program has placed the user’s reply into this buffer. If IBUF is
not coded, the address and length will be initialized to O.

USADDR=
specifies the address of an area containing information which the
programmer wishes to have passed to the attention exit routine
when it is given control. Upon entry to the attention exit
routine, register 1 will contain the address of this area. If
USADDR is not coded, the address will be initialized to 0.

Note:
The keywords on the SALIST macro may be overridden at execution
time using the corresponding keyword on the SETATTN macro.

SETATTN = Set Terminal Attention Exit

The SETATTN macro instruction is used to specify the address of an

attention exit routine that is to be given control when a program
attention interrupt occurs during the execution of a program at a
terminal. The SETATTN macro may also be used to cancel the last
attention exit routine established by the program or to turn off
attention suppression in the exit routine. The format of the SETATTIN
macro is written as follows:

[symbol) SETATTN | CANCEL | [,LIST=addr ,EXIT=addr) (,SAVE=addr
SET »LIST=(reg)(),EXIT=(reg)(},SAVE=(reg)

SOFF

—

,OBUF=(output buffer address,length)
,OBUF=((reg),length)

,IBUF=(input buffer address,length)
s IBUF=((reg),length)

,USADDR=user address
,USADDR=(reg)

CANCEL

SET

SOFF

is written as shown. CANCEL indicates to the control program that
the last attention exit routine established by the program is to
be ignored. If CANCEL is specified, no other parameters need be
coded on the SETATTN macro statement.

is written as shown. SET indicates to the control program that a
terminal attention exit is being established. SET is the default.

is written as shown. SOFF indicates to the control program that
attention suppression should be turned off. This form of the
SETATTN macro can be used in the attention exit routine to allow
attention interrupts during the execution of the routine;
otherwise, attention interrupts will be suppressed until the
attention exit routine returns control to the control program. If
SOFF 1is specified, no other parameters need be coded on the
SETATTN macro statement.

LIST=

specifies the address of the SETATTN parameter list. This area is
defined wusing the SALIST macro and contains the user address,
input buffer address, input buffer length, output buffer address,
and output buffer length. If (reg) is specified, the address in
the designated register is used. NOTE, LIST=(l) may not be coded.

EXIT=

94

specifies the address of the entry point of the routine to be
given control when an attention interrupt is received. If (reg)
is specified, the address in the designated register is used.

SAVE=
specifies the address of a save area 18 fullwords in length and
fullword aligned. If (reg) 1is specified, the address in the
designated register is used. Upon entry to the attention exit
routine, register 13 will contain the address of this save area -
allowing standard subroutine linkage. NOTE, SAVE=(l) may not be
coded.

OBUF=

specifies the output buffer address and length of the output
buffer. If this keyword is used, the output buffer address and
length in the SETATTN parameter list will be replaced. The output
buffer contains a message which 1is to be printed on the user’s
terminal when a program attention interrupt occurs. This message
is printed before the attention exit routine is given control.
The buffer address may also be specified as a register (enclosed
in parentheses). The macro will use the address in the designated
register as the output buffer address.

IBUF=

specifies the input buffer address and length of the input buffer.
If this keyword 1is coded, the input buffer address and length in
the SETATTIN parameter list will be replaced. The input buffer
will be used for responses from the terminal user after the output
buffer has been printed. The attention exit routine will not be
given control wuntil the control program has placed the terminal
user’s reply into this buffer. The buffer address may also be
coded as a register (enclosed in parentheses). The macro will use
the address in the designated register as the address of the input
buffer.

USADDR=

specifies the address of an area containing information which the
programmer wishes to have passed to the attention exit routine
when it is given control. If this keyword is specified, the user
address in the SETATTN parameter list will be replaced. If (reg)
is specified, the address in the designated register is used.
Upon entry to the attention exit routine, register 1 will contain
the address of this area.

SETIMER - Set Timer Interrupt

The SETIMER macro instruction is used to set a timer interrupt and
specify the address of a timer completion routine. The timer
interrupt may be specified as either a specific time of day or as an
interval in 300ths of a second units. In either case, when the timer
interval expires, the timer completion routine is given control. Only
one timer interval is in effect at a time. A second SETIMER macro
instruction issued before the first time interval expires overrides
the first interval and exit routine. The standard form of the SETIMER
macro is written below.

[symbol] SETIMER addr » CLOCK=number wEXIT=routine addr
(reg)(|,CLOCK=(reg) »EXIT=(reg)
,TOD=number
,TUD=(reg)

addr
is the address in wuser storage of a save area 18 fullwords in
length and fullword aligned. If (reg) is specified, the address
in the designated register is wused. Upon entry to the timer
completion routine, register 13 will contain the address of this
save area - allowing standard subroutine linkage. Note, (0) or (1)
may not be coded.

CLOCK=
is either a number which is the interval size in 300ths of a
second units or a register containing the interval size in 300ths
of a second units. If a register is specified it must be enclosed
in parentheses.

TOD=
is either a number which is the time of day in 300ths of a second
units at which the timer interval is to expire or a register
containing the time of day in 300ths of a second units. 1f a
register is specified it must be enclosed in parentheses.

EXIT=
is the address of the timer completion routine which is to receive
control when the interval expires. If a register is specified,
the address in the designated register is used. Note, EXIT=(1)
may not be specified.

96

SETTRP = Set Trap Area

The SETTRP macro is used to replace the system defined (or current)
SVC trapping and interupt handling control area with a new one. The
area is defined using the TRAPAREA macro and allows the programmer to
trap SVCs, program interrupts, and/or abends. The standard form of
the SETTRP macro is written below.

[symbol] SETTRP [addr 1
(reg})

addr
is the address of the new trap area. Lf (reg) is specified, the

address in the designated register is used.

97

SMSG - Send Message

The SMSG macro is used to send a variable length message to the
terminal user, another terminal user (another account), or to the
operator. The message may be a message built by either the MESGV
macro or the BLDMSG macro, in conjunction with the MESGB macro (see
the descriptions of these macros for further details); or the message
may be specified as part of the SMSG macro. The standard form of the

SMSG macro is written below.

(symbol] SMSG |account address , ‘message”
oP ,message address
(regl) , (reg2)
¥

account address
specifies the address of an 8-byte field containing the account
number to which the message is to be sent, left Justified and

padded to the right with blanks.

OoP
is written as shown and specifies that the message is to be sent

to the VPS system operator.

(regl)
specifies a register containing the message destination code. The
specified register must contain one of the following:
0 - the message will be sent to the system operator.
-1 - the message will be sent to the terminal user.
account address - same as above.

is written as shown and specifies that the message is to be sent
to the terminal user. * is the default.

‘message’
specifies the message to be sent and must be enclosed in quotes.

message address
specifies the address of the message to be sent. This may be

either an area of user storage containing a message constructed by
the MESGV macro or an area initialized by the BLDMSG macro. If
the latter is wused, the message address must be the area address
+2 bytes (since BLDMSG stores the length of the area in the first

2 bytes).

(reg2)
specifies a register containing the message address following the

guidelines listed above.

98

Notes:

When control is returned to the program, register
one of the following return codes:

Hexadecimal
Code Meaning
0 Message sent successfully.
4 Destination not found.
8 Not receiving messages.
C

Invalid argument.

15 will contain

99

SMSGR - Send Message With Reply

The SMSGR macro may be used to send a message and have a reply
returned to the program. The message may be sent to the terminal
user, another terminal user (another account), or to the VPS5 operator.
The SMSGR macro is used to send the message and notify the control
program that a reply is expected. Control will be returned to the
user program immediately after the message is sent. If the programmer
wishes the reply to be processed by the program, the TWAIT macro
should be used to cause the user program to wait until the reply is
received. The standard form of the SMSGR macro is written below.

[symbol] SMSGR [* ,addr ,SMARG=addr ,REPLY=addr
(0) 4 , (reg) » SMARG=(reg) ,REPLY=(reg)
addr , ‘message’

(reg)

,REPLEN=number , POST=addr
,REPLEN=(reg) ,POST=(reg)
,PBITS=number

,PBITS=(reg)

b —

first positional parameter

specifies the message destination. “*° indicates that the message
should be sent to the user terminal (if the program is being run
in the batch, the message will be sent to the VPS operator). OP
indicates that the message is to be sent to the VPS operator. If
an address is specified, the area pointed to by the address is an
8-byte field containing the destination account. If a register is
specified, it must be enclosed in parentheses and contain one of
the following: 0 = indicating the message is to be sent to the VPS
system operator; -l - indicating the message is to be sent to the
terminal user; or an address of an 8-byte area containing the
destination account. The default is “*°,

second positional parameter

specifies the message to be sent. It may be specified as: an
address of an area containing a variable length message; a
register holding the address of an area containing a variable
length message; or the actual message to be sent enclosed 1in
quotes. Note that the message may be built using the MESGV macro
or the BLDMSG macro (if the latter is used, the message address is
the area address +2 bytes). If this parameter is specified, it
will override the message address in the SMSGR argument list.

SMARG=
specifies the address of the SMSGR argument list. It may be
specified as an address of the argument list or a register
containing the argument list address. If a register is coded, it
must be enclosed in parentheses. The SMSGR argument list should
be built using the SMSGRARG macro. If this parameter is not
specified, an inline argument list will be built.

100

101

REPLY=

specifies the address of an area where the reply to the message is
to be placed by the VPS control program. It may be specified
either as an address or as a register containing the address of
the reply area. If a register is specified, it must be enclosed
in parentheses. When the reply is placed in the reply area, it
will be left-justified and padded to the right with blanks. If
this parameter is coded, it will override the reply address in the
SMSGR argument list. Note, REPLY=(1) may not be coded.

REPLEN=
specifies the length of the reply area. It may be specified as
either a number or non-relocatable symbol or as a register
containing the length of the reply area. If a register is coded,
it must be enclosed in parentheses. If this parameter 1is
specified, it will override the reply length in the SMSGR argument
list. Note, REPLEN=(l) may not be coded.

POST=

specifies the address of a l-byte area the control program is to
modify (under control of the PBITS parameter) indicating that the
reply has been received and placed in the reply area. It may be
specified either as an address or as a register containing the
address enclosed 1in parentheses. See the TWAIT macro for
information on the use of the post byte in a user program. Note,
POST=(l) may not be coded.

PBITS=

specifies the bit positions, in the post, byte which the control
program is to ‘OR’ with 1°s)when the reply has been received and
placed in the reply area. 1; may be specified either as a number
or non-relocatable symbol Jor as a register containing the bit
positions 1in bits 24-31 of the register. 1f a register is
specified, it nmust be enclosed 1in parentheses. Note, PBITS=(1)
may not be coded.

Note:
When control 1is returned to the program register 15 will contain
one of the following return codes:

Hexadecimal
Code Meaning
0 Message sent successfully.
4 Destination not found.
8 Destination not receiving messages.
C Invalid argument.

SMSGRARG - SMSGR Argument List

The SMSGRARG macro builds an SMSGR argumeut list. This macro does
not generate any instructions. The standard form of the SMSGRARG
macro is written below.

[symbol] SMSGRARG DSECT [,REPLY=addr] , REPLEN=number
addr ,REPLEN=0
‘message’

[,POST=addr] ITPBITs-number_i
,PBITS=0
L J

first positional parameter
specifies the message to be sent. It may be specified as either

the address of an area containing a variable length message or as
the actual message enclosed in parentheses. Note that the message
may be built using either the MESGV macro or the BLDMSG macro (if
the latter is used, the message address 1s the area address +2
bytes). If DSECT is specified tor the first positional parameter,
the SMSGR argument list is not built. Instead, a SMSGRARG DSECT

is generated.

REPLY= _
specifies the address of an area where the reply to the message is

to be placed by the VPS control program. When the reply is placed
in the reply area, it will be left-justified and padded to the
right with blanks.

REPLEN=
specifies the length of the reply arva. 1t may be coded as either

a number or a non-relocatable symbo!l.

POST=
specifies the address of a l-byte area the control program is to
modify (under control of the PBITS parameter) indicating that the
reply has been received and placed in the reply area. See the
TWAIT macro for information on the use of the post byte in a user
prograa.

PBITS=
specifies the bit positions in the post byte which the control
rogram is to ‘CR’ with 1”s when the reply has been received and
placed in the reply area. It may be specified as either a number

or a non-relocatah.e symbol.

Note:
All of the keywords cn the SMSGRARC macro may be overridden at

execution time using the corresponding keywords on the SMSGR macro.

102

SYSLIB - System Library and Work File List

The SYSLIB macro instruction builds a search 1list (concatenation
list) of system library names and/or work file unit numbers which can
be used with either the LMBLDL or LMLOAD macro instructions. The
SYSLIB macro does not generate any instructions. The standard form of
the SYSLIB macro instruction is written below.

[symbol] SYSLIB {LIST=(sys library | unit,sys library | unit,...)}

LIST=
specifies a list of system library names and/or work file unit

numbers arranged in the order that they are to be searched. The
list must be enclosed in parentheses and the entries separated by
commas. If only one name or unit number is coded, the parentheses

may be omitted.

103

TESTIMER = Test Timer

The TESTIMER macro instruction causes the control program to return
in register 0 the amount of time (in 300ths of a second wunits)
remaining in a timer interval previously set by a SETIMER macro
instruction. If a time interval has not been set, register 0 contains
0 on completion of the macro. TESTIMER can also be used to cancel the
remaining time interval.

The TESTIMER macro instruction is written as follows:

[symbol] TESTIMER [CANCEL]

CANCEL
is written as shown. It indicates that the remaining time

interval and exit routine are to be canceled (ignored). If CANCEL
is not designated, the unexpired portion of the time interval
remains in effect.

104

105
TOD - Time Of Day

The TOD macro instruction 1is used to obtain the time of day in
300ths of a second. The time of day is returned in register 0. The
TOD macro is coded as follows.

[symbol] TOD

TRAPAREA - User Defined SVC/ABEND/PI Trapping Area

The TRAPAREA macro instruction builds an alternative
SVC/Abend/Program Interrupt trapping area in user storage used by the
SETTRP macro to replace the system defined (or current) table. The
TRAPAREA macro does not generate any instructions. The standard form
of the TRAPAREA macro instruction is written below.

[symbol] TRAPAREA ~ {TRAP=([ABEND] [,ALL] [,API] [,SPI] [,SVC])}
[,SUPR=([AMSG] [,SMSG])] [,ABEXIT=addr]
[,PIEXIT=addr] [,SVCEXIT=addr]

, SVCMASK=ALL
» SVCHMASK=05S
»SVCMASK=(number | range,...)

TRAP=
specifies the conditions the programmer wishes to trap. The
options are:
ABEND - all program abends.
ALL = all conditions (ABEND, API, SPL, and SVC).
API - arithemtic program interrupts (interrupt codes 08-0F).
SPI - serious program interrupts (interrupt codes 01-07).
SVC - the supervisor calls listed in the SVCMASK keyword.
If only one option is coded the parentheses may be omitted.

SUPR=
specifies supression of the PSW and general purpose register

contents messages for either an arithmetic program interrupt or
serious program interrupt. If AMSG is coded the messages will be

supressed if an API occurs. If SMSG is coded the messages will be
suppressed if an SPI occurs. If only one option is specified, the
parentheses may be omitted.

ABEXIT=
specifies the address of a routine which will be given control if
an abend occurs and ABEND is coded in the TRAP keyword.

PIEXIT=
specifies the address of a routine which will be given control if

a program interrupt occurs and either API or SPI is coded in the
TRAP keyword.

SVCEXIT=
specifies the address of a routine which will be given control if
an SVC is executed which has been masked by the SVCMASK keyword
and the BRTRAP macro has been issued.

106

SVCMASK=

specifies the SVCs to be trapped. If ALL is coded, all SVCs will
be trapped. If 0S 1is coded, SVCs O through 127 will be trapped.
If a 1list is specified, it must be enclosed in parentheses and
each entry must be separated by commas. Each entry in the list
can either be a single SVC number or a range. If a range is
specified, it must be enclosed in parentheses and the beginning
and ending numbers must be separated by a comma.

Notes:

If a trap exit is taken, information in the trapping area may be of
use in the routine (e.g. PSW contents, general purpose register
contents, etc). The PISVCTRP DSECT should be used to reference the
trapping area since the area is likely to change.

107

TWAIT = Task Wait

The TWAIT macro is used to suspend program execution pending the
occurrence of some “posting” event (e.g. a response to a SMSGR
request). This macro is always immediately preceded by a
Test-under-Mask instruction which tests one or more bits in a
programmer-defined post byte. A condition code mask is defined for
the TWAIT macro in the same manner as the mask which is used for the
Branch=-on=Condition instruction. This mask determines whether
suspension of execution is to occur. This macro may be thought of as
a ‘wait on condition” instruction = that 1is, the program will be
suspended as long as the test instruction produces a condition code
corresponding to a 1 bit in the mask. The standard form of the TWAIT
macro is written below.

8

[symbol] TWAIT Fumbex]

number

specifies the mask used to determine whether suspension of
execution is to occur. It may be specified as either a number or
as a non-relocatable symbol and is defined in exactly the same way
as the branch mask for the Branch-on-Condition instruction. The
default is 8 which specifies that program execution will be
suspended as long as the posting bit(s) in the post byte are
zeroes,

108

Appendix A: Data Areas

Below is a list of some of the VPS data areas which can be
referenced from assembler language programs. Each of the data areas
has a corresponding DSECT of the same name residing under the VPS
library index = VPSMAC. Programmers are cautioned that there 1is no
guarantee that these data areas will not change. Therefore, the
symbols defined in the DSECTs should always be used when referring to
fields in the data areas instead of hard coded offsets. This will
lessen the impact of modifications or enhancements to the control
program data areas.

Note, in the data areas listed below, information and constants may
be referenced. However, a protection exception will occur if a
problem program attempts to modify any of these areas.

AMSL (Assigned Main Storage Locations) -
defines the low-address storage locations of the virtual machine.
AMSL contains frequently used constants, addresses of other data
areas, boundary information, etc. To use the symbols defined in
the AMSL DSECT, the following statements should appear in the
program:

AMSL
USING AMSL,0

JCB (Job Contrel Block) =
contains control and status information related to the user’s job
or terminal session. SJCBPTR in the AMSL DSECT contains the
address of the associated JCB. SPVMJCB in the AMSL DSECT contains
the address of the PVM JCB, which is always the first in the JCB

chain.

LKDSECTS (Link DSECTs) -
this DSECT contains all the data areas pertaining to load modules.

QIOPREFX (QIO Prefix) -

contains information relevant to the QIO Access Method. There is
a QIO Prefix for each unit defined by a batch job or the execution
of a program during a terminal session. $SYSUAV in the AMSL DSECT
contains the address of the QIU Prefix vector. The first word of
this vector contains the highest defined unit number, followed by
successive words each containing the address of the QIU Prefix for
that unit (if defined) or zero (if not defined). For example, if
‘n’ is the defined unit number, n*4 bytes from the beginning of
the QIO Prefix vector is the address of the QIO Prefix for that
unit. (See UNITDEF below.)

REPLYBLK (Reply Block) -
is built by the sytem for an outstanding reply (see the SMSGR
macro). The REPLYBLK is chained from the JCBs of both the sender

and the receiver.

109

TCB (Terminal Control Block) -
contains status and control information specific to the terminal

being used for this terminal session. This control block is
pointed to by the JCBTCB field in the JCB. For a job running on
the batch, the JCBTCB field will contain zero.

UNITDEF (Unit Definition) -
is contained within the QIO Prefix and contains information

pertaining to the unit from the associated /FILE statement (i.e.
logical record length, block size, etc.). Note, UNITDEF must
appear in a program physically before QIOPREFX since some symbols
defined in the UNITDEF DSECT are used in the QIOPREFX DSECT.

ABCODE macro 30
ABEOJ macro 31
ACCMOD macro 32-33
attention modes 2

BLDMSG
macro 34-35
use of 21=-22
BRANCH macro 36
BRTRAP macro 37

CLRSTOR macro 38

DADSM macro 39-40
DADSMARG macro 41
DFLARG macro 42
DFLIBIN macro 43=44
DFTARG macro 45
DFTERMIN macro 46-47

DIO
macro 48-50
use of 12-15
DIORB

macro 51-53

use of 12-15
Direct I1/0 access method 12-15
directory entries 18-19
DYLEXC macro D54

EXTIME
macro 55
use of 24

file record formats 5-7

LCLARG macro 56-57

LIBARG macro 58-59

LIBRARY macro 60-62
LIBRCLS macro 63-64
LMARG

macro 65-66
use of 18,19

LMBLDL
macro 67-68
use of 18-19
LMBLIST

macro 69

use of 18-19
LMLOAD

macro /0-72

use of 17-18,19
load modules 16-19

Index

LESGH
macro /3-76
use of 20,21
MESGV
macro /70
use of 20-21
message handling 20-23

PSTCOD macro 78

QBSP

macro 79-80

use of 9
QEOF

macro 8l1=82

use of 9
QGET

macro 83-85

use of 8-9,10,11
QIO access method 8-11
QLORB

macro 86=87

use of 8,10,11
QPUT

macro 88-90

use of 9,10
QREW

macro 91

use of 9,10

SALIST
macro 93
use of 2-4
SETATTN
macro 94-=95
use of 2-4
SETTIMER

macro 96

use of 25-26
SETTRP macro 97
SMSG

macro 98-=99

use of 20-22
SMSGR

macro 100-101

use of 22-23
SMSGRARG

macro 102

use of 22-23
SYSLIB

macro 103

use of 16,18

111

TESTIMER
macro 104
use of 25-26
TOD
macro 105
use of 24
TRAPAREA macro 106=107
TWAIT
macro 108
use of 22-23

112

VPS SYSTEM FACILITIES FOR ASSENBLER PROGRAMNMERS Reader Comments Form

As a reader of this draft, your comments and criticisms of the
material presented and the manner of presentation are essential to the
usefulness of this manual in its final form. Please comment in the
space below, giving specific page and paragraph references where
possible.

This sheet can be sent to the Computing Center or dropped off in
Room 3. i

