The VPS Guide

Programming Languages

BostonUniversity Computing Center

Preface

The publication of this manual marks the last in a set of four basic
VPS™ manuals - The VPS Handbook, explaining the system, its commands,
and control statements; the VPS Utilities Manual, documenting general
purpose programs such as the VPS Editor and Loader; VPSS System
Facilities for Assembler Programmers, describing system functions and
macros available at the problem program level; and now the VPS Guide
to Programming Languages, describing the use of the major programming
languages on VPS. Along with this Guide, the Handbook and the
Utilities Manual are mandatory reading for anyone who wishes to write
and execute programs on VPS with minimal frustration.

We would like to thank Joe Demty, Manager of User Services, for his
contributions and Mary Porter, who so brilliantly captured the need
for this manual in her cover design.

Finally, we strongly recommend that you read the introduction before

you begin reading the rest of the Guide to avoid unnecessary
confusion.

Marian G. Moore
Marjorie A. Orr

June, 1980

© 1980 Boston University

VPS is a registered trademark of Bosten University

Contents

Introduction « « « ¢ « o o« o s o s & s =

Chapter 1: ALGOL W . . +. « « « « =« + & &

Invoking ALGOL W « &« « ¢ + o =+ « & o
ALGOL W Control Statements « .
Compiler Options . « + & « o « o« o o &
Example =+« o « o ¢ o o o o &+ + o« o «

Chapter 2: The Assembler

Invoking the Assembler « « « .
Procedure Files @ e o s
Specifying Assembler Options o e a w
Assembling — An Example . . « + . .+ =
Executing Assembler Programs -
Assembler Program Execution Example .

Chapter 3: BASIC . « « « « « o « o & « =

CALL BASIC Language Elements -
Additional Considerations . « . « « =«
Invoking BASIC « « o o « & o o o & & =
BASIC Input/Output . . « « « « + « « »
EXrors « « « s« o« = s s s s s o » s s &=
BASIC Example .« « « « + « « o o« & « =

Chapter 4: COBOL « « « « « « « « « o o &

IBM Manuals =« « « s o s & s o s s o« =
Invoking the Compiler
Compiler Files « o« o« & o o « o &+ = « &
Execution Time Files . . - « - + « « =
Specifying Compiler Options
Specifying Loader Options« .
Calling and Called Programs . . « « =
/PARM for User Execution . « « « + + =
COBOL I/0 Considerations . . . « « . .
Sequential Files + « « & = « o o« &+ o
Direct Files « « « s « o o & s & o = =
Relative Record Files . « « « « « « &
Computing Center Supplied Subroutines
Debugging .« « « + « « s o s o o o +

Support Qualifications . . + « . . -
Sample Program . « « « « s s + o« o o o
Chapter 5: FORTRAN « « + « « « .

Choosing a Compiler .« . « + « & « = &
Invoking the Compilers . . . « « + « &
Compiler Files . . « « &+ &« & « & o o &
Execution Time Files « .« .« .
Specifying Compiler Options . . « . &
Specifying Loader Optiomns . - & w
The Strange Behavior of SYSPRINT o v e
Memory Requirements for Compilation

FORTRAN Object Files « « « o o« & o &«

—

W Www

O WO 00

19
19
19
20
21
23
25
26
27
28
29
30
32
34
37
38
39

43
b4
44
45
46
48
49
49
50
50

FORTRAN Input/Output Considerations
Sequential Files « + + « &« &+ & « o« &
Direct Files . + + & o « o & o o s &
Computing Center Supplied Subroutines
Debugging .« « o ¢ o o &+ ¢ o o o o »

Chapter 6: PASCAL . . . « & « « « « &
Invoking PASCAL &« « « « & .
Procedure Files .+ + « &« « & & « & &

Separating Program Statements from Data

Files Used for Program Execution . .
I/O NOtes + « & o« o o o s o o o o &
Memory Requirements

Compiler Options . +« & & & & o « & &
Listing Control
Saving Compiler Object Code

CHADTEE 73 PLAE v o wo i & & ir e o 5 »
PL/C Language Facilities
Invoking PL/C Under VPS
PL/C Control Statements
PL/C Compiler Options . . . « « . .
PL/C File Names Under VPS
Sample PLIC BUB « o % o 6 o o 0 = &

Chapter 82 PLIL % %% 5 & 4 % 5.5 -5 &
IBM Manuals .+ ¢« ¢ o« « o o & o « 5 «

Invoking the PL/I Optimizing Compiler

Compiler Files ¢« « + « o v « o & o«
Execution Time Files + « + « « &+ « &
Specifying Compiler Options
Specifying Loader Options
The Strange Behavior of Sysprint . .
Memory Requirements for Compilation
PL/I Object Files .« « « « o« « « 4« &

PL/I Optimizer Features Not Supported on

PLIL BLIEB. « v o min # ©omoin 5 % v
Consecutive Files .+ « « & o & + « &
Consecutive File Notes
Regional Files « + v « v & &« & & o &
Computing Center Supplied Subroutines
Notes on Efficient Debugging

Chapter 9: SNOBOL « .« + « + .
Invoking SNOBOL . . « + & & & « & &
Default /FILE Statements
Input/Output Associations

Chapter 10: WATFIV « + « « & &
The Language Supported by WATFIV . .
Invoking WATFIV « + « &« + &
WATFIV Control Statements
WATFIV Compiler Options
WATFIV Input/Output Units
WATFIV Sample Job .« « « « &« & « &

51
52
52
53
56

59
59
59
60
60
61
61
61
64
64

67
67
68
68
69
70
72

73
73
73

75
76
77
78
78
79
80
80
81
82
83
85
88

91
91
91
92

95
95
95
95
96
97
99

Interactive Debugging . « + « « « « ¢ « ¢ ¢« o« « s s = s « » » - 100
Interactive Debugging Sample Program . . . « « « « + &« « « « « « 101

Chapter 11: XPL . + &+ « o o o o o & o o o o o & & o & o & o o o & 105
Invoking XPL « ¢ « o o o o s s o s s o s o o s « o s o o o o o o 105
Procedure FIles « « « o« 5 o s o o 5 s « o o s s « s« ¢« s s » =« o 106
Separating Source From Program Input . . . « « « « ¢ « o & « « & 107
Other XPL FilesS « « o « « = o« o o s s s = s o » = « « + « « - = 107
The /JOB Statement + + « = « « = s = = = = s« » o o« s o o o o o » 107
Separating Compilation From Execution in Time . . . » « « « . . 108
ABEND Codes Returned by the Submonitor . . « . « « « « « « « . « 108

Appendix A: The /JOB Statement . . « « « « « « +« o« + « + « « « » » 111
Appendix B: Creating and Executing Load Modules 113
Creating Load Modules . + - « « « « « o o o« o o + = « = = = » « 113
Executing Load Modules . « « + « o o o« o o o &+ o o o s o & = « = 114

Indes o % s 6 6 & % & & @ 0w w & 0w oEw R B & ok ow w0 B % ow oo ow v oddd

Introduction

VPS (Virtual Processor System) is a high-performance general purpose
timesharing system written by the systems staff of the Boston
University Computing Center. Unlike some highly specialized
interactive systems which are built to perform a unique process (e.g.
handle insurance claims, process bank transactions, find parking
violators, etc.), VPS is designed to allow users the ability to
create, maintain, and run a wide variety of programs and packages.

The programs described in this Guide are called compilers. In
general, a compiler is an application program which processes a
defined set of language statements (the programming language known to
that program) and produces machine language from these statements
which can be executed directly by a computer (in our case, an IBM
computer).

This is a unique manual in what it does not contain. For instance,
it does not contain information on VPS commands or the creation and
maintenance of source and data files under VPS. That information may
be found in the Handbook and the Utilities Manual and we assume you
know it. It does not contain a description of the language the
compiler accepts. Each compiler described in the following chapters
has a language reference manual for this purpose. It does not contain
error messages or codes produced by the compiler. That information can
also be found elsewhere.

What it does contain is a description of how the compiler interfaces
with the VPS operating system, the VPS control statements needed to
compile and execute programs in that language, the file structures
available on VPS supported by that particular language, any
differences between the compiler”s behavior on VPS versus its behavior
on its native system, and a list of the publications documenting the
language.

Readers may find that their favorite compiler is not documented in
this manual (a notable exception is LISP). Certainly, there are many
more programming languages available on VPS than are described in this
manual; however, time and manual size were factors we had to consider
while writing. Therefore, we chose to document only the most widely
used languages.

Compiler Support

The compilers documented in this manual are programs “"supported by
the Computing Center”. Loosely speaking that can be defined as a
program which is widely used by the computing community, installed by
Computing Center personnel, is distributed with adequate documentation
for users and the systems staff at the BUCC who must maintain it, and
is written by an organization responsible for fixing errors and
providing enhancements.

None of the compilers described in this manual were originally
written to run under VPS. A few have been modified to run in a mode

Introduction 1

Introduction

which we call ‘"native VPS" - directly using the facilities described
in the VPS System Facilties for Assembler Programmers Manual. However,
the newer compilers have not been modified and rumn in an "0S/VS
environment”. This environment is created through special VPS system
programs which emulate the IBM 0S/VS operating system. In this manner
the compilers need not be modified which allows faster installation of
new releases of a compiler, less chance of errors during execution (if
there is a compiler problem, usually it is an error in the compiler
not in VPS), and the ability to support a much wider range of programs
and packages. As time goes by we plan to use this technique on all the
compilers supported by the Computing Center.

Example Formats

Three types of examples are used in this manual - VPS control
statement examples shown in upper case, program examples shown in
lower case, and terminal session excerpts where system responses (*GO,
etc.) are shown in upper case to more easily differentiate between
what the imaginary user is entering and the associated response. Note
that depending upon the terminal type actual responses from VPS may
also be in lower case.

No matter how the examples are shown, if a command or statement is
to be typed in on a terminal IT SHOULD NOT BE TYPED IN UPPER CASE.

2 VPS Guide to Programming Languages

Chapter 1: ALGOL W

The ALGOL compiler supported on VPS is ALGOL W. ALGOL W was written
at Stanford University and is based on the ALGOL 60 language. The full
language specifications for ALGOL W can be found in "ALGOL W Reference
Manual" (STAN-CS-71-230) by Richard L. Sites, published by the
Computer Science Department of Stanford University. This manual is
available for reference at the Computing Center.

ALGOL W is a fast student-oriented compiler with excellent
dianostics and extensive debugging facilities. ALGOL W has not been
modified to run under VPS - rather, special VPS support programs
provide an "0S/VS" environment in which this compiler and its compiled
programs run. ALGOL W is a one-step compile and execute facility that
does not produce permanent object code.

Invoking ALGOL W

The ALGOL W compiler is invoked by placing the following control
statement before the first ALGOL source statement of a program:

/LOAD ALGOLW

Normally, this is done by placing the /LOAD statement first in a
source file with the VPS editor when the source file is created.

ALGOL H_Control Statements

ALGOL W recognizes two special control statements. The first,
%ZALGOL, signals the beginning of an ALGOL W source program and its
format is shown below.

#ALGOL |Time=sss | |,Pages=ppp | |,MARGin=72
010 009 80

TIME=
specifies the maximum execution time in seconds to be alotted for
the ALGOL source program. 10 seconds is the default. If the time
limit is exceeded, the execution is terminated. TIME= may be
abbreviated as T=.

PAGES=
specifies the maximum number of pages to be generated by execution
of the source program. 9 pages is the default. If the page limit
is exceeded, the program execution will be terminated. PAGES= may
be abbreviated as P=.

MARGIN=
specifies the number of columns to be read on each input data
record. The default value is 80, unless the source statements are
sequence numbered, in which case the compiler assumes the data
records are sequenced also and 72 is the default.

VPS Guide to Programming Languages 3

Chapter 1: ALGOL W

AZALGOL must begin in column 1, followed by a blank, followed by any
of the above options. The options may be entered in any order but must
be separated by commas.

The %DATA statement is used in the input stream to separate an ALGOL
program from its data. %DATA must begin in column 1.

The ALGOL W compiler allows multiple compilations and executions in
one job stream as long as the source and data are correctly delineated
with ZALGOL and %DATA statements. The following shows the standard
statement sequence for ALGOL programs:

/LOAD ALGOLW
%#ALGOL options

ALGOL source statements
#ADATA

program data

-

ZALGOL options

ALGOL source statements
ZDATA

program data

The ZALGOL statement is optional for the first source program in the
input stream if the programmer wishes to select all of the defaults.
The 7ZDATA statement is optional for any source program if the program
has no data in the input stream.

Compiler Options

The following is a list of the ALGOL W compiler options and a
description of their use. A full description can be found in the
Stanford "ALGOL W Reference Manual"”. Each option must begin in column
1 of a record and must appear between a %ALGOL control statement and
the next % statement. The option is in effect for that source program
only.

Option Description
SLIST Specifies whether the source statements should
SNOLIST be listed. SLIST is the default on the batch.

$NOLIST is the default at the terminal.

STITLE, "su." Places "..." (up to 30 characters) as a title
in the middle of the heading line.

$SYNTAX Specifies that the compiler is to analyze the
program for syntax errors, but not execute it.

$NOCHECK Specifies that subscript and undefined variable
checking is to be turned off.

B VPS Guide to Programming Languages

$DEBUG,0
$DEBUG, 1
$DEBUG, 2
$DEBUG,3(m)
$DEBUG,4(m)

$NORM,a, b

Chapter 1: ALGOL

Activates the tracing, statement counting, and
post-mortem dump facilities of ALGOL W. $DEBUG,0
specifies that minimum debugging options are

in effect. $DEBUG,l (the default) specifies that
a post-mortem dump of all variables should be
produced if the program terminates abnormally.
$DEBUG,2 produces the same output as 1 plus
statement counts will also be printed.
$DEBUG,3(m) produces the same output as 2 plus

a statement—by-statement trace of each value
stored is also printed. $DEBUG,4(m) produces the
same output as 3 plus a statement-by-statement
trace of each value fetched is also printed. If
tracing is specified ($DEBUG,3 or $DEBUG,4) and
the standard procedure TRACE is not used, then
each ALGOL statement will be traced in symbolic

o

form the first "m" times it is executed.

Activiates the floating—-point significance
tracing facilities of ALGOL W. This facility
interprets the operation of each floating-point
add and subtract executed by the program,
counting the number of base 16 digits of

preshift and postshift. If these shifts exceed
the limits specified by "a" and "b" respectively,
then a one-line SIGNIFICANCE ERROR message is
printed. The parameters "a" and "b" have a range
of from 0 to 16.

VPS Guide to Programming Languages

Chapter 1l: ALGOL W

Example

The following example shows an ALGOL program where, if abnormal
termination occurs, a post-mortem dump of all variables along with
statement counts is to be printed.)

/load algolw
Zalgol
$debug,2
begin
integer sum,count,numb;
while true do
begin;
sum := count := 0;
readon(numb); writeon(numb);
while numb™= -1 do
begin
sum := sum + numb;
count := count+l;
readon(numb); writeon(numb);
end;
if count = 0 then write("empty group")
else write("count ",count,"sum ",sum, "average
iocontrol(2);

*,sum/count)}

end
end
Zdata
13254617 -1
8767654543-1
-1

87 6665556054433227676768 787 88

6 VPS Guide to Programming Languages

Chapter 2: The Assembler

The Assembler supported on VPS is the IBM 0S/VS-VM/370 Assembler.
The assembler language supported by this assembler is documented in
the IBM publication "0S/VS-D0S/VS-VM/370 Assembler Language”
(GC33-4010). Information on its use can be found in the IBM
publication "0S/VS-VM/370 Assembler Programmer”s Guide” (GC33-4021).

Unlike the compilers described in this manual, the Assembler has
been modified to run in the native VPS environment (the system
programs that create an "0S/VS" environment are not necessary to
assemble a program). However, the object code generated is identical
to that produced by the unmodified Assembler. Programs may be
assembled which are intended for use on VPS or VS and in fact,
programs written for VS may be run on VPS in the "0S/VS" environment
(see below).

Invoking the Assembler

The VS Assembler is invoked by placing the following control
statement before the first assembler source statement of a program:

/LOAD VSASM,PARM="parml,parm2,...”

Normally, this is dome by placing the /LOAD statement first in a
source file with the VPS editor when the source file is created.
Information on the parameters which may be passed to the Assembler
using the PARM= keyword can be found in the section "Specifying
Assembler Options”.

In reality, not only does the /LOAD statement call the VS Assembler,
but it also invokes a corresponding VPS internal procedure. A VPS
internal procedure consists of a set of VPS control statements needed
to assemble most source programs. These control statements may be
overridden at execution time by programmer-supplied statements. The VS
Assembler procedure invoked using /LOAD VSASM at the terminal is shown
below:

/FILE UNIT=(DISK,NAME=SYSUT1),SPACE=(TRK, (30,5))
/FILE UNIT=(DISK,NAME=SYSUT2),SPACE=(TRK, (30,5))
/FILE UNIT=(DISK,NAME=SYSUT3(,SPACE=(TRK,(30,5))
/FILE UNIT=(TERMOUT ,NAME=SYSPRINT)

/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<{input stream>
/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSNAME=%2

/FILE UNIT=(TERMOUT,NAME=SYSTERM)

/LOAD VSASM

Procedure Files

The default /FILE statements in the VPS VSASM procedure are
described below:

VPS Guide to Programming Languages /

Chapter 2: The Assembler

File Use

SYSUT1, Defined as temporary work files. Used by the
SYSUTZ, Assembler as scratch files during assembly.
SYSUT3

SYSPRINT Defined as the terminal when assembling at the

terminal or as the high-speed printer when
assembling on the batch. Used by the Assembler
as the output listing file.

SYSIN Defined as the input stream. Used as the input
to the Assembler.

SYSPUNCH Defined as the *2 file when executing at the
terminal or as the card punch when assembling
on the batch. Used by the Assembler as the output
object file (if DECK appears in the parameter
list — see below).

SYSTERM Defined as the terminal when assembling at the
terminal. Used by the Assembler for diagnostic
messages and statistics.

Specifying Assembler Options

As shown above, Assembler options, or parameters, may be passed to
the VS Assembler using the PARM= keyword of the /LOAD statement. If
parameters are passed to the Assembler they must be enclosed in single
quotes and separated with commas. The following is a subset of the
compiler options accepted by the VS Assembler. A full description of
all the options may be found in the Assembler Programmer”s Guide. Note
that default optfons are underlined.

Option Description
LIST Controls the printing of an output listing on
NOLIST SYSPRINT. NOLIST is the default on the

terminal, LIST is the default on the batch.

ALIGN Controls the alignment in the object module
NOALIGN produced and the checking of alignment
violations. For example, if NOALIGN is specified
F-type constants will not necessarily appear
on fullword boundaries.

ALOGIC Controls the listing of conditional assembly
NOALOGIC statements in open code.

ESD Controls the listing of the external symbol

NOESD dictionary.

DECK Controls the writing of an object module to

NODECK SYSPUNCH.

8 VPS Guide to Programming Languages

Chapter 2: The Assembler

OBJ Controls the writing of the object module to

NOOBJ to SYSGO. Note that a /FILE statement must be
placed in the job stream defining SYSGO if OBJ
is specified.

RENT Controls the checking of reentrancy violations
NORENT in the input source.

RLD Controls the listing of the relocation

NORLD dictionary.

XREF(FULL) Controls the listing of the cross reference. A
XREF(SHORT) FULL listing includes symbols that are not
NOXREF referenced.

MACLIB=(VPSMAC, Specifies the VPS library indexes to be searched
MACLIB) for MACRO definitions. VPSMAC contains the VPS
MACROs described in "VPS System Facilities for
Assembler Programmers”. MACLIB contains the VS
MACRO library described in various IBM manuals.
The order specified is the order searched.

Assembling — An Example

The following example shows a library file ready for assembly at the
terminal. The listing file is to be printed on the high-speed printer
by overriding SYSPRINT. A deck is requested and will be written to the
*2 file. VPSMAC, MACLIB, and USERLIB will be searched for MACRO
definitions.

JFILE UNIT=(PRINTER,NAME=SYSPRINT)
JLOAD VSASM,PARM="DECK,LIST,MACLIB=(VPSMAC,MACLIB,USERLIB)”
TEST CSECT

BALR 12,0
USING *,12
ST 14,SAVEl4
SLR 3,3
READ DS OH
QGET RECORD,RB=INRB
LA 3,1(;3)

-
3

.

Executing Assembler Programs

After object code is written to the temporary *2 file (by specifying
DECK in the parameter list), it may be saved in a permanent VPS
library file using the /SAVE or /RSAV commands (see the VPS Handbook).
Object code saved in this manner can be executed in either the native
VPS environment or in the "0S/VS" environment with FORTRAN, PL/1l, or
COBOL source programs or by itself.

If an assembler program uses system facilities and/or MACROs
described in the manual "VPS System Facilities for Assembler

VPS Guide to Programming Languages 9

Chapter 2: The Assembler

Programmers” the program may be executed in the native VPS
environment. If an assembler program is written as a subroutine for a
source program in a higher level language and/or if it uses system
facilities or MACROs documented in IBM publications it must be
executed in the "0S/VS" environment.

To execute an assembler program in native VPS, the following control
statement must precede the object module(s) to be executed:

/LOAD LOADER

This control statement invokes the VPS Loader which loads and executes
the object found in the job stream. The VPS Loader is described in the
VPS Utilities manual.

If the program is to read data from the input stream (SYSIN, unit
5), a /DATA control statement must separate the object from the data.
For a job run at the terminal the following default /FILE statements
will be used:

/FILE UNIT=(5,LIBIN,NAME=SYSIN),DSNAME=<input stream>
/FILE UNIT=(6,TERMOUT,NAME=SYSPRINT),RECFM=FA

JFILE UNIT=(9,TERMIN)

JFILE UNIT=(10,TERMOUT,NAME=SYSSAVE),DSNAME=%2

If any other files are to be defined or default files overridden,
appropriate /FILE statements must be placed in the job stream before
the /LOAD LOADER statement.

For assembler programs to be run with a higher level source program,
see the appropriate chapter in this manual for information pertaining
to the inclusion of object in the job stream. For assembler programs
to be run in the "0S/VS" environment without higher level source,
either Chapter 5, describing FORTRAN, or Chapter 8, describing PL/1,
should be consulted for information on executing straight object.
Except for the differences in default execution /FILE statements,
either /LOAD statement will provide the same "0S/VS" environment.

Assembler Program Execution Example

In this example an assembler main program object has been saved in
the VPS library file AMAIN and its assembler subprogram object has
been saved in the file ASUB. Data is to be read from the input stream
from the file ADATA and a work file, UR.PLG123.0UTFILE, is to be
created. The following file will execute the program in the VPS native
environment:

/FILE UNIT=(DISK,NAME=OUTPUT),DSNAME=UR.PLG123.0UTFILE,RECFM=FB,
/ LRECL=80,BLKSIZE=4160,DISP=(NEW,KEEP ,DELETE),SPACE=(TRK,(1,1))
/LOAD LOADER

/INC AMAIN,ASUB

/DATA

/INC ADATA

10 VPS Guide to Programming Languages

Chapter 3: BASIC

The BASIC language currently supported on VPS is the IBM CALL/360-0S
BASIC, Version 1.l1. The language is fully documented in the IBM
publication "CALL/360-0S BASIC Language Reference Manual” (GH20-0699) .
This compiler has been modified to run under VPS. The following
sections describe the language elements implemented in this version of
BASIC, its use on VPS, and some helpful debugging hints.

CALL BASIC Language Elements

Constants
CALL BASIC supports the following types of constants:

Numeric constants - numbers are stored as double precision
floating point values. This allows up to 16 decimal digits of
precision in a numeric constant. However, under CALL BASIC the
maximum integer that can be read or printed contains 15 digits
and the maximum real number that can be printed without FORMAT
control (the PRINT USING statement described later in this
chapter) has 10 digits. Fifteen digit real numbers may be
printed with the PRINT USING statement.

Literal constants — literal values such as character strings may
be represented as constants by enclosing them in either single
(") or double (") quotation marks. A literal constant may
contain a maximum of 18 characters, including blank spaces.

Internal constants - CALL BASIC supports the following 3 internal
constants:

&pi (the value of pi) 3.141592653589793
&e (the value of e) 2.718281828459045
&sqr2 (the square root of 2) 1.414213562373095

Variables
The following types of variables are supported:

Numeric variables — may be assigned a value of up to 16 decimal
digits of precision. Numeric variables are represented by a
letter of the alphabet, optionally followed by a digit in the
range from 0 to 9. The symbols @ $, and # may also be used as
"letters" to form numeric variable names. Examples of numeric
variables are:

a=>5.3
cl = 1234.5678
@ =10

Character string variables - are used to store literal data. Under
CALL BASIC such a variable is represented by a letter followed

VPS Guide to Programming Languages Ll

Chapter 3: BASIC

by a dollar sign (%). A character string variable may contain up
to 18 characters. If uninitialized, it will contain 18 blanks.
Examples of character string variables are:

a$ = “this is a string”
f$ = "some would call me a literal”
$S = "1 am one also”
Arrays - in CALL BASIC may be one dimensional vectors or two

dimensional and matrices may be explicitly defined by use of the
DIM statement or implicitly defined by use of a subscript value.
The latter will have either 10 or 100 elements depending upon
whether one (a 10 element array) or two (a 10 X 10 element
array) subscripts are used. Only non-zero positive integers may
be used as subscripts.

Numeric arrays are represented by a single letter followed by
one or two subscripts enclosed in parentheses. Examples are:

a(10)
b(4,8)
#(2)

Character string arrays are designated by a single letter
followed by a dollar sign ($), followed by a single subscript
enclosed in parentheses. Each element may contain up to 18
characters. Examples are:

a$(10)
3$(4)

A numeric array may have a maximum of 3583 elements and a
character array may have a maximum of 1592 elements. The total
amount of space available for the storage of arrays is 28,668
bytes.

ators

Oper

CALL

BASIC supports the following operators for the manipulation of

constants and variables.

12

I+
*

[

Il VV/“\A b R]

et
A4

addition
subtraction
multiplication
division
exponentiation
less than

less than or equal
greater than
greater than or equal
equal

not equal

VPS Guide to Programming Languages

Chapter 3: BASIC

BASIC Statements

The following statements are implemented in CALL BASIC:

DATA MAT PRINT
DEF MAT READ
DIM NEXT

END PAUSE
FOR PRINT
GOSUB PRINT USING
GOTO (computed) READ

GOTO (conditional) REM

IF RESET
IMAGE RESTORE
INPUT RETURN
LET STOP

BASIC Functions

The following functions are available in CALL BASIC:

SIN(X) sine of x radians

COS(X) cosine of x radianms

TAN(X) tangent of x radianms

COT(X) cotangent of x radians

CSC(X) cosecant of x radiams

ASN(X) arcsine of x radians

ACS(X) arc—cosine of x radiams

ATN(X) arctangent of x radians

HSN(X) hyperbolic sine of x radians
HCS(X) hyperbolic cosine of x radians
HTN(X) hyperbolic tangent of x radians
DEG(X) convert x from radians to degrees
RAD(X) convert x from degrees to radians
EXP(X) e to the x power

ABS(X) absolute value of x

LOG(X) log x to the base e

LTW(X) log x to the base 2

LGT(X) log x to the base 10

SQR(X) positive square root of x

RND(X) generate a random number between O and 1
INT(X) integral part of x

SGN(X) sign of x (-1, 0, +1)

The following array functions are also supported:

CON set all elements to 1

IDN set matrix to the identity matrix
INV invert matrix

TRN transpose matrix

ZER set all elements to zero

VPS Guide to Programming Languages 13

Chapter 3: BASIC

Additional Considerations

The following items should be noted concerning the use of CALL
BASIC:

1) The use of the word LET in assignment statements is optional.

2) All BASIC statements must have unique statement numbers from 1
to 9999. The statement numbers must begin in column 1.
Generally, statement number increments of 5 or 10 are used thus
permitting future insertion of 1lines. The statements will be
executed in the order in which they appear.

3) The maximum number of statements in a CALL BASIC program is
approximately 800. The maximum program space available in CALL
BASIC is approximately 60,000 bytes of which no more than 28,668
bytes can be used for array storage.

4) The form of the computed GOTO statement in CALL BASIC is:

GOTO {line number, line number,...} ON {variable name}
as opposed to the conventional BASIC form shown below:
ON {variable name} GOTO {line number, line number,...}
5) The PRINT USING statement has the following characteristics:

Numeric overflow results in the printing of a set of asterisks,
one for each character position in the target format.

The floating dollar sign ($), wuseful in financial applications,
is not supported. If there is space between a fxed dollar sign
and the first digit in a given result, it will be filled with
blanks.

The only supported form of the PRINT USING statement is shown
below:

PRINT USING {lnum} ,var,var,...
Where Inum is the line number of the format statement and var is
either a variable name or value to be printed. The format cannot

be placed in the PRINT USING statement.

Invoking BASIC

CALL BASIC is invoked by placing the following control statement
before the first source statement of a BASIC program:

/LOAD BASIC

Normally, this is done by placing the /LOAD statement first in a
source file with the VPS editor when the source file is created.

14 VPS Guide to Programming Languages

Chapter 3: BASIC

BASIC Input/Output

There are two methods of entering data for BASIC program execution.
The first involves the use of the INPUT source statement. If a BASIC
program is executing at the terminal the INPUT statement will cause
the program to wait and request input from the terminal. If the BASIC
program is executing on the batch a VPS /DATA statement must be placed
after the last source statement in the job stream, followed by the
data in free form. The following shows the standard job setup for a
BASIC program which is to be run on the batch and uses the INPUT
statement:

JLOAD BASIC

basic source statements
/DATA

program data

The batch input form may be used with the INPUT statement when
executing at the terminal by specifying the following option on the
/LOAD statement:

/LOAD BASIC,TRANS=(9->5)

This form of the TRANS keyword indicates that VPS should read the
input stream following the /DATA statement for data rather than the
terminal.

The second method of dinputing data to an executing program is
through the use of the READ, DATA, and RESTORE statements. In this
method, all data needed for execution of the program is incorporated
as source statements within the program before execution. The READ
statement assigns values to variables which are found on one or more
DATA statements in the program in the order they are found. The DATA
statements may be placed anywhere in the program. Generally, they are
placed immediately following the READ statement or after the END
statement. Note that the VPS /DATA statement should not be wused in
this case. T

The RESTORE statement causes the next READ statement to return to
the first wvalue in the first DATA statement and begin the sequence
again. The following shows an example of a BASIC program using the
READ, DATA, and RESTORE statements:

VPS Guide to Programming Languages 15

Chapter 3: BASIC

/load basic

10 read a,b,c
20 print a;b;c
30 print

40 restore

50 read d,e,f
60 print d;e;f
70 print

80 read g,h,i
90 print g;h;i
95 data 4,9,2,3,5,7,8,2,1
99 end

If this program existed in the VPS library file SHOW the following is
an example of its execution:

%GO
show

B 9 2
& 9 2

3 5 7
*G0

Errors

If either source or execution errors are detected using CALL BASIC
an error message is printed. The error message will contain the
statement number and a self explanatory message describing the error.

BASIC Example

Assume that the following BASIC program exists in the VPS library
file MORTG:

16 VPS Guide to Programming Languages

Chapter 3: BASIC

/load basic

10
20
30
40
50
55
60
70
75
80
81
81
90
100
110
120
130
140
150
160
165
167
170
180
190
260
270
300
301
302
304
310
320
330
335
340
500
505
510

511 :

520

521 :

530
540
550
560
565
570
580
590
600
999

VPS G

-

print “mortage repayment schedule
print = 7
print “enter principal, rate of interest, and years”
input p,r,t
let rl=r/100
let z=1
let tl=t*12
let a=p*((r/12)/(1-(l+rl/12)**(-tl)))
let al=a/100
print using 81,al

:monthly principal and interest $i##i##.##
print © 7

for i=1 to tl

let il=(rl/12)*p

let pl=al-il

let yl=yl+il

if p < al then 150

go to 160

let pl=p

let p=p-pl

let al=il+pl

let y2=y2+pl

let c=ct+l

if ¢ = 12 then 300

go to 260

next 1

go to 500

print using 301,z,yl,p

:year ## totals...int = S$####.## bal = St H
let yb=yb+yl

let y7=yi+y2

let yl1=0

let y2=0

let c=0

let z=z+1

go to 260

print ~ 7

print “total payments”

print using 511,y6
interest = S#####. .
print using 521,y7
2 principal = SH###HE.HH
let y6=0
let y7=0
let y1=0
let y2=0
print © °
print “run new mortgage schedule?”
print “enter yes or mno”
input k$
if k$="yes” then 20
end

uide to Programming Languages

17

Chapter 3: BASIC

The following shows a sample execution of MORTG at the terminal:

*GO
mortg

ENTER PRINCIPAL, INTEREST RATE, AND YEARS
1000,6,10
MONTHLY PRINCIPAL AND INTEREST IS $ 11.10

YEAR 1 TOTALS...INT = § 57.95 BAL = § 924.73
YEAR 2 TOTALS...INT = § 53.31 BAL = § 844.81
YEAR 3 TOTALS...INT = § 48.38 BAL = $ 759.97
YEAR 4 TOTALS...INT = § 43.15 BAL = § 669.89
YEAR 5 TOTALS...INT = § 37.59 BAL = § 574.26
YEAR 6 TOTALS...INT = $ 31.69 BAL = § 472.73
YEAR 7 TOTALS...INT = § 25.43 BAL = § 364.94
YEAR 8 TOTALS...INT = $ 18.78 BAL = § 250.49
YEAR 9 TOTALS...INT = $§ 11.72 BAL = § 128.99
YEAR 10 TOTALS...INT = § 4.23 BAL = § 0.00

TOTAL PAYMENTS
INTEREST = § 332.25
PRINCIPAL = $ 1000.00

RUN NEW MORTGAGE SCHEDULE?
ENTER YES OR NO

no

*GO

18 VPS Guide to Programming Languages

Chapter 4: COBOL

The COBOL available under VPS is IBM 0S/VS COBOL, an implementation
of the American National Standard COBOL, X3.23-1974, the standard
approved by ANSI, the American National Standards Institute. VPS COBOL
jobs run in a simulated IBM 0S/VS environment provided by support
sof tware. Thus the IBM documentation for the compiler is in large
part applicable to its wuse on VPS, and this chapter is only a
supplement to indicate VPS control statement usage and to qualify
support for certain COBOL features.

IBM Manuals
There are two pertinent IBM manuals:
“"IBM VS COBOL for OS/VS" (GC26-3857)

"IBM 0S/VS COBOL Compiler and Library Programmer”s Guide”
(5C28-6483)

The former is the compiler Language Reference Manual; it documents
both the 1974 COBOL standards and IBM extensions to them, including
language from the older 1968 standards still supported for
compatibility. This chapter provides the information on VPS control
statements needed to execute COBOL programs. Detailed descriptions of
all VPS control statements can be found in the VPS Handbook. The IBM
COBOL Programmer”s Guide contains descriptions of several compiler
features such as Advanced Symbolic Debugging, Optimized Object Code,
and the Lister feature to reformat source code. Also note that the
compiler error messages are contained in the Programmer”s Guide and
not in a separate manual as for other languages.

Invoking the Compiler

The COBOL compiler is invoked by placing the following statement in
the input stream before any language source statements:

/LOAD COBOLVS *

Normally this is done with the VPS editor when a COBOL source file is
created. When the file is subsequently executed, a program is loaded
that controls three distinct phases:

1) compiling of the COBOL source language
2) loading the compiler-generated code into storage for execution
3) actually executing this code.

To accomplish the three steps, certain files are required and are

supplied by default by VPS upon recognition of the /LOAD COBOLVS.
These control statements, an internal VPS procedure, are listed below.

VPS Guide to Programming Languages 19

Chapter 4: COBOL

The statements

/FILE UNIT=(DISK,NAME=LINKLIB),DISP=SHR,DSN=<{compiler load library>
/FILE UNIT=(DUMMY,NAME=SYSPRINT)

/FILE UNIT=(TERMOUT,NAME=SYSTERM)

/FILE UNIT=(DISK,NAME=SYSLIN),SPACE=(REC,(1000,1000)),

f RECFM=FB,LRECL=80,BLKSIZE=1600

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSN=*2

/FILE UNIT=(DISK,NAME=SYSUT1),SPACE=(BLK, (25,4)),

/ RECFM=U,BLKSIZE=19069,LRECL=19069

/FILE UNIT=(DISK,NAME=SYSUT2),SPACE=(BLK,(10,4)),
/ RECFM=F ,BLKSIZE=19069 ,LRECL=19069

/FILE UNIT=(DISK,NAME=SYSUT3),SPACE=(BLK, (10,4)),
/ RECFM=F ,BLKSIZE=19069 ,LRECL=19069

/FILE UNIT=(DISK,NAME=SYSUT4),SPACE=(BLK,(10,4)),
/ RECFM=F ,BLKSIZE=19069,LRECL=19069

/FILE UNIT=(DISK,NAME=SYSUT5),SPACE=(BLK, (54,27)),
/ RECFM=F ,LRECL=512 ,BLKSIZE=512

/FILE UNIT=(LIBIN,NAME=SYSIN),DSN=<input stream)>

/FILE UNIT=(DISK,NAME=LINKLIB),DISP=SHR,DSN=<COBOL execution

time routines>

/FILE UNIT=(DISK,NAME=SORTLIB),DISP=SHR,DSN=CSORT utility library>
/FILE UNIT=(DISK,NAME=SYSUT5) same SYSUT5 as for the compile step
/FILE UNIT=(TERMOUT,NAME=SYSPRINT)

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSN=*2

/FILE UNIT=(TERMOUT,NAME=SYSOUX)

/FILE UNIT=(TERMOUT,NAME=SYSOUT)

/FILE UNIT=(TERMOUT,NAME=SYSDBOUT)

/FILE UNIT=(TERMOUT,NAME=SYSDTERM)

/FILE UNIT=(LIBIN,NAME=SYSIN),DSN=<input stream>

/LOAD COBOLVS

above the dashed line define files required by the

compile step, while the statements below the dashed line define files
available to the executing COBOL program.

Compiler Files

The

files used during compilation are described below; they are

listed by their ddnames, the NAME= subparameter of the UNIT parameter.

File

20

LINKLIB

SYSPRINT

Use

Load module library from which compiler modules are
fetched.

Output listing file containing the compiler options
in effect, error messages, and other listings if
requested. SYSPRINT is initially dummied out for
the compile step when compiling on the terminal,
however, any list-producing compiler option (see
below the section describing compiler options on
the /PARM statement), will cause SYSPRINT to be
reset to its previous status, a TERMOUT unit if not
otherwise overridden. When compiling on the batch

VPS Guide to Programming Languages

SYSTERM

SYSLIN

SYSPUNCH

SYSUT1-SYSUT4

SYSUT5

SYSIN

Chapter 4: COBOL

SYSPRINT for the compile step is always defaulted
to the high speed line printer.

Output message file containing a compiler progress
message and error messages. SYSTERM is used when
the TERM compiler option is set, the default when
compiling on the terminal.

Output object file = a temporary work file on which
the compiler writes the object code that will be
loaded by the loader. Producing this object is
controlled by the LOAD/NOLOAD compile option, which
defaults to LOAD.

Output object file controlled by the DECK/NODECK
option which defaults to NODECK. SYSPUNCH 1is
associated with the #*2 file when a compilation is
done on the terminal and the card punch when the
compilation is done on the batch.

Work files used for scratch space by the compiler
during its processing.

Work file used by the compiler when the symbolic
debug option SYMDMP is requested - see the
debugging section of this chapter (page 37).

Input source and/or object - the input stream from
the first COBOL source line to the VPS /DATA
statement. See the typical job setup example on
page 23.

Execution Time Files

Ten files are

defined in the internal VPS procedure for the

executing COBOL program. They are:

File

LINKLIB

SORTLIB

SYSUT5

SYSPRINT

Use
Load module 1library which contains execution—time
COBOL library subroutines.

Load library containing the system sort utility
modules. This is used only when the sort verb is
coded.

The same compiler utility file as described above.
Information from the compile step 1is wused to
provide the formatted dump output requested by
SYMDMP .

Output printout routed to the terminal if the
program is executing at the terminal or to the high
speed line printer if the program is executing on
the batch. To use this predefined file, the ddname

VPS Guide to Programming Languages 21

Chapter 4: COBOL

SYSPUNCH

SYSOUX

SYsSOUT

SYSDBOUT

SYSDTERM

SYSIN

22

SYSPRINT must be the external file name in the
ASSIGN clause of a SELECT statement.

OQutput associated with the programmer”s #*2 file on
the terminal or the card punch on the batch. This
file is used if the UPON SYSPUNCH clause is coded
explicitly with the DISPLAY verb, or implied by the
mnemonic-name option (see the IBM Language
Reference Manual for DISPLAY). The logical record
length is fixed at 80 characters, however, the
program—-id is inserted in positions 73 through 80
by COBOL.

Output routed as SYSPRINT above. This file is used
for DISPLAY when no UPON clause is coded, or when
UPON SYSOUT is coded with the DISPLAY, or when UPON
mnemonic—name implies SYSOUT (see the IBM Language
Reference Manual for DISPLAY). Also the EXHIBIT and
READY TRACE verbs produce output on this file.
Line width defaults to 121 characters but can be
overridden with a user-supplied /FILE statement.

The ddname is a local modification made only to VPS
COBOL.

Printout routed as SYSPRINT. When an internal sort
is performed, the sort utility writes its messages
to SYSOUT.

Output routed as SYSPRINT. This file is required
when any of the symbolic debugging options is
specified.

Output routed as SYSPRINT. Dynamic dumps are
written to SYSDTERM when the PARM SYMDMP is used
and when an execution-time control file SYSDBG is
provided. See the debugging section of this chapter
(page 37).

The input stream after the /DATA control statement.
SYSIN will be read when the programmer codes an
ACCEPT verb without the FROM option or with FROM
and a mnemonic-name implying SYSIN (see the IBM
Language Reference Manual on ACCEPT). In this case
the logical record size is assumed to be 80
characters.

Also the programmer may specify SYSIN explicitly as
the external file name in the ASSIGN clause of a
SELECT statement, in which case the logical record
size is determined from the 01 size(s) for that
file.

VPS Guide to Programming Languages

Chapter 4: COBOL

The control statements in the COBOL procedure may be overridden or
other files defined by supplying /FILE statements before the /LOAD
COBOLVS. This partial input stream is a typical COBOL job setup.

JFILE UNIT=(DISK,NAME=DONOR),DSN=U.PLG.DONOR.NAMES,DISP=SHR
JFILE UNIT=(PRINTER,NAME=LABLS),CLASS=J,0UTLIM=20000
/LOAD COBOLVS

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

.

INPUT-0UTPUT SECTION.

FILE~CONTROL.
SELECT MASTR ASSIGN S—-DONOR.
SELECT FORMS-OUT ASSIGN S-LABLS.
SELECT ERRORS-OUT ASSIGN S—SYSPRINT.
SELECT PARMS-IN ASSIGN S—SYSIN.

-

PRINT LABELS FOR Q-Z
PRINT ERRORS FOR MISSING ADDRESS

User files DONOR and LABLS are defined for the application program to
be executed as the third step. The /LOAD COBOLVS invokes the VPS
internal procedure for COBOL. During compilation, the compiler reads
from its SYSIN and obtains the source lines following the /LOAD until
/DATA. The VPS loader loads the compiler-produced code for execution
and finally the COBOL program is executed. Its SYSIN file,
established by the SELECT of the FD PARMS-IN, includes the two lines
following the /DATA. The system names in the ASSIGN clause illustrate
required information only. For compatibility with older COBOL"s other
fields such as device type are accepted and treated as comments.

Specifying Compiler Options

As alluded to in the discussion of compiler files, certain
processing and listings may be requested or suppressed. This is done
by specifying the appropriate keywords on a /PARM statement inserted
after the /LOAD COBOLVS but before the program source lines.

/PARM option,option...
Only one /PARM statement should be wused; continuation 1is not

supported. All options are documented in the IBM COBOL Programmer”s
Guide, but a few are mentioned here, with the defaults underlined.

VPS Guide to Programming Languages 23

Chapter 4: COBOL

Option

SOURCE
NOSOURCE

DECK
NODECK

LOAD
NOLOAD

SXREF
NOSXREF

CSYNTAX
NOCSYNTAX

LANGLVL(1)
LANGLVL(2)

STATE

NOSTATE

FLOW[=nn]
NOFLOW

SYMDMP
NOSYMDMP

BATCH
NOBATCH

24

Description

controls the printing of the COBOL source
module. The default is NOSOURCE on the terminal
but SOURCE on the batch.

indicates whether the object module is to be
written to the compiler”s SYSPUNCH file.

indicates whether the object module is to be
written on SYSLIN.

indicates whether or not to produce a sorted
cross-reference listing for data—-names and
procedure names.

suppresses object code generation if
E-level or higher errors are found, that
is, in the case of such errors, the
compiler will only scan the source for
syntax. The parameter SYNTAX causes this
to happen unconditionally.

indicates which level of ANS COBOL, 1968 or
1974, to use when evaluating those few
elements whose meanings changed between the
two standards. This parameter has no effect
when there is no conflict.

indicates whether to print the source statement
line number of the wverb being executed when
an abend occurs, such as a data exception.

indicates whether to print the statement numbers
of the last nn paragraphs executed prior to

an abnormal termination. While FLOW must be
specified at compile time, the number of trace
items can be altered at execution time. Also
it can be defaulted to 99.

causes the data areas of the executing program
to be formatted and dumped when an abend
occurs. By supplying a set of control statements
under the ddname SYSDBG, snapshot dumps during
execution can be generated. See the COBOL
Programmer”s Guide on Symbolic Debugging.

indicates that multiple source programs are to
be compiled in a single execution of the
compiler. Each program must be preceded by

a CBL statement. See the section on calling and
called programs in this chapter (page 26).

VPS Guide to Programming Languages

Chapter 4: COBOL

CLIST controls printing the condensed listing,

NOCLIST that is, the location of the first
generated instruction for each verb, the
verb, and its source line number.

TERM controls the printing of a progress message and

NOTERM error messages on the SYSTERM file. Currently,
on the terminal TERM is the default and SYSPRINT
is dummied out during compilation. Any list-
producing option, however, resets SYSPRINT”S
dummy status. On the batch, NOTERM is the
default.

Specifying Loader Options

The VPS /JOB statement may specify options for the loader to use as
it processes object in order to build an executable module. A full
description of these options appears in Appendix A. Most importantly,
a load module map can be requested (MAP) and the load and execute
steps can be suppressed (NOGO). The MAP output can be used in
conjunction with that from /PARM CLIST to tie an execution program
interrupt address back to the offending source statement line. (Note
that the powerful debugging feature of the compiler requested by /PARM
STATE automates this process). The NOGO loader option is used to
compile only, most often with /PARM DECK in preparation to saving the
compiler—-generated object for later loading and execution. See the
section on calling and called programs (page 26).

In addition, the /JOB statement can be used to override the default
list of libraries to be searched at load time for unresolved external
references. Most often, however, this default list is adequate. It
includes these libraries, which are searched in order:

SYS.COBLIB the IBM supplied COBOL subroutines (these are
documented in the IBM COBOL Programmer”s Guide).

SYS.VPSLIB the Computing Center subroutine library (documented
on page 34).

The format of /JOB is
/JOB option,option...

Continuation is not supported but multiple /JOB statements are. The
/JOB must follow the /LOAD COBOLVS but precede any COBOL source lines
as shown in this example.

/LOAD COBOLVS

/JOB MAP

/PARM CLIST,SOURCE,CSYNTAX,SXREF,STATE
IDENTIFICATION DIVISION.

VPS Guide to Programming Languages 25

Chapter 4: COBOL

The order of the /JOB and /PARM statements is not restricted.

Calling and Called Programs

Compiling many COBOL source programs in one execution of the
compiler is possible by setting the BATCH parameter. Note that this
is incompatible with SYMDMP. A CBL statement separates the different
source programs and optionally changes the listings desired. The main
program, the calling module, should be the first one compiled as shown
in the next example.

"/LOAD COBOLVS
/PARM BATCH,SOURCE
/JOB MAP
CBL SXREF
COBOL source for main program
CBL
COBOL source for subprogram
/DATA
test data

Alternatively, a program made up of independently compiled modules
may be executed partly or wholly from object. Subprograms must be
compiled first and their object saved in the VPS library. If the main
program is to be compiled and executed, the subprogram object must be
included at that time.

The process is shown in this example. Assume the following file has
been setup for a COBOL subprogram. It should be executed first.

/LOAD COBOLVS
/PARM DECK
/JOB NOGO
source statements for the subprogram

As discussed previously, DECK causes the compiler to write the object
module on its SYSPUNCH file, which on the terminal is the wuser”™s *2
file. /JOB NOGO insures that no load or execute will be attempted for
the subprogram, as it 1is mnot an independent element. After the
subprogram has been compiled successfully, the object code in *2
should be saved in a permanent file by issuing the /RSAV command.

/RSAV objfile
This will save (or replace) the VPS library file named "objfile" with
the contents of *2. "Objfile"” must be a name different from the
subprogram source file name, or the source will be lost. Obviously if

the subprogram is changed, the above steps must be repeated.

The calling-called program unit may be tested by running the
following file.

26 VPS Guide to Programming Languages

Chapter 4: COBOL

/LOAD COBOLVS
/PARM STATE
/JOB MAP
COBOL source for main program
/INC objfile
/DATA
data ...

"Objfile" is the name chosen on the /RSAV command. Many object decks
may be saved as above and then combined when the main program is run
by using a /INCLUDE of the form:

/INC objfilel,objfile2,objfile3...

It is also possible to save a main program object separately and
avoid compilation altogether at execution time. Job setup is the same
as for the compile, load, and execute of the main program, only no
source appears; multiple object modules are included. For a program
that is rarely modified, one may consider creating a VPS load module
and avoiding some of the loader processing as well. Appendix B
contains information on creating load modules from object and
executing these load modules in the VPS "0S/VS" environment.

/PARM for User Execution

If a COBOL program is coded to accept an execution—time parameter
(see the IBM Language Reference Manual), the value can be passed on a
VPS /PARM statement. The COBOL source must be delimited by a /DATA
statement ,even if no execution—time SYSIN data exists, which must
then be followed by the /PARM.

/LOAD COBOLVS
/PARM SOURCE
IDENTIFICATION DIVISION.

LINKAGE SECTION.

01 PRM.
05 P-LENGTH PIC 9(04) USAGE COMP.
05 P-VAL.
10 P-FUNC PIC X(06).
10 P-SUBFUNC PIC X(06).

PROCEDURE DIVISION USING PRM.

/DATA
/PARM “print full
data for program SYSIN

Note that some of the COBOL run-time routines accept parameters
also. As documented in the COBOL Programmer”s Guide, these are
specified after a slash within the PARM. See the IBM manual for
further details.

VPS Guide to Programming Languages 27

Chapter 4: COBOL
COBOL I/0 Considerations

Support or lack of support for the different input/output options of
COBOL is summarized in the following chart. All of the input/output
elements recognized by the compiler are 1listed, including those
language extensions to 1974 COBOL incorporated from IBM 0S Full

American N
current La

ational Standard COBOL (and documented
nguage Reference Manual).

in Appendix A of the

I/0 SUPPORTED NOT SUPPORTED

| |
I I
I I
I FILE [RECORDING ACCESS |
I ORGANIZATION | MODE MODE OPEN I
I
| S SEQUENTIAL | I
| | F FIXED SEQUENTIAL INPUT |RECORDING MODE S |
I | BLOCKED ouTPUT | (SPANNED) |
	or	OPEN I-0
	UNBLOCKED	OPEN INPUT
	V VARIABLE	REVERSED
I	BLOCKED I	
I	oR I	
	UNBLOCKED	
: II U UNDEFINED I I		
D,Ww DIRECT		I
	F FIXED SEQUENTIAL INPUT	RECORDING MODE S
	UNBLOCKED RANDOM OUTPUT	I
I	V VARIABLE 1-0	
	UNBLOCKED I	
} I U UNDEFINED I {		
R RELATIVE	F FIXED SEQUENTIAL INPUT	
	UNBLOCKED RANDOM OUTPUT	
[1-0	I
I	I	
I I INDEXED i {NO SUPPORT I		
AS VSAM	INO SUPPORT	
} SEQUENTIAL$ I ;		
vsaM	NO SUPPORT	
I INDEXED OR		I
RELATIVE		I

28

VPS Guide to Programming Languages

Chapter 4: COBOL

Physical Sequential Files

Sequential files must be read or written in order, that is, if
record 126 is to be accessed then records 1 through 125 must be
accessed first. On VPS, sequential files may be associated with any
valid unit type: library files, disk work files, tapes, virtual
printer or punch files, terminal input or output, and the input
stream. As the input/output chart indicates spanned records are not
supported; records in disk sequential files cannot be rewritten; and
tapes cannot be read backwards. See the full sample program at the end
of this chapter (page 39) for examples of sequential files in VPS
COBOL.

The parameters on the /FILE statement that may pertain to a
sequential file are summarized below. See the VPS Handbook for a full

description of them.

Parameter When Required

UNIT=(type,NAME=aaaaaaaa[,COND]) always required

DSN=dddddddd required for permanent disk files
DISP=(OLD,KEEP ,KEEP) required if not the default
SHR,DELETE ,DELETE
NEW
MOD
BLKSIZE=n required for new files when BLOCK
CONTAINS O RECORDS is specified
LRECL=n same as for BLKSIZE
LEVELS=n optional for library input units
SPACE=(REC, (n,m)) required for new disk work files
BLK
TRK
CYL
DEN=n required for tape output with BLP
LABEL=(n,NL) required for tape only
BLP
VOL=SER=vvvvvv required for tape only
CLASS=c optional, for wvirtual unit record
devices
OUTLIM=n same as for CLASS
COPIES=n same as for CLASS

VPS Guide to Programming Languages 29

Chapter 4: COBOL

Direct Files

A record in a direct file may be accessed individually without
processing all previous records. This requires some unique
identifier, a key, that can be associated with each record. Direct
files must exist on disk, and on VPS they must be work files. The
record identifier is manipulated according to an algorithm to yield a
relative track number within predefined file limits, 0 to n tracks.

The ACTUAL KEY data-name specifies an area containing the calculated
track identifier and the unique record key. In the COBOL Programmer”s
Guide a common randomizing technique to transform a key into a
relative track number is discussed. Depending on the range of key
values the algorithm may yield more records with the same relative
track address than can be held on one track. As per 0S, VPS provides
the option to try succeeding track(s) until an empty slot is found.
This is called extended search and can be specified using the LIMCT=n
parameter of the VPS /FILE statement (where n is the number of tracks
to be searched).

When reading the COBOL Programmer”s Guide on direct files, note that
the disk format of spanned records is not supported by VPS. Also note
that multivolume direct files are not supported.

The /FILE parameters that may apply to a file with direct
organization are:

Parameter When Required

UNIT=(DISK,NAME=aaaaaaaa[,COND]) always required

DSN=dddddddd required for permanent files
DISP=(OLD,KEEP ,KEEP) required if not the default
SHR,DELETE ,DELETE
NEW
SPACE=(REC, (n,m)) required for new direct files
BLK (secondary allocation is
TRK meaningful only during file
CYL create)
DSORG=DA required except when access is

sequential for an input

LIMCT=n number of tracks beyond the
supplied relative track to
search. This should be identical
on the file statements for the
create program as well as for
subsequent access programs.

OPT=FORMAT does not apply to direct files ereated with COBOL as
COBOL insures that the file will be formatted. See the IBM
Programmer”s Guide for details on file create and the type of

30 VPS Guide to Programming Languages

Chapter 4: COBOL

formatting performed for the different record types, fixed or variable
and undefined.

In the following example, a direct file of error messages is created
from card input containing an error code internal to the application
and the corresponding text message that a user would see on a final
error report. The calculation of relative track number is quite
simple, because the structure of the record key happens to be simple
and because the number of possible messages is small. The programmer
must determine track capacity for the particular disk device to be
used from an IBM Reference Summary card; currently the Computing
Center has 3350”"s and the corresponding card is GX20-1983. Fifty-five
80 character records with keys will fit on one 3350 track and so the
sample allocation of 10 tracks will hold a maximum of 550 records.

/file unit=(disk,name=emsg),dsn=u.plg.emsg.direct,
/ disp=(new,keep,delete),
/ space=(trk,10),dsorg=da,limect=10
/load cobolvs
/parm source,csyntax
/job map
identification division.
program-id. bs001075.
remarks. load error message text file.
environment division.
configuration section.
source—computer. 1ibm—370.
object-computer. ibm-370.
input—output section.
file-control.
select card-input assign s-sysin.
select error—-msgs assign d-emsg
access mode is random
actual key is act-key.
data division.
file section.
fd card-input
label records standard.
01 error-rec-in.
05 error-cd-in.
10 error-sub-systm pic x(01).
10 error-cd-dig pic =x(02).
05 error—-text-in pic x(77).
fd error-msgs
label records standard.

01 e-msg-rec pic =x(80).
working-storage section.
01 misec.
05 rec-in pic 9(07) wusage comp-3 value zeroes.
05 work—sub-systm pic 9(01).
01 act-key.
05 trk-id pic s9(05) wusage comp.
05 rec-id.
10 sub-systm—id pic =x(01).
10 error—-cd pic 9(02).

VPS Guide to Programming Languages 31

Chapter 4: COBOL

procedure division.
m-001-init.
move zeroes to trk-id.
move zeroes to rec—=id.
open output error-msgs
input card-input.
m—005-read.
read card-input at end go to m-050-eoj.

input may not be in order, but there will
be no duplicates

* % % %

add 1 to rec-in.

display error-rec—in.

move error-cd-in of card-input to
rec—id in act-key.

move error-sub-systm in card-input to
work—-sub-systm.

move work-sub-systm to trk-id.

if work-sub-systm not numeric

then subtract 1 from trk-id.

sub-systm-id may be alpha, but strip zone
bits and use for relative track number -
all letters, numbers will then be in the
0 thru 9 range

% % % % %

move error-rec-in to e-msg-rec.

write e-msg-rec invalid key
display ‘invalid key on

trk-id * ’ rec-id

stop rune.

go to m-005-read.

m-050-eo0j.

close error-msgs card-input.

display rec-in ‘ messages loaded’.

stop run.

,

Relative Record Files

Relative files can also be accessed randomly, however, there is no
unique record key. The access is by record number within a file, 0 to
n records. As for direct, relative files must be VPS work files. The
NOMINAL key clause provides the relative record number of the record
to be read or written, and system routines calculate the location on
disk.

The parameters of the /FILE statement that pertain are nearly those
for direct files. They are:

Parameter When Required

UNIT=(DISK,NAME=aaaaaaaa[,COND]) always required

32 VPS Guide to Programming Languages

Chapter 4: COBOL

DSN=dddddddd required for permanent files
DISP=(OLD,KEEP ,KEEP) required if not the default
SHR,DELETE ,DELETE
NEW
SPACE=(REC, (n,m)) required for new relative files
BLK (secondary allocation is
TRK meaningful only during file
CYL create)
DSORG=DA required except when access is

sequential for an input

A modification of the specifications for the error message file in
the previous section would suit it to relative organization. If the
error codes were assigned only numeric values, this sample program
would create a relative file. The 8 tracks (of 3350) allocated will
hold 72 80-character records per track and thus the file capacity is
576 records. The IBM 3350 Direct Access Storage Reference Summary
(GX20-1983) indicates number of records per track for files without
keys.

/file unit=(disk,name=emsg),dsn=u.plg.emsg.relative,
/ disp=(new,keep,delete),
/ dsorg=da,space=(trk,8)
/load cobolvs
/parm source,csyntax
/job map
identification division.
program—id. bs001075.
remarks. load error message text file.
environment division.
configuration section.
source—computer. ibm-370.
object-computer. ibm-370.
input-output section.
file-control.
select card-input assign s—sysin.
select error-msgs assign r—emsg
access mode is sequential
nominal key is nom-key.
data division.
file section.
fd card-input
label records standard.
01 error-rec-in.
05 error-cd-in pic 9(03).
05 error—text—in pic x(77).
fd error-msgs
label records standard.
01 e-msg-rec.
05 error-cd-ou pic 9(03).
05 r-error-cd redefines error-cd-ou.
10 dumm-cd pic x(01).
10 filler pic x(02).

VPS Guide to Programming Languages 33

Chapter 4: COBOL

05 error-text-ou pic x(77).
working-storage section.

01 misc.
05 rec-in pic 9(07) usage comp-3 wvalue zeroes.
05 save—er-cd pic x(03) value zeroes.

01 nom-key pic s9(08) usage comp.

procedure division.
m=001-init.
move zeroes to nom—key.
open output error-msgs
input card-input.
m—-005-read.
read card-input at end go to m—-050-eoj.
if error-cd-in not numeric
then display “invalid error code ~
error—cd—-in
stop run.

* input has been presorted

if error—cd-in not greater than save-er-cd
then display “sequence error ~
error-cd-in “~ last input ~ save—er-cd
stop run.
add 1 to rec-in.
move error—ecd—in to save—er-cd nom—key.
display error-rec-in.
move error-rec—in to e-msg-rec.
write e-msg-rec invalid key
display “invalid key on
nom-key
stop run.
go to m—005-read.
m—-050-eo0j.
close error-msgs card-input.
display rec-in ~ messages loaded”.
stop run.

-

Computing Center Supplied Subroutines

The Computing Center maintains a common subroutine library,
SYS.VPSLIB. Routines that may be useful to the COBOL programmer are
described below by function.

1) To obtain the current execution time of a job -

CALL "EXTIME~ USING data-name-1.

"data-name-1" is a full word binary number that will receive the
current execution time value in units of one hundredths of a second.

01 data-name-1 PIC 9(09) USAGE COMP.

34 VPS Guide to Programming Languages

Chapter 4: COBOL

2) To specify a VPS library file name to be read from a LIBIN unit -

CALL “OPEN" USING

index-name
file-name
dd-name
ret-code
levels.

The arguments are defined as follows:

01
01
01
01
01

index—name PIC X(8).
file-name PIC X(8).

dd-name PIC X(8).
ret-code PIC 9(9) USAGE COMP.
levels PIC 9(9) USAGE COMP.

"index-name" contains the library index name. If the field is blank

the default is USERLIB.

"file-name" contains the library file name.

"dd-name" contains the COBOL external file name as specified in the

SELECT statement. (This corresponds to the NAME= subparameter
on the /FILE statement.)

"ret—-code"” contains the sum of the return codes that the subroutine

is to ignore. If "ret-code” has a value of =zero or if it is
omitted and an error occurs, or if an error occurs which is not
specified in "ret-code"”, a message will be printed and the job
abnormally terminated. Otherwise, "ret-code” will contain the
actual return code. The return codes are:

- successful open

invalid unit number (type not LIBIN)
= invalid file name

— file not found

16 = index not found

oo N O
I

32 - access to file disallowed

64 — unable to enqueue

128 = library volume not mounted

256 - permanent I/0 error

512 - storage unavailable for processing

Serious error conditions that will always cause abnormal
termination are:

1 - no corresponding /FILE statement
3 - number of parameters in call in error
5 — argument list invalid

"levels" contains the resolution level for any /INCLUDE statement

occurring in the file. If omitted the default for that file
will be used. (See the VPS Handbook for a complete description
of the resolution level.)

VPS Guide to Programming Languages 35

Chapter 4: COBOL

To use this subroutine the programmer must supply a corresponding
/FILE statement of the format:

/FILE UNIT=(LIBIN,NAME=ddname)

where ddname is the external file name in the SELECT statement in
the COBOL program.

3) To save or replace a VPS library file with the contents of a LIBOUT
unit, or to rewind a LIBOUT unit -

CALL “CLOSE” USING
index-name
file-name
dd-name
type—code
ret—code.

The arguments are defined as follows:

01 index—-name PIC X(8).
01 file-name PIC X(8).

01 dd-name PIC X(8).
01 type-code PIC X(1).
01 ret-code PIC 9(9) USAGE COMP.

"index-name" contains the library index name. If the field is blank
the default is USERLIB.

"file-name" contains the library file name.

"dd-name"” contains the COBOL external file name as specified in the
SELECT statement. (This corresponds to the NAME= subparameter
on the /FILE statement.)

“"type—code"” contains one of the following characters indicating the
service to be performed.

S - Save the information as a new VPS library file, then clear
and rewind the LIBOUT unit.

R = Replace an existing VPS library file with the information,
then clear and rewind the LIBOUT unit.

D - Clear and rewind the associated LIBOUT wunit without saving
the contents.

"ret-code" contains the sum of the return codes that the subroutine
is to ignore. If "ret-code" has a value of zero or if it is
omitted and an error occurs, or if an error occurs which is not
specified in "ret-code", a message will be printed and the job
abnormally terminated. Otherwise, "ret-code"” will contain the
actual return code. The return codes are:

36 VPS Guide to Programming Languages

Chapter 4: COBOL

0 - successful close
2 - invalid unit number (type not LIBOUT)
4 - invalid file name
8 - null output file
16 — index not found
32 - write access to file disallowed
64 - name already in use
128 - library space not available
256 — permanent I/0 error
512 — storage unavailable for processing
1024- no space in index

Serious error conditions that will always cause abnormal
termination are:

- no corresponding /FILE statement
number of parameters in call in error
argument list invalid

type parameter invalid or missing

=~ 0 L =
]

To use this subroutine the programmer must supply a corresponding
JFILE statement of the format:

/FILE UNIT=(LIBOUT,NAME=ddname)

where ddname is the external file mname in the SELECT statement in
the COBOL program.

Debugging

Enhanced debugging facilities are available as 0S/VS COBOL options.
As documented in the section on the /PARM statement (page 24) STATE,
FLOW, and SYMDMP can be activated. All of the required files are
included in the VPS internal procedure for COBOL. STATE causes
run-time routines to display the line number of the COBOL statement in
control at the time of an abnormal termination. FLOW will display a
trace of the statement numbers of the last nn paragraphs executed
before an abend (where nn is 1 to 99). With the COBOL procedure file
statements only, that is, with no SYSDBG defined, SYMDMP triggers a
formatted dump of COBOL data areas upon abnormal termination. This
includes working-storage variables, file control information, and
buffers. In addition by providing the appropriate debug control
statements in SYSDBG, periodic checkpoint dumps can be taken to the
SYSDTERM file. See the IBM COBOL Programmer’s Guide for more about
this feature.

Certain source language debugging statements are also available:
EXHIBIT, DISPLAY, and READY TRACE verbs and the ON conditional
statement. EXHIBIT and DISPLAY are used to show the values of
data-names during execution. READY TRACE shows program flow by
listing the source statement line numbers of paragraphs that are
invoked. Since this output could be exceedingly large, RESET TRACE is
provided to terminate the tracing function. Also, using the ON
statement qualifies the diagnostic verbs so as not to generate too

VPS Guide to Programming Languages 37

Chapter 4: COBOL

much output. For example to display some of the values of the
variable PATIENT-BALANCE the programmer should code:

ON 5 AND EVERY 5 UNTIL 100 EXHIBIT NAMED PATIENT-BALANCE.
See the IBM COBOL Language Reference Manual for the exact formats of
these debugging statements. The default file for DISPLAY as well as

for EXHIBIT and READY TRACE output has the ddname SYSOUX and is a
TERMOUT unit if not overridden by the job stream.

Support Qualifications

For a summary of support of input/output elements see the chart on
page 28. 1In addition, the following facilities are unavailable to the
VPS COBOL programmer:

segmentation feature
error declaratives
label declaratives

There are no compile-time incompatibilities between VPS and 0S/VS
COBOL, that is, in all cases the same source program can be compiled
on either system to yield identical object code. The COPY and BASIS
compiler directives are supported for compatibility with other
installations, even though those same functions are served by the VPS
/INCLUDE statement. Execution on VPS will be terminated for I/0
facilities not supported and the segmentation feature. Error and
label declaratives will simply be ignored as execution continues. All
other features of the IBM 0S/VS COBOL compiler not specified are
available in VPS COBOL. This includes the internal sort and the report
writer features. The full sample program at the end of this chapter
contains a sort and the job control statements necessary to run it.

There are a few miscellaneous pitfalls that, while they are not the
result of lack of support by VPS, are mentioned here because of their
frequency of occurrence. Be aware that WRITE BEFORE ADVANCING
generates machine code carriage control characters, and so, as
documented in the VPS Handbook, will work only on the batch. Also note
that it is an option (ADV), and the default at this installation, for
the compiler to reserve the first character of a print buffer for the
carriage control character; thus it is not part of the programmer”s
Ol-level record description. Another compiler default is the use of
apostrophes to delineate literals. This can be changed to quotes by
saying QUOTE on a /PARM statement. Also, the IBM sort wutility
currently in wuse at the Academic Computing Center is 0S SORT/MERGE.
As stated in the COBOL Programmer”s Guide, linkage to this sort
utility from 0S/VS COBOL programs sometimes results in a harmless sort
message IGHO671 INVALID EXEC OR ATTACH PARAMETER.

38 VPS Guide to Programming Languages

Sample Program

Chapter 4: COBOL

/file unit=(disk,name=chrg),dsn=u.plg.db,disp=(new,keep),

/ space=(rec,(50,50)),blksize=4480,1lrecl=160

/file unit=(disk,name=pay),dsn=u.plg.cr,disp=(new,keep),

/ space=(rec, (50,50)),blksize=4480,1lrecl=160
/file unit=(disk,name=sortwk01l),space=(trk,5)
/file unit=(disk,name=sortwk02),space=(trk,5)
/file unit=(disk,name=sortwk03),space=(trk,5)

/load cobolvs,nsegs=8
/parm csyntax,state

identification division.
program-id. bs001005.
remarks. split input by transaction type into 2 files
- charges, charge credits, adjustment debits in one
and payments, adjustment credits in the other -
unidentified transactions are put in the former

with the appropriate error code.

environment division.
configuration section.

source—computer.
object—computer.

ibm—-3
ibm=3

input—output section.

file-control.

select card-input assign s—sysin.
select print-out assign s-sysprint.
select sort—fl assign s-sortwkOl.
select chrg-file assign s—-chrg.

70.
70.

select pay—-file assign s-pay-.

data division.
file section.
fd card-input

label records standard.

01 trams—in
fd print-out

pic

x(80).

label records standard.

01 print-line.
05 c-control
05 data-line
sd sort-fl.
01 trans-rec.
05 trans-type

88 charge
88 adj-db
88 chg-cr
88 pay
88 adj-cr
05 trans-date.
10 yy
10 mm
10 dd
05 trans—acct
05 filler

05 trans—amt
fd chrg-file

pic

x(001).

pic x(132).

pic

value
value
value
value
value

pic
pic
pic
pic
pic
pic

x(02).
“01”.
“03”.
05",
07",
“09”.

x(02).
x(02).
x(02).
x(04).
x(60).
9(06)v99.

VPS Guide to Programming Languages

39

Chapter 4: COBOL

40

label records are standard
bloeck contains 0 records.

01 chrg-out.
05 c-rec pic x(80).
05 filler pic =x(77).
05 error-cd pic x(03).
fd pay-file

label records are standard

block contains 0 records.
01 pay-out.

05 p-rec pic x(80).

05 filler pic x(80).
working—storage section.
01 ws-con.

05 error-con pic x(03) value “b99~.

01 hd-line.
05 filler pic x(01) value ~17.
05 c-date pic x(08).
05 filler pic x(48) wvalue spaces.
05 filler pic x(20)

value “input control totals”.
01 sum-line.

05 filler pic x(01) wvalue "-".
05 filler pic x(05) wvalue “input”.
05 pr-rec-in pic 2(07).
05 filler pic x(10) value spaces.
05 filler pic x(07) value “charges”.
05 pr-rec=-c pic z(07).
05 filler pic x(10) value spaces.
05 filler pic x(08) value “payments”.
05 pr-rec-p pic =z(07).
05 filler pic x(10) wvalue spaces.
05 filler pic x(09) wvalue “undefined”.
05 pr-rec-u pic z(07).
01 kounters usage comp-3.
05 rec=in pic 9(07) wvalue zero.

05 rec—out-c pic 9(07) value zero.
05 rec-out-p pic 9(07) wvalue zero.
05 rec-out-u pic 9(07) wvalue zero.
procedure division.
main-line section.
m-01.
sort sort-fl
ascending key trans—-acct trans—date
descending key trans-type
using card-input
output procedure is test-recs.
m-99.
if sort-return equal zero
then display “sort successful”
else display “sort failed”.
stop run.
test-recs section.
o-01.
open output pay-file chrg-file.

VPS Guide to Programming Languages

o-05.

*

move spaces to pay-out chrg-out.
return sort—fl record at end go to o-50.
add 1 to rec-in.
if adj-er or pay
then move trans—-rec to p-rec
write pay-out
add 1 to rec-out-p
else move trans-rec to c-rec
if charge or adj-db or chg-cr
then add 1 to rec—-out-c
write chrg-out
else add 1 to rec—out-u
move error—con to error—cd
write chrg-out.
go to o-05.

0-50.

/data
test data

close pay-file chrg—file.

open output print-out.

move current-date to c—date.

write print-line from hd-line
after positioning c-control.

move rec—out-c to pr-rec-c.

move rec—-out-p to pr-rec-p.

move rec=-out-u to pr-rec-u.

move rec—in to pr-rec—in.

write print-line from sum-line
after positioning c-control.

close print-out.

VPS Guide to Programming Languages

Chapter 4: COBOL

41

Chapter 5: FORTRAN Gl and H Extended

Three FORTRAN compilers are supported under VPS. The IBM Program
Products, FORTRAN Gl and FORTRAN H Extended, which are discussed in
this chapter and WATFIV, written at the University of Waterloo.
(FORTRAN G, an older version of FORTRAN Gl also available on VPS, is
not documented in this manual since it is no longer supported by IBM.)
WATFIV, discussed in Chapter 10, supports a superset of the FORTRAN
language and is intended mainly for student use since it provides
rapid compilation of small programs and excellent error message
facilities.

The FORTRAN Gl and H Extended compilers provide full FORTRAN
language support and have not been modified to rum under VPS - rather,
special VPS system support programs provide an "0S/VS" environment in
which these compilers and their compiled programs run. VPS FORTRAN
programs are, therefore, source and object compatible with 0S/VSs
FORTRAN programs. Programs can be written and tested under VPS and run
under 0S/VS with only control card changes.

IBM Manuals

This chapter is not a replacement for the documentation available in
IBM publications. It 1is a supplement to the documentation explaining
necessary VPS control statement usage for these compilers. FORTRAN

programmers are encouraged to use the following publications, which
can be found in reference racks at the Computing Center.

The FORTRAN supported by these compilers is documented in -
“IBM System/360 and System/370 FORTRAN IV Language” (GC28-6515)

Information on compiler options, extended error handling, debugging
specifications, etec. can be found in -

"IBM 0S Code and Go FORTRAN and FORTRAN IV (Gl) Programmer”s Guide”
(SC28-6853)

“IBM 0S FORTRAN IV (H Extended) Compiler Programmer’s Guide”
(SC28-6852)

Error messages can be found in -

"IBM 0S FORTRAN IV (H Extended) Compiler and Library (Mod I11)
Messages" (SC28-6865)

Standard IBM supplied subroutines are discussed in -

"IBM System/360 Operating System: FORTRAN IV Library - Mathematical
and Service Subprograms"” (GC28-6818)

“IBM System/360 0S FORTRAN IV Mathematical and Service Subprograms
Supplement for Mod I and Mod II Libraries™ (SC28-6864)

VPS Guide to Programming Languages 43

Chapter 5: FORTRAN Gl and H Extended

Compiler differences are discussed in -

"IBM FORTRAN Program Products for OS and the CMS Component of VM/370
General Information” (GC28-6884)

Choosing a Compiler

Both FORTRAN compilers, besides supporting the full language,
provide list directed I/0 (free-format input and output, for more
information see the Language Manual) and extended error handling (see
the Programmer”s Guide). H Extended also provides two levels of object
code optimization, extended precision arithmetic, and automatic
function selection. However, Gl provides a powerful Debug facility and
is purported to be a faster compiler.

Therefore, unless language differences prevent it, programs which
require frequent modification or programs which are being developed
and need the Debug facility should be compiled using FORTRAN Gl. Large
programs which require little modification, can be run from object or
a load module, and can take advantage of optimization should be
compiled with FORTRAN H Extended. Note that these are not hard and
fast rules, and the programmer is encouraged to become familiar with
both compilers and make individual decisions on choosing a compiler
relative to the requirements of the program.

Invoking the Compilers

A compiler is invoked by placing a VPS /LOAD control statement (see
the VPS Handbook for a full description of /LOAD) before the first
FORTRAN source statement in a job stream. Normally, this is done by
placing the /LOAD statement first in a source file with the VPS editor
when the source file is created. The format of the /LOAD control
statement used to invoke the FORTRAN Gl compiler is:

/LOAD FORTG1

The format of the /LOAD statement used to invoke the FORTRAN H
Extended compiler is:

/LOAD FORTX

In reality, not only does the /LOAD statement call the correct
compiler, but it also invokes a corresponding VPS internal procedure.
A VPS procedure is a set of VPS control statements needed to run
average source programs. These control statements may be overridden at
execution time by programmer-supplied statements. The FORTRAN Gl
procedure invoked using /LOAD FORTGl at the terminal is shown below:

S VPS Guide to Programming Languages

Chapter 5: FORTRAN Gl and H Extended

/FILE UNIT=(DISK,NAME=LINKLIB),DSNAME=<fortran library>
JFILE UNIT=(DUMMY ,NAME=SYSPRINT)
/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<input stream>

/FILE UNIT=(DISK,NAME=SYSLIN),SPACE=(REC,(1000,1000)),RECFM=FB,

/ LRECL=80,BLKSIZE=4560

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSNAME=%*2

/FILE UNIT=(TERMOUT ,NAME=SYSTERM)

/FILE UNIT=(TERMOUT,NAME=FTO6F001)

JFILE UNIT=(LIBIN,NAME=FTO5F001),DSNAME=<input stream>
JFILE UNIT=(LIBOUT,NAME=FTO7F001),DSNAME=%*2

JFILE UNIT=(TERMIN,NAME=FTO9F001)

/LOAD FORTG1

The FORTRAN H Extended terminal procedure is shown below:
JFILE UNIT=(DISK,NAME=LINKLIB),DSNAME=<fortran library>

JFILE UNIT=(DUMMY,NAME=SYSPRINT)
/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<input stream>

/FILE UNTT=(DISK,NAME=SYSLIN),SPACE=(REC,(1000,1000)),RECFM=FB,

/ LRECL=80,BLKSIZE=4560

JFILE UNIT=(DISK,NAME=SYSUT1),SPACE=(BLK, (3,3)),RECFM=F,
/ LRECL=3465,BLKSIZE=3465

JFILE UNIT=(DISK,NAME=SYSUT2),SPACE=(BLK, (10,10)),RECFM=F,
/ LRECL=5048 ,BLKSIZE=5048

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSNAME=*2

JFILE UNIT=(TERMOUT,NAME=SYSTERM)

/FILE UNIT=(TERMOUT,NAME=FTO6F001)

JFILE UNIT=(LIBIN,NAME=FTO5F001),DSNAME=<input stream>
JFILE UNIT=(LIBOUT,NAME=FTO7F001),DSNAME=%2

JFILE UNIT=(TERMIN,NAME=FTO9F001)

/LOAD FORTX ,NSEGS=4

In both procedures /FILE statements appearing above the dashed line
define files used by the compiler. /FILE statements appearing below
the dashed 1line define standard files used by an executing FORTRAN

program.

Compiler Files

Except for the SYSUTl and SYSUT2 files used by FORTRAN H Extended,

both compilers have the same file requirements as listed below:

File Use

LINKLIB FORTRAN Compiler Library — defined as the
work file containing the particular
FORTRAN compiler.

VPS Guide to Programming Languages

45

Chapter 5: FORTRAN Gl and H Extended

SYSPRINT Output listing file - defined as DUMMY if
compiling at the terminal (unless a list-
producing option is specified on the /PARM
statement - see below) or as the high speed
printer if compiling on the batch.

SYSIN Input source and/or object file - defined as the
input stream from the first source statement to
the /DATA statement (see below).

SYSLIN Output object file - defined as a temporary work
file used to hold the object code to be loaded
by the loader for execution.

SYSPUNCH Output object file - defined as the *2 file if
co piling at the terminal or the card punch if
compiling on the batch allowing object code to
be saved for future use (used only if DECK
appears on the /PARM statement).

SYSTERM Output message file - defined as the terminal
(used only if the compilation occurs at the
terminal).

FORTRAN H Extended only:

SYSUT1 Temporary work file used if either FORMAT or
TERMINAL appears on the /PARM statement.

SYSUT?2 Temporary work file used if XREF appears on the
/PARM statement.

Execution Time Files

Both procedures provide /FILE statements for standard FORTRAN units
5, 6, 7, and 9. FORTRAN units, or reference numbers, refer to files
defined on /FILE statements. The format of the NAME= subparameter of
the UNIT= parameter is as follows:

NAME=FTxxF001

Where “xx” 1is the FORTRAN unit number. Therefore, FORTRAN unit 6 is
FTO6FOO1l, FORTRAN unit 14 is FT14F001, etec.

Because of the unique nature of VPS execution facilities the default
unit 5 must be discussed separately. If the default /JOB statement is
used (see below), after the FORTRAN compiler is finished compiling the
source program, the VPS loader loads the object code from SYSLIN into
memory and the program is executed. Unit 5 (the /FILE statement having
NAME=FTO5F001 in the UNIT= parameter) is defined as any records
following the /DATA control statement. The /DATA statement is used to
separate source statements in the input stream (which are read by the
compiler using SYSIN) from data to be read at program execution time
using unit 5. A standard FORTRAN compilation and execution has the
following structure:

46 VPS Guide to Programming Languages

/LOAD

FORTG1

FORTRAN source statements

/DATA

data

The default execution

Chapter 5: FORTRAN Gl and H Extended

time /FILE statements in both the FORTRAN Gl

and H Extended procedures are shown below:

5 - defined as the input stream

6 - defined as terminal output if
the terminal or the high speed

printer if executing on the batch.

7 - defined as the %2 file if
the terminal or as the card punch if
the batch.

9 - defined as terminal input if
the terminal or the input stream
on the batch.

File Use

FTO5F001 FORTRAN unit
after the /DATA statement.

FTO6F001 FORTRAN unit
executing at

FTO7F001 FORTRAN unit
executing at
executing on

FTO9F001 FORTRAN unit
executing at
if executing

These

appropriate /FILE

stream.

files may be overridden or other files defined by placing

statements before the /LOAD statement in the job

In the following example, a programmer wishes to read data
from a tape file using unit 12 and from standard unit 5:

/file unit=(tape,name=£ft12f001),vol=ser=mastdt,disp=old,
/ label=(1,nl),recfm=fb,lrecl=120,blksize=1200

/load

10
20

30

40
50

/data
66.
49,

fortx

totl=0

tot2=0

tot3=0
read(5,20,end=40) a,b,c
format (3£5.0)
read(12,30) aa,bb,cc
format(3£5.2)
totl=ataa

tot2=b+bb

tot3=c+cc

go to 10

write(6,50) totl,tot2,tot3

format(“the totals are:”,

stop
end

43. 87.
192. 205.

1x,3£6.2)

VPS Guide to Programming Languages 47

Chapter 5: FORTRAN Gl and H Extended

Specifying Compiler Options (/PARM)

The VPS /PARM control statement may be used to pass compiler options
to the respective FORTRAN compiler. The /PARM statement must be placed

in the job stream after the /LOAD statement and before the first
FORTRAN source statement (note that /PARM and /JOB may appear in

either order). The format of the /PARM statement is shown below:
/PARM option,option,...

Where "option" is a valid compiler option. If more than one option is
specified, they must be separated by commas. Multiple /PARM statements
are not supported.

The following is a subset of the compiler optioms accepted by the
FORTRAN G1 and H Extended compilers. A full description of all the
options for each compiler can be found in the respective IEM
Programmer’s Guide. Note that the default options are underlined.

Option Description

SOURCE Controls the printing of a FORTRAN source

NOSOURCE listing on SYSPRINT.

DECK Controls the writing of the object code to

NODECK SYSPUNCH.

MAP Controls the printing of the storage and statement

NOMAP label map on SYSPRINT.

LIST Controls the printing of the assembler language

NOLIST listing of the compiled program on SYSPRINT.

EBCDIC EBCDIC (the default) specifies that the source

BCD program is in EBCDIC. BCD specifies that it is
in BCD.

FORTRAN Gl only -

LOAD Controls the writing of the object code to
NOLOAD SYSLIN for use by the loader.

FORTRAN H Extended only -

OBJECT Controls the writing of the object code to
NOOBJECT SYSLIN for use by the loader.

XREF Controls the printing of the label and variable
NOXREF cross reference on SYSPRINT.

48 VPS Guide to Programming Languages

Chapter 5: FORTRAN Gl and H Extended

OPT(0) Controls the optimization level to be in force
OPT(1) during compilation. NOOPT (the default) indicates
OPT(2) that no optimization is to be performed and is
NOOPT equivalent to OPT(0). OPT(1l) specifies that each

source module is to be treated as a single
program loop and that it is to be optimized with
regard to register allocation and branching.

OPT(2) specifies that each source module is to be
treated as a collection of program loops and each

loop is to be optimized with regard to register

allocation, branching, common expression
elimination, and replacement of redundant

computations.

Specifying Loader Options (/JOB)

The VPS /JOB control statement may be used to specify loader options
for compiled programs which are to be loaded for execution. (A full
description of the /JOB statement can be found in Appendix A.) The
/JOB statement can be used to control the printing of a load map,
unresolved external references, entry address, etc. It can be used to
terminate a job after compilation but before execution (NOGO). It can
also be used to override the default 1list of libraries to be searched
at load time for unresolved external references (such as mathematical
and graphics subroutines existing in VPS subroutine libraries). The
default FORTRAN library search list is -

SYS.FORTLIBX - the IBM supplied support and mathematical subroutine
library

SYS.TEKLIB - the TEKTRONIX graphics subroutine package
SYS.VPSLIB - the Computing Center subroutine library
The libraries are searched in the order specified.

The /JOB statement must be placed in the job stream after the /LOAD
statement but before the first FORTRAN source statement. In the
following example the /JOB statement is used to terminate a job
immediately after compiling a FORTRAN program:

/LOAD FORTGI
/JOB NOGO
FORTRAN source statements

Note that though continuation 1is mnot supported for the /JOB
statement, multiple /JOB statements are permissible.

The Strange Behavior of SYSPRINT

Normally, when executing a job on the terminal, the SYSPRINT file is
defined as TERMOUT. For FORTRAN compilations at terminals the SYSPRINT
file is dummied out to bypass massive amounts of output being printed
at the terminal during compilation. However, there are circumstances
where the programmer may wish to direct SYSPRINT to a location other

VPS Guide to Programming Languages 49

Chapter 5: FORTRAN Gl and H Extended

than the terminal (a library file, the high speed printer, a work
file, etc.). To allow this, VPS will not dummy SYSPRINT if a
list-producing option appears on a /PARM statement in the job stream.
A list-producing option is defined as any compiler option which will
cause printing to occur on SYSPRINT. In the following example the
FORTRAN H Extended compiler is used to compile a program where the
source and cross reference listing is to be printed on the high speed
printer, the object code is to be written to the *2 file, and job
execution is to be terminated after compilation - all from the
terminal:

/FILE UNLT=(PRINTER,NAME=SYSPRINT)
/LOAD FORTX
/JOB NOGO
/PARM SOURCE ,XREF ,DECK
FORTRAN source statements

Note that for batch jobs SYSPRINT always defaults to the high speed
printer.

Memory Requirements for Compilation

In the FORTRAN H Extended procedure shown on page 45 the NSEGS=
parameter on the /LOAD statement specifies a value of 4 segments (a
segment is 64K bytes). Unless the NSEGS= parameter is overridden, VPS
will allot 256K of memory to a FORTRAN H Extended job execution. This
allows for a compilation of approximately 800 FORTRAN source
statements. For larger compilations, the programmer should increase
the NSEGS= parameter on the /LOAD statement. In the following example
a 1000 statement FORTRAN program is compiled using 7 segments:

/LOAD FORTX,NSEGS=7
FORTRAN source statements

Since the NSEGS= parameter does not appear on the FORTRAN Gl
procedure the VPS default of 2 segments (128K) will be used. This
should be enough memory to compile a 600 statement program. If more
memory is needed, the NSEGS= parameter should be specified on the
/LOAD statement in the manner shown above.

FORTRAN Object Files

After object code is written to the temporary *2 file (by specifying
DECK on the /PARM statement), it may be saved in a permanent VPS
library file wusing either the /SAVE or /RSAV commands (see the VPS
Handbook). Object code saved in this manner can be included in the
input stream for execution either with FORTRAN source modules or by
itself to be loaded and executed in the VPS FORTRAN "0S/VS"
environment. (Note that object code from the two compilers can be
intermixed in a job.) If object code is to be used in a FORTRAN
execution with FORTRAN source modules it must be placed after the last
FORTRAN source statement and before the /DATA statement. If no FORTRAN
source statements are present, the object code must be placed after
the /LOAD statement (or /JOB statement, if present) and before the
/DATA statement.

50 VPS Guide to Programming Languages

Chapter 5: FORTRAN Gl and H Extended

In the following example a FORTRAN main program calls a subroutine
CALC whose object exists in the file CALCOBJ. The VPS /INCLUDE control
statement (see the VPS Handbook) is used to include the object after
the main program in the input stream. The object code will be used by
the loader to resolve any references to CALC in the main program.

/LOAD FORTG1

FORTRAN source statements
/INC CALCOBJ
/DATA

data

In cases where a FORTRAN program needs little modification, running
from object code can save enormous amounts of time since the
compilation is bypassed. In these cases, any JFILE statements and a
JLOAD statement should be placed as the first line(s) of the object
file using the VPS editor. If subroutine object, not already existing
in the file, is needed; a /INCLUDE statement may be placed after the
last object record to include other object in the input stream.
Finally, if data exists in another library file which is to be read
using standard unit 5, a /DATA statement should be inserted as the
last record of the file.

In the following example, a main program whose object is in the
library file MASTER is edited to include other object from files
SUBAO, SUBBO, and SUBCO. The edited version of MASTER is shown below:

/LOAD FORTX

object
/INC SUBAO,SUBBO,SUBCO
/DATA

If MASTER were to be run using the file DATA99 as the input data file,
the following /EXEC command would be typed at *GO:

*GO
/exec master,data99

Efficiency in running seldom modified FORTRAN programs can be
increased further by using a load module for execution instead of
object code. Appendix B contains information on creating load modules
from object and executing these load modules in the VPS "0S/VS"
environment.

FORTRAN Input/Output Considerations

VPS supports full function input/output for FORTRAN program
execution as described in the IBM FORTRAN Language Manual and
Programmer”s Guides. (Note, however, that though VPS supports
asynchronous I/0 as described for FORTRAN H Extended, using it will
not make program execution more efficient since all VPS I/0 is
synchronous with execution.) FORTRAN supports two types of files for
input/output - sequential and direct. The following sections describe
these files and their use under VPS.

VPS Guide to Programming Languages 51

Chapter 5: FORTRAN Gl and H Extended

Sequential Files

Sequential files are files which must be read or written in
sequential order. If record 126 is needed from a sequential file,
records 1 through 125 must be read first. Standard units 5, 6, 7, and
9 are defined as sequential files. On VPS sequential files may exist
as library files, disk work files, tape files, the input stream, etc.
However, FORTRAN unformatted input/output is not supported on VPS
library files. The example on page 47 shows a sequential tape file
being used as input to a FORTRAN program. The IBM Programmer”s Guides
give extensive information on the definition and use of sequential
files.

Direct Files

Direct files are files in which records may be accessed individually
and in any order. That is, record 100 may be accessed without
accessing the first 99. Records in a direct file can be processed
using only the FORTRAN direct-access I/0 statements but may be
processed in a sequential fashion through the use of the associated
variable in the direct-access statements. Direct files on VPS must be
disk work files and must be created as fixed-unblocked files (i.e.
RECFM=F must appear on the /FILE statement). DSORG=DA must also appear
on the /FILE statement when the file is created. (Note that OPT=FORMAT
as documented in the VPS Handbook should not be specified when
creating a direct file with FORTRAN Gl or H Extended since these
compilers will automatically format a NEW direct file.)

In the following example a direct file is created from a sequential
tape file. Each record corresponds to each day of the year and
contains telephone company data on the use of telephone information in
the greater Boston area for that day. The first field contains the
total number of information calls followed by 50 fields containing the
number of information calls to each of the 50 states. Note that since
the first field has a format specification of 1I10 and the 50 other
fields have format specifications of I8 the block size for the direct
file is 410 bytes (10 + 50%8).

/file unit=(tape,name=ftl1f001l),vol=ser=mabell,
/ label=(1l,nl),recfm=fb,lrecl=410,blksize=8200,disp=o0ld
/file unit=(disk,name=£ft12f001),dsname=ur.mabll2.mabell.data,
/ disp=(new,keep),recfm=f,lrecl=410,blksize=410,dsorg=da,
/ space=(blk,365)
/load fortgl

define file 12(365,410,e,nxrec)

dimension istate(50)

do 100 i=1,365

read(11,10) itot,istate

write(127i,10) itot,istate
100 continue
10 format(il0,50i8)

stop

end

In the next example a control record is read from the input stream

52 VPS Guide to Programming Languages

Chapter 5: FORTRAN Gl and H Extended

indicating a date range for which statistics are to be generated from
the direct file created above. Only a small portion of the program is
shown - finding the average total calls for the period.

/file unit=(disk,name=ft12f001),dsname=ur.mabll2.mabell.data,
/ disp=shr
/load fortgl

define file 12(365,410,e,nxrec)

dimension istate(50)

read(5,10) ibdate,iedate

10 format(2i3)
itcalls=0
do 30 i=ibdate,iedate
read(1271,20) itot,istate

20 format(il0,50i8)
itcalls=itcalls+itot

30 continue
iacalls=itcalls/(iedate—ibdate+l)
write(6,40) ibdate,iedate,iacalls

40 format(“period: “,i3,” - 7,13,” average calls: 7,il0)

/data
004015

For further information on direct files see the IBM FORTRAN Language
Manual and the respective Programmer”s Guide.

Computing Center Supplied Subroutines

As discussed on page 49 the Computing Center provides a number of
subroutines to supplement those available from IBM. The following
describes the more useful of these:

1) To obtain the current time of day -
CALL TIME(ihrs,imins,isecs,ihunds)

Where "ihrs" is an integer variable which will be set to the current
hour, "imins" is an integer variable which will be set to the
current minute, "iseecs" is an integer variable which will be set to
the current second, and "ihunds” is an integer variable which will
be set to the current hundredth of a second.

2) To obtain the current execution time of a job -
CALL EXTIME(i)

[T

Where "i" is an integer variable which will be set to the current
execution time in hundredths of a second units.

VPS Guide to Programming Languages 53

Chapter 5: FORTRAN Gl and H Extended

3) To obtain the current date -
CALL DATE(date)

Where "date" is a real*8 variable which will be set to the character
date in the form — ddmmmyy - and may be printed using an A8 format.

4) To specify a VPS library file name to be read from a LIBIN unit -
CALL OPEN(index,file,unit,ret,level)

Where -
"index" is a real*8 variable containing the eight character index
name. If omitted or blank, the default of USERLIB will be used.

"file" 1is a real*8 variable containing the eight character file
name.

"unit” is an integer variable containing the FORTRAN unit number
which will be used to read the file.

"level” is an integer variable containing the resolution level for
any /INCLUDE statement which may appear in the file. If omitted
the default for that file will be used. (See the VPS Handbook
for a complete description of the resolution level.)

is an integer variable containing the sum of the return codes
which the subroutine is to ignore. If “ret™ has a value of 0 or
if it is omitted and an error occurs, or if an error occurs
which is not specified in "ret", a message will be printed
indicating the error and the job will be terminated. Otherwise,
the value of '"ret" is replaced with the actual return code and
control is returned to the calling program. The return codes

ret

are:
0 - successful open
2 = invalid unit number
4 = invalid file name
8 = file not found

16 = index not found

32 - access to file disallowed

64 — unable to enqueue

128 - library volume not mounted
256 - permanent I/0 error
512 - storage unavailable for processing

Note that to use this subroutine correctly, the programmer must
supply a corresponding /FILE statement having the following format:

/FILE UNIT=(LIBIN,NAME=FTxxF001)

Where "xx" is the FORTRAN unit number to be used to read the library
file.

54 VPS Guide to Programming Languages

Chapter 5: FORTRAN Gl and H Extended

5) To save or replace a VPS library file with the contents of a
LIBOUT unit -

CALL CLOSE(index,file,unit,type,ret)

Where =
"index" is a real*8 variable containing the eight character index
name. If omitted or blank, the default of USERLIB will be used.

"file" 1is a real*8 variable containing the eight character file
name .

“unit" is an integer variable containing the FORTRAN unit number
which was used when the information was written.

“type" is an integer variable whose high order byte is one of the
following characters:

S - Save the information as a new VPS library file then clear
and rewind the LIBOUT unit.

R - Replace an existing VPS library file with the information
then clear and rewind the LIBOUT unit.

D - Clear and rewind the associated LIBOUT unit wihtout saving
the contents.

"ret" is an integer variable containing the sum of the return codes
which the subroutine is to ignore. If “ret” has a value of 0 or
is omitted and an error occurs, or if an error occurs which is
not specified in "ret"”, a message will be printed and the job
terminated. Otherwise, the value of "ret" is replaced with the
actual return code and control is returned to the calling

program. The return codes are:

0 - successful close
2 — unit number invalid
4 = invalid file name
8 = null file
16 = index not found
32 - write access disallowed
64 - name already in use
128 - insufficient library space available
256 — permanent I/0 error
512 - storage unavailable for processing
1024 - no space in index

Note that to use this subroutine correctly, the programmer must
supply a corresponding /FILE statement having the following format:

JFILE UNIT=(LIBOUT,NAME=FTxxF001)
Where "xx" is the FORTRAN unit number used to write the information.
In the following FORTRAN program a library file (specified by the

VPS Guide to Programming Languages 55

Chapter 5: FORTRAN Gl and H Extended

programmer using a read from FORTRAN unit 9) is copied to a LIBOUT
unit. The programmer is then prompted for a file name under which the
information is to be saved and the type of save. If the file already
exists (CLOSE return code 64), the programmer is prompted for another
name .

/file unit=(libin,name=ft24f001)
/file unit=(libout,name=ft25f001)
/load fortgl
dimension array(20)
real*8 file
real*4 ret,type
write(6,10)
10 format(” enter file name to be copied 7)
read(9,20) file
20 format(a8)
call open(0,file,24,0,0)
30 continue
read(24,40,end=50) array
40 format(20a4)
write(25,40) array
go to 30
50 continue
write(6,60)
60 format(” enter new file name 7)
read(9,20) file
write(6,70)
70 format(” enter s for save or r for replace)
read(9,80) type
80 format(al)
ret=64
call close(0,file,25,type, ret)
if (ret.eq.0)go to 100

write(6,90)
90 format(” name already in use 7)
go to 50
100 stop
end
Debugging

The most useful of the FORTRAN debugging tools is the debug faeility
of FORTRAN Gl. The debug facility provides for tracing the flow within
a program, tracing the flow between programs, displaying the values of
variables and arrays, and checking the validity of subscripts. This is
accomplished using debug "packets"™ which are composed of special debug
facility statements and FORTRAN statements. Debug packets are placed
after the source statements and before the END statement in the
FORTRAN source module to be debugged. Appendix E of the IBM Language
Manual gives a complete description of this facility.

The WATFIV compiler provides some other useful alternatives. Even if
a program cannot be run under WATFIV, errors may be found by WATFIV
during compilation that are not detected by either of the IBM
compilers. For programs that can be run under WATFIV, the interactive

56 VPS Guide to Programming Languages

Chapter 5: FORTRAN Gl and H Extended

debugging and tracing facility is a very powerful tool. Descriptions
of the job setup for a WATFIV compilation, execution, and use of the
interactive debugging facility can be found in Chapter 10.

Experienced FORTRAN programmers who wish to debug from the assembler
object code (the LIST compiler option produces the listing on
SYSPRINT) should use the MAP option of the /JOB statement (see
Appendix A) to find the locations of the FORTRAN main program and
subroutines at execution time. By subtracting the nearest lower
routine address from the last 6 digits of the PSW in the FORTRAN error
message, the location of the failure in the object listing can be
found.

For example, assume that the main program begins at 6718 (from the
/JOB MAP statement) and the following error message is produced at
execution time -

THO209I IBCOM — PROG INT - DIVIDE CHECK OLD PSW IS 03F50009A20068A4

The failing instruction is at 18C hexadecimal (68A4 - 6718) in the
object listing.

VPS Guide to Programming Languages 57

Chapter 6: PASCAL

The PASCAL compiler available under VPS is PASCAL 8000 for the IBM
360/370 series of computers developed at the Australian Atomic Energy
Commission. This PASCAL compiler is a modified version of the PASCAL
8000 compiler written at the University of Tokyo for the HITAC
8800/8700 computer and, except for some extensions, processes the same
language described in the "PASCAL User Manual and Report”, by N. Wirth
and K. Jensen (Springer-Verlag, 1975). A handout describing the full
PASCAL 8000 language is available at the Computing Center.

PASCAL 8000 was written for the IBM 0S/VS operating systems. Special
VPS system support programs provide an "0S/VS" environment in which
the PASCAL compiler and the user program run. PASCAL has not been
modified to run under VPS. o

Invoking PASCAL

The PASCAL compiler is invoked by placing the following control
statement before the first PASCAL source statement of a program:

/LOAD PASCAL

Normally, this is done by placing the /LOAD statement first in a
source file with the VPS editor when the source file is created.

In reality, not only does the /LOAD statement call the PASCAL
compiler, but it also invokes a corresponding VPS internal procedure.
A VPS internal procedure is a set of VPS control statements needed to
run average source programs. These control statements may be
overridden at execution time by programmer-supplied statements. The
PASCAL procedure invoked using /LOAD PASCAL at the terminal is shown
be low:

/FILE UNIT=(DISK,NAME=LINKLIB),DSNAME=<{pascal library>

JFILE UNIT=(DISK,NAME=SYSGO),SPACE=(TRK, (5,5)),RECFM=FB,LRECL=80,
/ BLKSIZE=4560

/FILE UNIT=(TERMOUT,NAME=SYSPRINT)

/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<input stream>

/LOAD PASCAL ,NSEGS=4

Procedure Files

The default compilation and execution /FILE statements in the VPS
PASCAL procedure are described below:

File Use
LINKLIB Defined as the work file containing the PASCAL
compiler.

VPS Guide to Programming Languages 59

Chapter 6: PASCAL

SYSGO Defined as the object output file for compilation.
See "Saving Compiler Object Code” later in this
chapter for more information.

SYSPRINT Defined as the terminal when executing at the
terminal or as the high-speed printer when
executing on the batch. Used by the PASCAL
compiler and user programs as the output
listing file.

SYSIN Defined as the input stream — during
compilation, from the first source statement to
the /DATA statement; during execution, records
after the /DATA statement (see below).

These files may be overridden or other files defined by placing
appropriate /FILE statements before the /LOAD statement in the job
stream.

Separating Program Statements from Data

As shown above, PASCAL 8000 and, possibly, the user program may read
from the file SYSIN. The /DATA statement is used to separate source
statements in the input stream from any data which is to be read by
the program from SYSIN. A standard PASCAL job stream has the following
structure:

/LOAD PASCAL

PASCAL source statements

/DATA

data

Files Used for Program Execution

External files are referred to by providing /FILE statements which
use the PASCAL “filename” in the NAME= subfield of the UNIT=
parameter, except for the standard filenames INPUT and OUTPUT which
use SYSIN and SYSPRINT. As noted above, /FILE statements for SYSIN and
SYSPRINT are pre-defined for program execution in the VPS PASCAL
procedure. However, the filenmames INPUT and/or OUTPUT must still
appear in the program heading if they are used.

Filenames may be declared, like any other variables in the program,
and they may be passed as reference (VAR) parameters to procedures.
External files may be wused as ‘“output" type files after a REWRITE
operation and as "input" after a reset operation. The "extended"
operations READ, READLN, WRITE, and WRITELN are allowed on all
user-defined files. For each user-defined file declared in a PASCAL
program a corresponding /FILE statement must also be placed before the
/LOAD PASCAL statement in the job stream. In the following example a
disk work file is used first as an "output" file and then as an
"input"” file:

60 VPS Guide to Programming Languages

Chapter 6: PASCAL

/file unit=(disk,name=tempf),recfm=fb,lrecl=80,blksize=4560
/load pascal
program files(output,tempf);
var i:char;
tempf:file of char;
begin
i:="z7;
rewrite(tempf);
write(tempf,i);
writeln(tempf);
reset (tempf);
readln(tempf,i);
write(output,” the value of i is:",1i);

I/0 Notes

1. READ(...); is equivalent to READ(INPUT,...); and WRITE(...); is
equivalent to WRITE(OUTPUT,...);.

2. For output files, line buffers are flushed only after the buffer
is full or a WRITELN operation. This implies that if a program
terminates without doing a WRITELN on output files, the last output
line generated by the program may not actually be written.

3. Before a user-defined file can be used for writing, it must be
preceded by a REWRITE operation. Before a user-defined file can be
used for reading, it must be preceded by a RESET operation.

4. Assignment to, or comparison of, file variables is not allowed in
the language. However, these operations may be performed on file
buffers.

5. PASCAL 8000 local files are not supported.

Memory Requirements

In the PASCAL procedure shown on page 59 the NSEGS= parameter on the
/LOAD statement specifies a value of 4 segments (a segment 1is 64K
bytes). Unless the NSEGS= parameter is overridden, VPS will allot 256K
of memory to a PASCAL execution. This allows for a compilation of
approximately 3000 statements. For larger compilations, the programmer
should increase the NSEGS= parameter on the /LOAD statement.

Compiler Options

Compiler options are specified within a PASCAL comment statement.
The comment statement must appear as the first source statement of a
program. The first character after the comment declaration " (* " must
be a dollar sign "$", indcating that compiler options follow. The
format of this special form of the comment statement appears below:

(*Soption,option, ... comments *)

VPS Guide to Programming Languages 61

Chapter 6: PASCAL

Each option consists of a one-character option code followed by either
a "+", indicating the option is to be turned on, or a "-", indicating
the option is to be turned off. The following is a list of the options
accepted by PASCAL and their description. Note that default options
are under-lined.

Option Description

L+ Controls the printing of the PASCAL source

Lis= program on SYSPRINT.

T Controls the generation of code to provide run
T~ time checking for: assignment of values to

variables of type {subrange>; ensuring that array
index operations are within the bounds of the
array specified; and ensuring that case statement
selection falls within the realm of one of the

case tags.
Pt Controls the generation of the code necessary to
p- generate a traceback and full dump of local

variables if an execution error occurs.

N+ Controls the generation of the code necessary to
N—- generate a traceback without a full dump if an
execution error occurs.

S+ Controls the flagging of constructs which are not
iRr “Standard PASCAL”.

The following example shows a portion of a VPS terminal session

where a PASCAL program is created using the VPS editor and then
executed. The program reads in 3 numbers and finds their sum.

62 VPS Guide to Programming Languages

Chapter 6: PASCAL

*GO

Jedit

INPUT

/load pascal

program sum (input,output);
var i, j,total: integer;

begin
total := 0
for i := 1 to 3 do
begin
readln(j);
total := total + j
end;
writeln(” the total is: “,total:8)
end.
/data
1
4
3
EDIT
save pastst
*SAVED
*G0
/exec pastst
PASCAL 8000/1.2 AAEC (1ST FEB 78)
0630 -—— PROGRAM SUM (INPUT,OUTPUT);
0644 —— VAR 1,J,TOTAL: INTEGER;
0000 0- BEGIN
0012 -- TOTAL := 0;
0018 —-- FORI :=1 TO 3 DO
0020 1- BEGIN
002C -- READLN(J);
0040 -- TOTAL := TOTAL + J
0040 -1 END;
005C —— WRITELN(-~ THE TOTAL IS: ~,TOTAL:8)

0086 -0 END.
*AAFC PASCAL COMPILATION CONCLUDED *
*NO ERRORS DETECTED IN PASCAL PROGRAM *

LOADER

PROGRAM SIZE - 3518 (HEX), 13,592 (DECIMAL).

THE TOTAL IS: 8

*GO

VPS Guide to Programming Languages 63

Chapter 6: PASCAL

The four hexadecimal digits on the 1left in the listing indicate the
relative addresses of variables, data, and code, wherever appropriate.
While variables are being declared with the VAR construct, the hex
address will reflect the relative offsets from the start of the stack
for the procedure being compiled.

The next two indicators are known as nest level indicators, and
reflect the static block structure of a procedure. The left indicator
is incremented whenever a BEGIN, LOOP, REPEAT, or CASE is encountered.
On termination of these structures, with an END or UNTIL, the right
indicator is printed, and the static level counter decremented. This
scheme makes it very convenient to match BEGIN - END pairs. A
correctly composed procedure should start with a zero left indicator
and terminate with a zero right indicator.

Where appropriate a character will follow the nest indicators
reflecting the static procedure levels. The character will be updated
for each nest level ("A" for level 2, "B" for level 3, etec.) and
printed next to the heading and the BEGIN and END associated with that
procedure.

Listing Control

There are several options available to the programmer to control the
output listing format. These are indicated to the compiler by a “§~
character in column 1 of a source input record, immediately followed
by the option keyword. These control statements may appear between any
two PASCAL source statements. The options available are:

Option Descrigtion

$TITLE <title> Replaces the title currently printed (if at all)
with <title> and then skips to a new page. The
title is printed at the top of each page, until a
new S$TITLE is encountered, or an SUNTITLE is
found. <title> is limited to 40 characters.

SEJECT Causes the next line of the listing to appear on a
new page (unless that line is SUNTITLE).

SSPACE n Causes n lines to be skipped in the listing.
SUNTITLE Compiler-generated page-skipping and titling is
suppressed.

Saving Compiler Object Code

The PASCAL 8000 compiler produces during compilation a saveable
object module which can be used in later executions. This facility can
be used to save the output of the PASCAL compiler for later program
executions and avoid the overhead of recompilation each time the
program is run. To save the object module produced by the compiler the
following job setup should be used:

64 VPS Guide to Programming Languages

Chapter 6: PASCAL

JFILE UNIT=(LIBOUT,NAME=SYSGO),DSNAME=%*2
/LOAD PASCAL
/JOB NOGO

PASCAL source program

The execution of this job will cause the compiler to compile the
PASCAL program and the object module to be placed in the temporary *2
file. (Note that the object can be saved in a permanent library file
using the /RSAV command — see The VPS Handbook.) The program itself
will not be executed.

Saved object can be executed either by itself or with a PASCAL
source program that references it. In the following example a PASCAL
procedure has been compiled and its object saved in the VPS library

file PROCDA. The example shows the use of that object with a PASCAL
source program.

/LOAD PASCAL
PASCAL source statements

/INC PROCDA
/DATA

data

VPS Guide to Programming Languages 65

Chapter 7: PL/C

PL/C, which was developed at Cornell University, is a subset of the
PL/I-F language. Information concerning PL/C is provided in the manual
"The User’s Guide to PL/C, The Cornell Compiler for PL/I" published by
the Computer Science Department of Cornell University. The PL/C
compiler is designed to be used by students in an introductory
programming course. (The full PL/I language is provided by the PL/I
Optimizing Compiler, documented in Chapter 8) PL/C features rapid
compilation speeds and excellent source and object program
diagnostics. One of the unique facilities of PL/C is that it attempts
to "fix up'" source program errors so that a source program containing
errors will execute, often producing correct results. This feature
permits the user to debug a PL/C program with relatively few runs on
the computer.

PL/C Language Facilities

In general, PL/C is designed to be a compatible subset of PL/I-F.
Thus PL/C programs, with minor exceptions, may be run under the IBM
PL/1 Optimizing Compiler, PLIOPT, with only control card changes. The
following is a description of those PL/I-F features that are not
supported by PL/C.

l. Files = PL/C supports STREAM and RECORD I/0 sequential files with
the limitation that list processing is not implemented. PL/C does not
support direct-access files. Thus the following statements are not
supported.

DELETE
LOCATE
REWRITE
UNLOCK

The following attributes are not supported.

BACKWARDS
BUFFERED
EXCLUSIVE
IRREDUCIBLE
KEYED
PACKED
REDUCIBLE
UNBUFFERED
UPDATE

The following options of the OPEN statement are not supported.

TRANSIENT
BUFFERED
UNBUFFERED
UPDATE
KEYED

VPS Guide to Programming Languages 67

Chapter 7: PL/C

EXCLUSIVE
BACKWARDS

The KEY and PENDING conditions are not supported.

2. Storage = PL/C does not support controlled or based storage. List
processing features are not supported. Thus the ALLOCATE and FREE
statements, the AREA, BASED, .CONTROLLED, OFFSET and POINTER
attributes, and the AREA condition are not supported.

3. PL/C does not support multi-tasking.

4. PL/C does not support the Optimizing Compiler compile time
facilities.

5. PL/C does not support the 48 character set option.
6. PL/C does not support the DISPLAY statement.

7. Sterling and picture data-types are not supported.
8. The DEFINED and LIKE attributes are not supported.

Invoking PL/C Under VPS

PL/C may be run under the VPS batch or from VPS terminals. The PL/C
compiler is invoked by use of the following control statement which
must be placed before the first PL/C statement in a program:

/LOAD PLC
Using the default VPS memory allocation (2 segments, or 128K) a
program of approximately 200 statements may be executed. For larger

programs, the NSEGS= parameter of the /LOAD statement should be used
(see the VPS Handbook).

PL/C Control Statements

PL/C recognizes the following control statements:
*PL/C <{options)

This statement is optional and is wused to specify PL/C compiler
options. It immediately follows the /LOAD PLC statement.

*PROCESS <options)>

This statement is required between external procedures and may also be
used to redefine compiler options.

*0PTIONS <options>

This statement is optional and is used to redefine compiler options.
It may appear between any 2 PL/C source statements.

68 VPS Guide to Programming Languages

Chapter 7: PL/C

*DATA

This statement is used to separate source statements from program data
in the input stream. It is not required if data is not present.

As with the /[LOAD PLC statement, each control statement must begin
in column 1. The statement sequence for most PL/C jobs is as follows:

/LOAD PLC
*PL/C option,option,...

(PL/C source statements)
*DATA
(Data, if any)

Note that earlier versions of the PL/C compiler recognized *PLC
rather than *PL/C and /DATA instead of *DATA. These control statements
are no longer valid.

PL/C Compiler Options

The following options may be specified on either the *PL/C,
*PROCESS, or *OPTIONS control statements. This is only a‘partial list
of the compiler options available. Full documentation on all the PL/C
options may be found in "The User’s Guide to PL/C". Where applicable,
an underline indicates the default option on VPS.

Option Description
SOURCE Controls the printing of a source listing. The default

NOSOURCE on the terminal is NOSOURCE. The default on the batch
is SOURCE. SOURCE may be abbreviated as S.

ATR Controls the printing of an attribute listing. ATR may
NOATR be abbreviated as A.

OPLIST Controls the printing of the options in effect. OPLIST
NOOPLIST may be abbreviated as 0.

XREF Controls the printing of a cross-reference listing.
NOXREF XREF may be abbreviated as X.

DUMP Controls the printing of a post-mortem status

NODUMP dump. DUMP may be abbreviated as D. input

DUMPE Controls the printing of a post-mortem status

NODUMPE dump only if an error was encountered during

execution. DUMPE may be abbreviated as DE.
DUMPT Controls the printing of a post-mortem status

NODUMPT dump only if execution was terminated by an error.
DUMPT may be abbreviated DT.

VPS Guide to Programming Languages 69

Chapter 7: PL/C

PL/C File Names Under VPS

Under the VPS PL/C implementation, standard names are provided to
reference files. These file names may be specified in PL/C programs by
using the DECLARE statement.

The following is a list of the default file names for PL/C programs
under VPS. For each file name, the VPS default file type and logical
record length are presented. For a detailed description of file types
see the VPS Handbook.

File Name VPS File Type LRECL
SYSIN input stream 80
SYSPRINT terminal output 121

(on terminal)
line printer
(on batch)

CONSOLE terminal input 80
(on terminal)

input stream
(on batch)

SYSPUNCH *2 file 80
(on terminal)

card punch
(on batch)

Input/Output Notes

1. If the user wishes to use a file other than those specified
above, the file must be declared in the PL/C program using the DECLARE
statement and defined for VPS using a /FILE control statement. /FILE
statements must be placed before the /LOAD PLC statement in the source
file. A detailed description of the /FILE control statement can be
found in the VPS Handbook.

In the following example a temporary file is wused to store
intermediate information by a PL/C program. Note that the file name
specified in the DECLARE statement must also appear in the NAME=
subparameter of the UNIT= parameter of the /FILE statement defining
the file.

70 VPS Guide to Programming Languages

Chapter 7: PL/C

/file unit=(disk,name=temp),recfm=f,lrecl=100,blksize=100
/load ple

declare temp file;
declare rec char(100);
write file (temp) from (rec);

.

2. If a file is used with PL/C, a CLOSE statement will rewind the
file. A CLOSED file may be re-processed starting with the first record
if a subsequent OPEN statement is issued. If a file is opened for
output and then CLOSED, an end of file mark will be written before the
file is rewound.

3. An end of file condition may be generated for input read from the
terminal (file CONSOLE) by entering the VPS command /END.

4. Any prompting messages to be printed before reading data
interactively from CONSOLE must be forced to print by use of a PUT
SKIP statement with no data. For example, the following sequence will
cause the message ENTER DATA to be printed prior to reading the
terminal kevyboard.

put skip list(’enter data’); put skip;
get file(console) list (a,b,c);

In the above example, the second PUT SKIP statement is required to

force the message ENTER DATA to print before the GET FILE statement is
executed.

VPS Guide to Programming Languages 1

Chapter 7: PL/C

Sample PL/C Run

The following example shows the execution of a PL/C program from a
VPS terminal. The program reads two values interactively from the
terminal keyboard, adds them together, and prints the sum. The program
has a "bug" which PL/C fixes so that the program runs correctly.

*GO

Jedit

INPUT

/load plc

adder: proc options(main);

/* program to add two numbers */

on endfile (console) stop;

loop: put skip list(’enter a and b’);put skip;
get file(console) list (a,b);
c=a+b
put list (“the sum is “,c);
go to loop;
end;

EDIT

save plctest
*SAVED

*GO

/exec plectest

7 1 1 C=A+B
ERROR IN STMT 7 MISSING SEMI-COLON (SY08)
FOR STMT 7 PL/C USERS C=A+B;

ERRORS /WARNINGS DETECTED DURING CODE GENERATION:

WARNING: NO FILE SPECIFIED. SYSIN/SYSPRINT ASSUMED. (CGOC)

ENTER A AND B

13

THE SUM IS 4.00000E+00
ENTER A AND B

5.67 8.90

THE SUM IS 1.45700E+01
ENTER A AND B

/end

IN STMT 3 PROGRAM IS STOPPED.
*GO

72 VPS Guide to Programming Languages

Chapter 8: PL/I

Two PL/I compilers are supported under VPS. PL/C, a student oriented
compiler, provides a subset of the PL/I language and is documented in
Chapter 7. This chapter documents the use of the IBM PL/I Optimizing
Compiler under VPS.

The PL/I Optimizer provides full PL/I language support and has not
been modified to run under VPS - rather, special VPS system support
programs provide an "0S/VS" environment in which this compiler and its
compiled programs run. VPS PL/I programs are, therefore, source and
object compatible with 0S/VS PL/I programs. Programs can be written
and tested under VPS and run under 0S/VS with only control statement
changes.

IBM Manuals

This chapter is not a replacement for the documentation available in
IBM publications. It is a supplement to the documentation explaining
necessary VPS control statement usage for this compiler. PL/I
programmers are encouraged to use the following publications which can
be found in reference racks at the Computing Center.

The PL/I language supported by this compiler is documented in -

"IBM 0S PL/I Checkout and Optimizing Compilers: Language Reference
Manual" (GC33-0009)

Information on compiler options, defining data sets, etc. can be found
in -

"IBM 0S PL/I Optimizing Compiler: Programmer’s Guide" (GC33-0008)
Error messages can be found in -
"IBM 0S PL/I Optimizing Compiler: Messages (GC33-0027)

Invoking the PL/I Optimizing Compiler

The compiler is invoked by placing a VPS /LOAD control statement
(see the VPS Handbook for a full description of /LOAD) before the
first PL/I source statement in a job stream. Normally, this is done by
placing the /LOAD statement first in a source file with the VPS editor
when the source file is created. The format of the /LOAD control
statement used to invoke the PL/I Optimizer is:

/LOAD PLIOPT

In reality, not only does the /LOAD statement 1load the PL/I
compiler, but it also invokes a corresponding VPS internal procedure.
A VPS internal procedure is a set of VPS control statements needed to
run average Ssource programs. These control statements may be
overridden at execution time by programmer—supplied statements. The

VPS Guide to Programming Languages 73

Chapter 8: PL/I

PL/I procedure invoked using /LOAD PLIOPT at the terminal is shown
below:

/FILE UNIT=(DISK,NAME=LINKLIB),DSNAME=<pl/i library>,DISP=SHR
/FILE UNIT=(DUMMY,NAME=SYSPRINT)

/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<{input stream)

/FILE UNIT=(DISK,NAME=SYSLIN),SPACE=(REC, (1000,1000)),RECFM=FB,
/ LRECL=80,BLKSIZE=4560

/FILE UNIT=(DISK,NAME=SYSUTI),SPACE=(BLK,(10,10)),RECFM=F,

/ BLKSTIZE=1024

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSNAME=%2

/FILE UNIT=(TERMOUT,NAME=SYSTERM)

/FILE UNIT=(DISK,NAME=LINKLIB),DSNAME=<pl/i library>

/FILE UNIT=(DISK,NAME=SORTLIB),DSNAME=<SORT utility 1ib>,DISP=SHR
/FILE UNIT=(TERMOUT,NAME=SYSPRINT)

/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<input stream)

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSNAME=*2

/FILE UNIT=(TERMIN,NAME=CONSOLE)

/LOAD PLIOPT

The /FILE statements appearing above the dashed line define files used
by the compiler. Those appearing below the dashed line define standard
files used by an executing PL/I program.

Compiler Files

The file requirements for the PL/I Optimizing Compiler are listed
below:

File Use

LINKLIB PL/I library - defined as the work file
containing the PL/I Optimizing Compiler.

SYSPRINT Output listing file - defined as DUMMY if
compiling at the terminal (unless a list-
producing option is specified on the /PARM
statement - see below) or as the high speed
printer if compiling on the batch.

SYSIN Input source and/or object file - defined as the
input stream from the first source statement to
the /DATA statement (see below).

SYSLIN Output object file - defined as a temporary work
file used to hold the object code to be loaded
by the loader for execution.

SYSUT1 Temporary work file — used by the compiler during
compilation.

74 VPS Guide to Programming Languages

Chapter 8: PL/I

SYSPUNCH Output object file - defined as the *2 file if

compiling at the terminal or the card punch if
compiling on the batch allowing object code to

be saved for future use (used only if DECK
appears on the /PARM statement).

Execution Time Files

As shown above the VPS PLIOPT procedure provides default /FILE
statements for the standard PL/I data sets - SYSIN, SYSPRINT,
SYSPUNCH, and CONSOLE. The input stream is defined as the file SYSIN
at both compilation and execution time. If the default /JOB statement
is used (see below), after the Optimizer is finished compiling the
source program, the VPS loader loads the object code from SYSLIN into
memory and the program is executed. SYSIN is then defined as any
records following a /DATA control statement. The /DATA statement is
used to separate source statements in the input stream (which are read
by the compiler using SYSIN) from data to be read at program execution
time using SYSIN. A standard PL/I compilation and execution has the
following structure:

/LOAD PLIOQPT

PL/I source statements
/DATA

data

The default execution time /FILE statements for the PL/I Optimizer
are shown below:

File Use

LINKLIB PL/I library - defined as the work file
containing the PL/I Transient Library
routines.

SORTLIB SORT/MERGE library - defined as the work

file containing the SORT/MERGE routines
used only if an internal sort is requested.

SYSPRINT Output file - defined as the terminal if
executing at the terminal or the high speed
printer if executing on the batch.

SYSIN Input file - defined as the input stream
after the /DATA control statement.

SYSPUNCH Output file - defined as the *2 file if

executing at the terminal or as the card
punch if executing on the batch.

VPS Guide to Programming Languages 75

Chapter 8: PL/IL

CONSOLE Input file — defined as the terminal if
executing at the terminal or as the 'input
stream after the /DATA statement if executing
on the batch.

These files may be overridden or other files defined by placing
appropriate /FILE statements before the /LOAD statement in the job
stream.

Specifying Compiler Options

The VPS /PARM control statement may be used to pass compiler options
to the PL/I Optimizing Compiler. The /PARM statement must be placed in
the job stream after the /LOAD statement and before the first PL/I
source statement (note that /PARM and /JOB may appear in either
order). The format of the /PARM statement is shown below:

/PARM option,option,...

Where "option" is a valid compiler option. If more than one option is
specified, they must be separated by commas. Multiple /PARM statements
are not supported.

The following is a subset of the compiler options accepted by the
Optimizing Compiler. A full description of all the options can be
found in the IBM Programmer’s Guide. Note that the default options are
underlined.

Option Description
SOURCE Controls the printing of a PL/I source
NOSOURCE listing on SYSPRINT. NOSOURCE is the

default on the terminal. SOURCE is the
default on the batch. (Abbr. - S|NS)

DECK Controls the writing of the object code to
NODECK SYSPUNCH. (Abbr. = D|ND)

MAP Controls the printing of tables showing the
NOMAP organization of static storage. (Abbr. - M|NM)
ATTR Controls the printing of the listing of source
NOATTR program identifiers and their attributes.

(Abbr. = A|NA)

COMPILE Controls whether the source program is to be

NOCOMPILE compiled (COMPILE) or just syntax checked
(NOCOMPILE). (Abbr. — C|NC)

XREF Controls the printing of the identifier cross

NOXREF reference. (Abbr. - X|NX)

LIST Controls the printing of the assembler language

NOLIST listing of the compiled program on SYSPRINT.

76 VPS Guide to Programming Languages

Chapter 8: PL/I

MARGINS(m,n,c) Specifies the locations in each input record
MARGINS(2,100,1) that contain PL/I source statements. Where
‘m’ is the column number of the leftmost character

to be processed, ‘'n” is the column number of the

rightmost character to be processed, and "¢

(which is outside the range ‘m” to 'n’) is the
location of the printer control character for the

source listing. (Abbr. — MAR(m,n,c))

OBJECT Controls the writing of the object code to
NOOBJECT SYSLIN for use by the loader. (Abbr. - OBJ|NOBJ)
OPT(TIME) Controls the optimization level to be in force
OPT(0) during compilation. NOPT specifies fast

OPT(2) compilation speed, but inhibits optimization for
NOPT faster execution and reduced main storage

requirements (OPT(0) is equivalent to NOPT).
OPT(TIME) specifies that the compiler is to
optimize the machine instructions for faster
execution and a reduction in main storage usage
(OPT(2) is equivalent to OPT(TIME)).

TERM Applicable only when compiling at the terminal
TERM(op,0p,++.) and can specify compiler listing options which
NOTERM are to be printed on the terminal independent

of the SYSPRINT data set. If TERM is specified
with no options, dianostic and informational
messages are printed at the terminal. The
following options can be specified in the
option list: AGGREGATE, ATTRIBUTES, ESD,
INSOURCE, LIST, MAP, OPTIONS, SOURCE, STORAGE,
and XREF.

Specifying Loader Options

The VPS /JOB control statement may be used to specify loader options
for compiled programs which are to be loaded for execution. (A full
description of the /JOB statement can be found in Appendix A.) The
/JOB statement can be used to control the printing of a load map,
unresolved external references, entry address, etc. It can be used to
terminate a job after compilation but before execution (NOGO). It can
also be used to override the default 1list of libraries to be searched
at load time for unresolved external references (such as mathematical
and graphics subroutines existing in VPS subroutine libraries). The
default PL/I library search list is -

SYS.PLIXLIB - the IBM supplied support and mathematical subroutine
library

SYS.TEKLIB - the TEKTRONIX graphics subroutine package
SYS.VPSLIB - the Computing Center subroutine library

The libraries are searched in the order specified.

VPS Guide to Programming Languages 77

Chapter 8: PL/I

The /JOB statement must be placed in the job stream after the /LOAD
statement but before the first PL/I source statement. In the following
example the /JOB statement is used to terminate a job immediately
after compiling a PL/I program:

/LOAD PLIOPT
/JOB NOGO
PL/I source statements

Note that though continuation is not supported for the /JOB
statement, multiple /JOB statements are permissible.

The Strange Behavior of SYSPRINT

Normally, when executing a job at the terminal, the SYSPRINT file is
defined as TERMOUT. For PL/I compilations at terminals the SYSPRINT
file is dummied out to bypass massive amounts of output being printed
at the terminal during compilation. However, there are circumstances
where the programmer may wish to direct SYSPRINT to a location other
than the terminal (a library file, the high speed printer, a work
file, ete.). To allow this, VPS will not dummy SYSPRINT if a
list-producing option appears on a /PARM statement in the job stream.
A list-producing option 1is defined as any compiler option which will
cause printing to occur on SYSPRINT. In the following example a
program is compiled where the source and cross-reference listing is to
be printed on the high speed printer, the object code is to be written
to the *2 file, and job execution is to be terminated after
compilation - all from the terminal:

/FILE UNIT=(PRINTER,NAME=SYSPRINT)
/LOAD PLIOPT
/JOB NOGO
/PARM SOURCE, XREF ,DECK
PL/I source statements

Note that if the default SYSPRINT file is wused, a list-producing
option 1is specified, and the TERM parameter with option(s) is
specified, double messages will appear on the terminal creating a very
confusing output listing.

Memory Requirements for Compilation

The PL/I Optimizing Compiler requires 60K bytes of storage for
compilation and therefore, runs quite nicely in the default VPS region
of 2 segments (128K). This is more than enough room for small and
medium size PL/I programs. PL/I will automatically use the spill file
(SYSUT1) for additional auxiliary storage if it is needed during
compilation. In many cases compilation times can be reduced by
increasing the main storage allocation for large compilations and
decreasing the wuse of the spill file. To increase the main storage
allocation for compilation the NSEGS= parameter of the /LOAD statement
should be used (see the VPS Handbook for a complete description of the
NSEGS= parameter). In the following example the number of segments
used for compilation is increased to 4 (256K bytes):

78 VPS Guide to Programming Languages

Chapter 8: PL/I

/LOAD PLIOPT,NSEGS=4
PL/I source statements

PL/I Object Files

After object code is written to the temporary *2 file (by specifying
DECK on the /PARM statement), it may be saved in a permanent VPS
library file using either the /SAVE or /RSAV commands (see the VPS
Handbook). Object code saved in this manner can be included in the
input stream for execution either with other PL/I source modules or by
itself to be loaded and executed in the VPS PL/I "0S/VS" environment.
If object code is to be used in a PL/I execution with PL/I source
modules it must be placed after the last PL/I source statement and
before the /DATA statement. If no PL/I source statements are present,
the object code must be placed after the /JLOAD statement (or /JOB or
/PARM statement, if present) and before the /DATA statement.

In the following example a PL/I main program calls an external
procedure DCALC whose object exists in the file DCALCO. The VPS
JINCLUDE control statement (see the VPS Handbock) is wused to include
the object after the main program in the input stream. The object code
will be used by the loader to resolve any references to DCALC in the
main program.

/LOAD PLIOPT

PL/I source statements
/INC DCALCO
/DATA

data

In cases where a PL/I program needs little modification, running
from object code can save enormous amounts of time since the
compilation is bypassed (of course, if source is modified the program
must be recompiled). In these cases, any /FILE statements and a /LOAD
statement may be placed as the first 1line(s) of the object file using
the VPS editor. If subroutine object, not already existing in the
file, is needed; a /INCLUDE statement may be placed after the last
object record to include other object in the input stream. Finally, if
data exists in another library file which is to be read from SYSIN, a
/DATA statement should be inserted as the last record of the file.

In the following example, a main program whose object is in the
library file MMAST is edited to include other object from files
MSUBAO, MSUBBO, and MSUBCO. The edited version of MMAST is shown
below:

/LOAD PLIOPT

object
/INC MSUBAO,MSUBBO,MSUBCO
/DATA

If MMAST were to be run using the file MDATA2 as the input data file,
the following /EXEC command would be typed at *GO:

VPS Guide to Programming Languages 79

Chapter 8: PL/I

*GO
/exec mmast,mdata2

Efficiency in running seldom modified PL/I programs can be increased
further by using a load module for execution instead of object code.
Appendix B contains information on creating load modules from object
and executing these load modules in the VPS "0S/VS" environment.

PL/I Optimizer Features Not Supported on VPS

The full PL/I language may be compiled using the Optimizer on VPS,
however, certain restrictions apply to program execution. The
following is a list of those restrictions:

l. All pre-processor options are supported including ZINCLUDE.
However, nested ZINCLUDEs are not allowed. The VPS /INCLUDE statement
may be used as a replacement for nested ZINCLUDEs (see the VPS
Handbook).

2. Multitasking is not supported.

3. File organizations CONSECUTIVE and all REGIONAL are supported on
VPS with minor exceptions (see "PL/I Files" below). INDEXED,
TELEPROCESSING, and VSAM are not supported.

4. The H option (hexadecimal dump) of the PL/I dump facility is not
suppoted.

Note that use of the IBM Sort/Merge Package in PL/I as documented in
the IBM PL/I Programmer’s Guide is supported for execution under VPS.

PL/I Files

VPS supports the two major PL/I file types — CONSECUTIVE and
REGIONAL. (Note that the file type CONSECUTIVE is known generally as
sequential. However, since the IBM PL/I language group made the
brilliant decision to wuse the keyword SEQUENTIAL as a type of access
in the DECLARE FILE statement, everyone is confused. Therefore, for
this discussion we will use the PL/I keyword CONSECUTIVE to refer to
files which are known as "sequential" in all other chapters of this
manual.) The following sections describe these files and their use on
VPS.

If the user wishes to use a file other than those specified in
"Execution Time Files" above, the file must be declared in the PL/I
program using the DECLARE statement and defined for VPS using a /FILE
control statement. /FILE statements must be placed before the /LOAD
PLIOPT statement in the source file. A detailed description of the
/FILE control statement can be found in the VPS Handbook.

In the following example a temporary file is wused to store
intermediate information by a PL/I program. Note that the file name
specified in the DECLARE statement must also appear in the NAME=
subparameter of the UNIT= parameter of the /FILE statement defining
the file.

80 VPS Guide to Programming Languages

Chapter 8: PL/I

/file unit=(disk,name=temp),recfm=f,lrecl=100,blksize=100
/load pliopt

declare temp file record;
declare rec char(100);
write file (temp) from (rec);

Consecutive Files

Consecutive files are files which must be read or written in
sequential order. If record 239 is to be read from a consecutive file,
records 1 through 238 must be read first. VPS supports stream-oriented
and record-oriented transmission for comsecutive files.

All consecutive file access types and access attributes are
supported under VPS with the exception of the following:

1. The BACKWARDS attribute in not supported.

2. The UPDATE access attribute is not supported unless the
UNBUFFERED attribute is specified (which requires the file to be
unblocked and also a work file).

3. Spanned records are not supported unless the UNBUFFERED attribute
is specified (which again requires the file to be unblocked and also a
work file).

As described in the IBM Programmer’s Guide DCB attributes (i.e.
BLKSIZE, RECFM, LRECL, etc.) must be specified either in the
ENVIRONMENT attribute of the DECLARE statement for the file or on the
JFILE statement (the VPS equivalent of the IBM DD statement) defining
the file. On VPS consecutive files may exist as library files, disk
work files, tape files, terminal input, the input stream, etc. In the
following example, a consecutive file is read from tape using the file
name TAPEIN and from the input stream as SYSIN:

VPS Guide to Programming Languages 81

Chapter 8: PL/I

/file unit=(tape,name=tapein),vol=ser=mastdt,disp=old,
/ label=(1l,nl),recfm=fb,lrecl=120,blksize=1200
/load pliopt
tcalc: proc options(main);
dcl tapein file record input,
taperec char(120),
eof bit(l) init(“0"b);
on endfile (sysin) eof="1’b;
totl=0; tot2=0; tot3=0;
rloop: do while (-eof);
get edit (a,b,c) (col(1l),3(f(5))):
read file (tapein) into (taperec);
get string (taperec) edit (aa,bb,cc) (3(£(5)));
totl=totl+ataa;
tot2=tot2+b+bb;
tot3=tot3+c+cc;
end rloop;
put edit (’ the totals are:’,totl,tot2,tot3) (a,3(x(1),£(8,2)));
stop;
end tcalc;
/data
66. 43. 87.
49, 129. 205.

Consecutive File Notes

l. If a file is used with PL/I, a CLOSE statement will rewind the
file. A CLOSED file may be re-processed starting with the first record
if a subsequent OPEN statement is issued. If a file is opened for
output and then CLOSED, an end of file mark will be written before the
file is rewound.

2. An end of file condition may be generated for input read from the
terminal (file CONSOLE) by entering the VPS command /END.

3. Any prompting messages to be printed before reading data
interactively from CONSOLE must be forced to print by use of a PUT
SKIP statement with no data. For example, the following sequence will
cause the message ENTER DATA to be printed prior to reading the
terminal keyboard.

put skip list(“enter data’); put skip;
get file(console) list (a,b,c);

In the above example, the second PUT SKIP statement is required to
force the message ENTER DATA to print before the GET FILE statement is
executed.

82 VPS Guide to Programming Languages

Chapter 8: PL/I

Regional Files

Regional files are files in which records may be accessed
individually and in any order. That is, record 416 may be accessed
without accessing the first 415. The records within the data set can
be organized in one of three ways: REGIONAL(1l), where each region is a
record and each record is identified by its region number (note that
this organization is identical to FORTRAN direct access files);
REGIONAL(2), which is similar to REGIONAL(l) except that a key is
recorded with each record; and REGIONAL(3), which is similar to
REGIONAL(2) except that each region corresponds to one track of the
direct access device and is not a record position (depending on the
record length, a region may contain one or more records). The IBM
Language Reference Manual and the Programmer’s Guide contain extensive
information on the creation and use of regional files.

Regional files on VPS must be disk work files and DSORG=DA must be
specified on the /FILE statement when the data set is created. (Note
that OPT=FORMAT as documented in the VPS Handbook should not be
specified when creating a regional file with the PL/I Optimizing
Compiler since the compiler will automatically format a regional file
opened with the access attribute OUTPUT.) All rules governing DCB
attributes as described in the IBM Programmer’s Guide are applicable
when using regional files on VPS.

In the following example a REGIONAL(3) data set is created
containing what might be the inventory of a library. The key of each
record is 4 characters in length (KEYLEN=4) and assigned to the
variable NUMBER. The region number is calculated from the key and
assigned to the variable REGION.

VPS Guide to Programming Languages 83

Chapter 8: PL/I

/file unit=(disk,name=stock),dsn=ur.plgl00.stock,disp=(new,keep),
/ recfm=v,blksize=118,dsorg=da,keylen=4,space=(trk, (30))
/load pliopt
crr3: proc options(main);
dcl stock file record keyed env(regional(3)),
1 card,
2 number char(4),
2 author char(25) var,
2 title char(50) var,
2 qtyl fixed dec(3),
1 book ctl,
2 (13,14) fixed dec(3),
2 qty2 fixed dec(3),
2 descn char(x),
(11,12,x) fixed dec(3),
inter fixed dec(5), region char(8),
eof bit(l) init(’0’b);
on endfile (sysin) eof="1"b;
open file(stock) sequential output;
next: do while(-eof);
get file(sysin) list(card);
ll=length(author); 12=length(title);
x=11+12;
allocate book;
13=11; 14=12;
qty2=qtyl; descn=author]||title;
inter=(number-1000)/225;
region=inter;
write file(stock) from(book) keyfrom(number||region);
end next;
close file(stock);
stop;
end crr3;
/data
“1015" ‘w.shakespeare’ "julius caesar’ ‘5’
“1322° ’a.a.milne’ ’‘winnie the pooh’ 3’
"3078" “t.s.white’ ’“the once and future king’ ‘4’
"3089" ’j.h.porter’ ‘the vps handbook’ ‘32’

In the next example the file is wupdated directly. If the CODE read
from SYSIN is ‘A" the entry in the file is deleted, if CODE is ‘I’ the
number of COPIES is subtracted from the quantity and the record is
rewritten, or if the CODE is ‘R’ the number of COPIES is added to the

quantity and the record rewritten.

84 VPS Guide to Programming Languages

Chapter 8: PL/I

/file unit=(disk,name=stock),dsn=ur.plgl00.stock,disp=o0ld
/load pliopt
crr4: proc options(main);
del stock file record keyed env(regional(3)),
inrec char(110) var,
1 book based(p),
2 vlen fixed bin(15),
2 (13,14) fixed dec(3),
2 qty2 fixed dec(3),
2 descn char(75),
1 card,
2 number char(4),
2 copies fixed dec(3),
2 code char(1),
region char(8), inter fixed dec(5),
eof bit(l) init(’0’b);
on endfile(sysin) eof="1"b;
open file(stock) direct update;
next: do while(-eof);
get file(sysin) list(card);
inter=(number-1000)/225;
region=inter;
if code="a’ then delete file(stock) key(number||region);
else do;
read file(stock) into(inrec) key(number||region);
p=addr(inrec);
if code="r’ then qty2=qty2+copies;
else qty2=qty2-copies;
put edit (number,substr(descn,1,13),substr(descn,13+1,14),
qty2) (col(1),x(2),3(a,x(1)),f(4));
rewrite file(stock) from(inrec) key(number||region);
end;
end next;
close file(stock);
stop;
end crré;
/data
'56?3' '4' lif
1121&.' ’ll Jrf
130871 12.' fal‘

Computing Center Supplied Subroutines

As discussed on page 77 the Computing Center provides a number of
subroutines to supplement those available from IBM. The following
describes the more useful of these:

1) To specify a VPS library file name to be read from a LIBIN unit =

CALL OPEN(index,file, ddname’,ret,level)

Where -

VPS Guide to Programming Languages 85

Chapter 8: PL/I

"index" is a character(8) variable containing the eight character
index name. If omitted or blank, the default of USERLIB will be
used.

"file" is a character(8) variable containing the eight character
file name.

"ddname" is the name, in single quotes, as specified in the PL/I
declare statement for the output file. (This corresponds to the
NAME= subparameter on the /FILE statement.)

"ret" is an integer variable containing the sum of the return codes
which the subroutine is to ignore. If '"ret" has a value of 0 or
if it 1is omitted and an error occurs, or if an error occurs
which is not specified in '"ret", a message will be printed
indicating the error and the job will be terminated. Otherwise,
the value of '"ret" is replaced with the actual return code and
control is returned to the calling program. The return codes
are:

- successful open
invalid unit number (unit type not LIBIN)
— invalid file name
= file not found
16 — index not found
32 - access to file disallowed
64 - unable to enqueue
128 - library volume not mounted
256 - permanent I/0 error
512 - storage unavailable for processing

Lo
I I

I

Unmaskable return codes are:

1 = no corresponding /FILE statement found
3 - number of parameters in call in error
5 = argument list invalid

"level" is an integer variable containing the resolution level for
any /INCLUDE statement which may appear in the file. If omitted

the default for that file will be used. (See the VPS Handbook
for a complete description of the resolution level.)

Note that to use this subroutine correctly, the programmer must
supply a corresponding /FILE statement having the following format:

/FILE UNIT=(LIBIN,NAME=ddname)

Where ddname is the name assigned to the input file in the PL/I
program.

86 VPS Guide to Programming Languages

Chapter 8: PL/I

2) To save or replace a VPS library file with the contents of a
LIBOUT unit -

CALL CLOSE(index,file, “ddname’, ‘type’,ret)

Where -

"index" is a character(8) variable containing the eight character
index name. If omitted or blank, the default of USERLIB will be
used.

"file" is a character(8) variable containing the eight character
file name.

"ddname" is the name, in single quotes, as specified in the PL/I
declare statement for the output file. (This parameter
corresponds to the NAME= subparameter of the /FILE statement.)

"type" is an integer variable whose high order byte is one of the
following characters:

S - Save the information as a new VPS library file then clear
and rewind the LIBOUT unit.

R - Replace an existing VPS library file with the information
then clear and rewind the LIBOUT unit.

D - Clear and rewind the associated LIBOUT wunit wihtout saving
the contents.

"ret" is an integer variable containing the sum of the return codes
which the subroutine is to ignore. If 'ret" has a value of 0 or
is omitted and an error occurs, or if an error occurs which is
not specified in "ret", a message will be printed and the job
terminated. Otherwise, the value of "ret" is replaced with the
actual return code and control 1is returned to the calling
program. The return codes are:

0 - successful close
2 - invalid unit number (unit type not LIBOUT)
4 - invalid file name
8 = null file
16 = index not found
32 - write access disallowed
64 — name already in use
128 — insufficient library space available
256 - permanent 1/0 error
512 - storage unavailable for processing
1024 - no space in index

Unmaskable return codes are:

- no corresponding /FILE statement found
- number of parameters in call in error
argument list invalid

- type parameter missing or invalid

~ W -
I

VPS Guide to Programming Languages 87

Chapter 8: PL/I

Note that to use this subroutine correctly, the programmer must
supply a corresponding /FILE statement having the following format:

/FILE UNIT=(LIBOUT,NAME=ddname)

Where ddname is the name assigned to the output file in the PL/I
program.

Notes on Efficient Debugging

Though the PL/I Optimizing Compiler provides one of the most
powerful and flexible of the higher level languages, it can be
notoriously expensive to run. Numerous compilations while debugging a
program will take their toll in computing dollars and programmer
frustration. However, by employing the following procedures the PL/I
programmer can liberate her/himself from becoming a slave to the
terminal.

1. No matter how good a programmer you think you are, or how small
your program is, if you think you are not going to have syntax errors
in the first compilation of a new program, you probably also still
believe in the Tooth Fairy. Always specify NOCOMPILE (NC) on the /PARM
statement when compiling a new program until no syntax errors are
detected. Without NC the Optimizer will try to compile your program
even though it may find syntax errors that would result in a program
that cannot execute.

2. For medium to large programs which have been syntax checked, the
main memory allocation should be increased to 4 segments (/LOAD
PLIOPT,NSEGS=4). This will cut down on the use of the spill file and
decrease compilation time.

3. When debugging programs which contain external procedures, after
the external procedures have been debugged, they should be run from
object rather than recompiling the entire program each time a source
change has been made to a single procedure.

4. When debugging a program containing arrays, enabling the
SUBSCRIPTRANGE condition will detect errors 1in subscript values.
Similarly, programs using the SUBSTR built—-in function can be checked
for valid string assignments by enabling the STRINGRANGE condition.
Conditions can be enabled by specifying the condition in a condition
prefix. A condition prefix 1is a list of one or more condition names,
enclosed in parentheses and separated by commas, and connected to a
statement (or a statement label) by a colon. The condition prefix can
be connected to a PROCEDURE statement and the conditions will be
enabled for the entire procedure. In the following example STRINGRANGE
is enabled for the procedure SCAN:

(stringrange):
scan: proc options(main);

end scan;

88 VPS Guide to Programming Languages

Chapter 8: PL/I

5. Liberal use of PUT statements can help to find errors in programs
using based variables. Printing out some part of a structure addressed
by the based variable is in most cases the only way of detecting
whether the based variable is correct. If the structure contains no
printable fields, define one for the purposes of debugging - it can
always be deleted after the program is working.

6. Due to the way PL/I buffers its output records, programs which
abnormally terminate (a PSW and register dump appears as the last
thing in your program listing or your program is cancelled - either by
you or VPS) do not include the 1last line of output produced by your
program. For debugging purposes, using a PUT SKIP; statement after
each PUT statement will print the buffer when it is produced. The "put
skips" should be removed after the program is debugged. Note that all
output is printed when the program terminates normally or an
on—-condition is raised.

7. PL/I provides a column on the lefthand side of the source listing
indicating the statement nesting level. This information should be
checked thoroughly for improper nesting in programs with multiple
nesting levels. It is also a good idea to label BEGIN and DO
statements and place that label in the appropriate END statement.

VPS Guide to Programming Languages 89

Chapter 9: SNOBOL

SNOBOL is a string manipulation language developed at Bell Telephone
Laboratories in the early 1960s. The compiler currently available on
VPS is SNOBOL4 Version 3.5 and the language it accepts is fully
documented in "The SNOBOL4 Programming Language" (Prentice-Hall,
1971). SNOBOL has not been modified to run under VPS - rather, special
VPS system support programs provide an "0S/VS" environment in which
this compiler runs. The following sections describe how to use SNOBOL
on VPS.

Invoking SNOBOL

The SNOBOL compiler is invoked by placing the following VPS control
statement before the first SNOBOL source statement of a program:

/INCLUDE SNOBOL4

Normally, this is done by placing the /INCLUDE statement first in a
source file with the VPS editor when the source file is created.
Alternatively, the file name SNOBOL4 may appear first in a 1list of
files to be executed by the /EXEC statement, as in:

*GO
/EXEC SNOBOL4,source file name,...

The file SNOBOL contains the necessary VPS control statements to
invoke the SNOBOL compiler and set up the default VPS environment for
program execution. For execution at the terminal the following default
/FILE statements are used:

/FILE UNIT=(DISK,NAME=LINKLIB),DSNAME=<{snobol library>
/FILE UNIT=(TERMOUT,NAME=FT06F001)

JFILE UNIT=(LIBIN,NAME=FT05F001),DSNAME=<{input stream>
/FILE UNIT=(LIBOUT,NAME=FT0O7F001),DSNAME=%*2

/FILE UNIT=(TERMIN,NAME=FTO9F001)

These /FILE statements may be overridden or new files defined at
execution time by programmer-supplied statements.

Default /FILE Statements

All input/output for SNOBOL is handled by FORTRAN I/0 routines,
which account for the unique names assigned to the NAME= subparameter
of the UNIT= parameter of the /FILE statement. The format of this
parameter is defined as follows:

NAME=FTxxF001
Where “xx” 1is a FORTRAN unit number. Therefore, FORTRAN unit 6 is
FTO6F001, unit 14 is FT14F001, etc. The /FILE statements shown above

are used by SNOBOL variables as shown below or can be
programmer-defined using functions discussed later in this chapter.

VPS Guide to Programming Languages 91

Chapter 9: SNOBOL

The default /FILE statements and their associated SNOBOL variables
are described below:

File Use
LINKLIB SNOBOL library - defined as the work file

containing the SNOBOL compiler.

FTO5F00L SNOBOL variable INPUT - defined as the input
stream after the SNOBOL END statement.

FTO6F001 SNOBOL variable OUTPUT - defined as terminal
output if executing at the terminal or the high
speed printer if executing on the batch.

FTO7F001 SNOBOL variable PUNCH - defined as the *2 file if
executing at the terminal or as the card punch if
executing on the batch.

The following shows a SNOBOL source and data file ready for
execution. The program (which deletes any ‘%’ found in column 1) uses
the input stream for input and writes the output to the *2 file. Note
that the SNOBOL UNLIST option is used to suppress the source listing.

/inc snobolé

- unlist
&trim = 1
main in = input :f(end)
in pos(0) "*’ =
punch = in :(main)
end

this is some test data...

* <~ this asterisk will be deleted from this output record
if this program was run

* this one too ...

Input/Output Associations

Besides the default I/0 variables available in SNOBOL, the
programmer may define associations using the 1INPUT and OUTPUT
functions. The forms of the functions are shown below:

INPUT(name , number, length)
OUTPUT(name , number, format)

Where ‘name’ is the variable name, ‘number’ is the FORTRAN unit
number, ‘length’ is the record length, and ‘format’ is a FORTRAN
format. For example, the default T1/0 variable associations correspond
to the following:

INPUT(* INPUT’,5,80)
OUTPUT(“OUTPUT", 6, "(1x,13241)")
OUTPUT(“PUNCH’,7,’(8041)")

Whenever a non-defaulted unit number is used, a corresponding /FILE

92 VPS Cuide to Programming Languages

statement must also appear in the job stream.

In the following example, the program

Chapter 9: SNOBOL

shown earlier has been

modified to write the output to the *2 file and a tape file.

/file unit=(tape,name=ft12f001),dsn=snoout,vol=ser=outtape,
/ recfm=fb,lrecl=80,blksize=8000,disp=0ld,label=(1,nl)

/inc snobolé

- unlist
output(‘tape’,12,"(80al)”)
&trim = 1
main in = input
in pos(0) “*° =
punch = in
tape = in
end

If the above example was saved as the VPS library file SNOSTRP, to
execute it using the file TEXT as input, the following could be used:

%GO
/ex snostrp,text

VPS Guide to Programming Languages

93

Chapter 10: WATFIV

WATFIV, which was developed at the University of Waterloo, is a
superset of the FORTRAN IV G language. The name WATFIV stands for

Waterloo FORTRAN IV. WATFIV is designed for the rapid compilation of
small FORTRAN programs and provides outstanding source and object
program diagnostics.

WATFIV provides extensive diagnostic tools including an interactive
debugging facility for debugging programs at the terminal. It has
proved to be about ten times faster than FORTRAN Gl in terms of
compilation and only 20 to 40 per cent slower than FORTRAN Gl in terms
of execution. Thus the use of WATFIV is highly recommended whenever
the user is debugging a FORTRAN program.

The Language Supported by WATFIV

Besides supporting the FORTRAN language accepted by the IBM FORTRAN
compilers, WATFIV also accepts a number of extensions to that
language. The most powerful of these is a set of structured
programming statements designed to enhance the power of the standard
FORTRAN. The specifications of WATFIV, including extensions to the
FORTRAN language, are contained in the publication "FORTRAN IV with
WATFOR and WATFIV" by Cress, Dirksen, and Graham (Prentice Hall, 1970)
and as a handout available at the Computing Center.

Invoking WATFIV

WATFIV may be run under the VPS batch or from VPS terminals. The
WATFIV compiler is invoked by use of the following control statement
which must be placed before the first WATFIV statement in a job:

/LOAD WATFIV
This statement will invoke WATFIV with a memory allocation of 3
segments (192K) which is large enough for a program of approximately
150 statements. For larger programs, the NSEGS= parameter of the /LOAD
statement should be used (see The VPS lHandbook).

WATFIV Control Statements

WATFIV recognizes the following control statements:
$JOB <options>

This statement is required and is wused to specify WATFIV compiler
options. It must immediately precede the first WATFIV source statement
of a program.

CSOPTIONS <options>

This statement is optional and can be used to redefine compiler
options during compilation. It may appear between any 2 WATFIV source

VPS Guide to Programming Languages 95

Chapter 10: WATFIV

statements.
SENTRY

This statement is used to separate source statements from program data
in the input stream. It is required even if no data appears 1in the
input stream.

C$PROFON

This statement is wused to activate the collection of PROFILER
statistics (see ‘Compiler Options’ later in this chapter for further
information). It may appear between any 2 WATFIV source statements.

CSPROFOFF

This statement 1is used to disable the collection of PROFILER
statistics. It may appear between any 2 WATFIV source statements.

As with the /LOAD WATFIV statement, each control statement must
begin in column 1. WATFIV allows multiple program executions per job
as long as each program source is preceded by a $JOB statement and
followed by a $ENTRY statement. The standard WATFIV job setup is shown
below:

/LOAD WATFIV
$JOB option,option,...

(WATFIV source statements)
SENTRY

(data, if any)
$JOB option,option,...

(WATFIV source statements)

SENTRY

WATFIV Compiler Options

The following options may be specified on either the $JOB statement
or the C$OPTIONS statement. Options must start on column 6 of the $JOB
statement or column 11 of the CSOPTIONS statement. The options must be
separated by commas and contain no embedded blanks. Where applicable,
an underline indicates the default option on VPS.

96 VPS Guide to Programming Languages

Chapter 10: WATFIV

Option Description
LIST Controls the printing of a source listing. The
NOLIST default on the terminal is NOLIST. The default

on the batech is LIST.

CHECK Controls the checking of attempted use of
NOCHECK undefined variables at execution time. CHECK will
FREE cause execution to terminate if an undefined

variable is used. NOCHECK will suppress checking.
FREE checks for use of undefined variables but
allows execution to continue.

WARN Controls the printing of all diagnostic messages

NOWARN of a severity less than a fatal error.

EXT Controls the printing of extension messages -

NOEXT indications of any WATFIV feature that may not
work under an IBM FORTRAN compiler.

NARROW Controls the printing of PROFILER and XREF output

NONARROW in either 80 character lines (NARROW) or the

standard 133 character lines (NONARROW).

DECIMAL Causes REAL*4 values output under free—format
to appear in a form that is more readable (F20.8)
rather than the standard E-type format.

PROFC Controls the collection of WATFIV PROFILER
PROFP statistics output. PROFILER output will be
PROFA generated for sections of a program between
PROF C$PROFON and C$PROFOFF statements. If C$PROFOFF
NOPROF is not encountered in a program and PROFC,

PROFP, PROFA, or PROF is specified, statistics
will be gathered from the C$PROFON statement on.
PROFC specifies the printing of the profile count
option. PROFP specifies the printing of the
percentage histogram option. PROFA specifies the
printing of the absolute histogram option. PROF
specifies the printing of all of the above

options.
XREF Controls the printing of the cross-reference.
NOXREF XREF produces a full cross-reference at one
XREFP line per item. XREFP produces a more economical

packed cross-reference.

WATFIV Input/Output Units

As was discussed above, to invoke WATFIV under VPS, a /LOAD WATFIV
control statement must be placed before the first WATFIV statement of
a job. In reality, not only does the /LOAD statement call the
compiler, but it also invokes a VPS internal procedure. A VPS
procedure is a set of VPS control statements needed to run average
source programs. These control statements may be overridden at

VPS Guide to Programming Languages 97

Chapter 10: WATFIV

execution time by programmer-supplied statements. The WATFIV procedure
invoked using /LOAD WATFIV at the terminal is shown below:

/FILE UNIT=(TERMOUT,NAME=FTO6F001)

/FILE UNIT=(LIBIN,NAME=FTO5F001),DSNAME=<input stream>
/FILE UNIT=(LIBOUT,NAME=FTO7F00l),DSNAME=%*2

/FILE UNIT=(TERMIN,NAME=FT09F001)

/LOAD WATFIV

This procedure provides /FILE statements for standard FORTRAN units
5, 6, 7, and 9. FORTRAN units, or reference numbers, refer to files
defined on /FILE statements. The format of the NAME= subparameter of
the UNIT= parameter is as follows:

NAME=FTxxF001

Where ‘xx’ 1is the FORTRAN unit number. Therefore, FORTRAN unit 6 is
FTO6F001, FORTRAN unit 14 is FTI14F001, etc.

The default /FILE statements shown above in the VPS internal
procedure are shown below:

File Use

FTO5F001 FORTRAN unit 5 - defined as the input stream
after the SENTRY statement.

FTO6F001 FORTRAN unit 6 - defined as terminal output if
executing at the terminal or the high speed
printer if executing on the batch.

FTO7F001 FORTRAN unit 7 - defined as the *2 file if
executing at the terminal or as the card punch if
executing on the batch.

FTO9F001 FORTRAN unit 9 - defined as terminal input if
executing at the terminal or the input stream
if executing on the batch.

WATFIV I/0 processing is compatible with the IBM FORTRAN Gl and H
Extended compilers. Thus WATFIV supports such facilities as sequential
and direct access work file processing in the same manner as the IBM
FORTRANs. All VPS input/output units, as described in Chapter 43 of
this manual, are supported by WATFIV.

98 VPS Guide to Programming Languages

WATFIV Sample Job

Chapter 10: WATFIV

The following shows the creation of a WATFIV program using the VPS

editor and the execution of the job at the terminal.

*G0
Jedit
INPUT
/load watfiv
$job
read(5,1) a,b
1 format(2£4.0)
c=a+b
write(6,2) c
2 format(’ the sum is ’,f4.0)
stop
end
Sentry
2 7

EDIT

save adder
*SAVED

*GO

/exec adder

$JOB NOLIST

SENTRY

THE SUM IS 9.

STATEMENTS EXECUTED= 3

CORE USAGE OBJECT CODE= 336 BYTES, ARRAY AREA= O BYTES,

TOTAL AREA AVAILABLE= 54448 BYTES

DIAGNOSTICS NUMBER OF ERRORS= O,
NUMBER OF EXTENSIONS=

COMPILE TIME= 0.03 SEC,EXECUTION TIME= 0.01 SEC,

NUMBER OF WARNINGS= O,

8.49.08 WEDNESDAY 3 OCT 79 WATFIV - JUN 1977 VILé

C$STOP
*GO

VPS Guide to Programming Languages

99

Chapter 10: WATFIV

Interactive Debugging

WATFIV provides facilities for monitoring the execution of a WATFIV
program interactively at a terminal. No additions or changes to a
program are required in order to wuse this facility. A special command
set 1is provided to allow the programmer to trace portions of a
program, halt execution at various points, display or modify program
variables, alter logic flow of the program and correct certain
execution time errors interactively. Note that these commands do not
change the program source, that must be done by the programmer with
the VPS editor.

To invoke the WATFIV interactive debugging facilties place the
following VPS control statement immediately after the /LOAD WATFIV
statement:

/PARM XDEBUG

This will cause WATFIV to activate the interactive debugging facility

immediately after compilation of the program but before execution. At
this point, WATFIV will ask the user to enter one of the WATFIV Debug
commands with the following prompt:

CMD:

Each time the debugging facilities are entered during execution of the
program, this prompt will appear. The Debug commands which can be used
are listed below.

Command Description
TRACE 1lnum,range Turns on statement execution tracing from

line number “lnum’ for a range of ‘range’
lines. Only one tracing range can be in
effect at one time.

OFF Turns statement tracing off.

STOP 1num Specifies a line number “lnum” at which the
program is to be stopped and WATFIV Debug

entered. Only one stop can be in effect at a
time. When program execution halts the stop

is cleared.

RUN Resume execution where the program stopped.
GOTO lnum Resume execution at line numbered “lnum’.
a? Display the contents of variable “a”’, where

‘a’” may be a simple variable, array name, or
array element.

100 VPS Guide to Programming Languages

Chapter 10: WATFIV

a = value Modify the contents of variable ‘a’, where

‘a’” may be a simple variable, array name, or

array element.

EXIT Terminates the debug session and returns to
VPS.

STEP n Execute ‘n’ statements before returning to
Debug.

If an error is detected in execution while running under WATFIV
Debug, the error message will be printed and the interactive debugging
facility will prompt the programmer for Debug commands.

Interactive Debugging Sample Program

In the following example a WATFIV program has been created in the
VPS library file WATPROG. The program contains an infinite loop. The
program is listed and then executed using the WATFIV interactive
debugging facilities.

*GO
/list watprog
/LOAD WATFIV
/PARM XDEBUG
$JOB LIST
READ(5,1,END=99) A,B
1 FORMAT(2F4.0)
5 C=A+B
WRITE(6,2) C
2 FORMAT(‘ THE SUM IS ‘,F4.0)

GO TO 5
99 STOP
END
SENTRY
2 7

*GO

VPS Guide to Programming Languages 101

Chapter 10: WATFIV

The following is the debugging session for this program.

*GO
/exec watprog

§JOB LIST
1 READ(5,1,END=99) A,B
2 1 FORMAT(2F4.0)
3 C=A+B
4 WRITE(6,2) C
5 2 FORMAT(” THE SUM IS “,F4.0)
6 GO TO 5
7 99 STOP
8 END
$ENTRY

CMD:

trace 1,999

CMD:

stop 3

CMD:

rumn

LINE 1

STOPPED AT LINE 3

CMD:

b?

0.7000000E 01

CMD:

step 1

(4) CMD:

c?

0.9000000E 01

CMD:

stop 3

CMD:

run

THE SUM IS 9.
STOPPED AT LINE 3
CMD:
a?

02.000000E 01
CMD:
a=16
CMD:
b=4
CMD:
step 1
(4) CMD:
el

0.2000000E 02
CMD:

102 VPS Guide to Programming Languages

Chapter 10: WATFIV

stop 3

CMD:

run

THE SUM IS 20.
STOPPED AT LINE 3

CMD:
exit
STATEMENTS EXECUTED= 11

CORE USAGE OBJECT CODE= 368 BYTES,ARRAY AREA= 0 BYTES,
TOTAL AREA AVAILABLE= 54448 BYTES

DIAGNOSTICS NUMBER OF ERRORS= 0, NUMBER OF WARNINGS= O,
NUMBER OF EXTENSIONS= 0

COMPILE TIME= 0.04 SEC,EXECUTION TIME= 0.20 SEC,
11.53.29 WEDNESDAY 3 OCT 79 WATFIV - JUN 1977 VIL6

VPS Guide to Programming Languages 103

Chapter 11: XPL

XPL dis a compiler generator that was developed at Stanford
University and the University of California at Santa Cruz between 1966
and 1969. The compiler generating language implemented in XPL is
documented in "A Compiler Generator" (Prentice-Hall, 1970).

The compiler itself is an XPL program that translates compiler
generation statements supplied by the programmer into an object form.
The XPL object is then loaded and wused to process input supplied also
by the program. Both XPL and the XPL generated object run under a
submonitor that provides an 0S/VS interface. Special VPS system
support programs provide an "0S/VS" environment in which the
submonitor, XPL, and the translated object run. XPL and its submonitor
have not been modified to run under VPS.

Invoking XPL

The XPL compiler is invoked by placing the following control
statement before the first XPL source statement in an XPL program:

/LOAD XPL

Normally, this is done by placing the /LOAD statement first in a
source file with the VPS editor when the source file is created.

In reality, not only does the /LOAD statement call the XPL compiler,
but it also invokes a corresponding VPS internal procedure. A VPS
internal procedure is a set of VPS control statements needed to run
average source programs. These control statements may be overridden at
execution time by programmer-supplied statements. The XPL procedure
invoked using /LOAD XPL is shown below:

/FILE UNIT=(DISK,NAME=FILEl),SPACE=(TRK,(10,5)),RECFM=F,LRECL=18000,
/ BLKSIZE=18000

/FILE UNIT=(DISK,NAME=FILE2),SPACE=(TRK,(10,5)),RECFM=F,LRECL=18000,
/ BLKSIZE=18000

/FILE UNIT=(DISK,NAME=FILE3),SPACE=(TRK,(10,5)),RECFM=F,LRECL=18000,
/ BLKSIZE=18000

/FILE UNIT=(DISK,NAME=PROGRAM),DSNAME=UR.CCMM.XPL.XCOM.COMPILER,

/ DISP=SHR

/FILE UNIT=(LIBIN,NAME=INPUT2),DSNAME=XPLLIBRY,DISP=SHR

/FILE UNIT=(LIBIN,NAME=SYSIN),DSNAME=<input stream>

/FILE UNIT=(TERMOUT,NAME=SYSPRINT)

/FILE UNIT=(LIBOUT,NAME=SYSPUNCH),DSNAME=%2

/LOAD XPL,NSEGS=4

Note that the space allocations for FILEl, 2, and 3 and the memory

allocation (NSEGS) are large enough to compile the XPL compiler itself
(4200 statements).

VPS Guide to Programming Languages 105

Chapter 11: XPL

Procedure Files

The /FILE statements in the XPL procedure are described below:

File

FILEl

FILE2

FILE3

INPUT2

PROGRAM

SYSIN

SYSPRINT

SYSPUNCH

These files

Use

Defined as a temporary work file used to hold
the output XPL object of the compiler which,
in turn, is loaded by the submonitor and used
to process the programmer-supplied input.

Defined as a temporary work file and used as
a scratch file by the XPL compiler.

Defined as a temporary work file and used as
a scratch file by the XPL compiler.

Defined as a library file containing the
dynamic string compactification procedure.

Defined as a permanent work file -
UR.CCMM.XPL.XCOM.COMPILER - containing the XPL
compiler unless ANALYZE is specified on the
/JOB statement in which case it is -
UR.CCMM.XPL.SYNTAX.ANALYZER - containing the
XPL syntax analysis program (see below).

Defined as the input stream - during
compilation, from the first XPL statement to
the /DATA statement (see below); during
during execution, records after the /DATA
statement. Used when reading from

INPUTO or INPUTI.

Defined as the terminal when executing at the
terminal or as the high-speed printer when
executing on the batch. Used by XPL and the
user program as the output listing files -
OUTPUTO or OUTPUTI.

Defined as the *2 file when executing at the
terminal or as the card punch when executing
on the batch. Used by XPL programs as the
output file OQUTPUT2.

may be overridden or other files defined at executio

time by placing the appropriate /FILE statement(s) before the /LOA
statement in the job stream.

Files are referenced in XPL programs using the pseudovariables

input(i)

106

output(i)

where: i =0, 1, 2, 3

VPS Guide to Programming Languages

Chapter 11: XPL

These pseudovariables correspond to the ddnames — INPUTO, INPUTLl, ...,
OUTPUTO, OUTPUTl, etc. However, as noted above, for some unknown
reason the XPL submonitor translates the ddnames INPUTO and INPUTI to
SYSIN, OUTPUTO and OUTPUTL to SYSPRINT, and OUTPUT2 to SYSPUNCH.
Therefore, if the programmer wishes to override these files, instead
of placing /FILE statements in the job stream with the ddnames INPUTO,
INPUT1, etc.; the ddnames SYSIN, SYSPRINT, and SYSPUNCH must be used.
0f course, if you wish to override INPUT2 or define INPUT3 or OUTPUT3
that ddname must be used. (At this time we would like to thank the
authors of XPL for their contribution to the field of human
engineering.)

Separating Source from Program Input

As shown above, the XPL compiler and, possibly, the user program may
read from the file SYSIN. The /DATA statement is used to separate
source statements in the input stream from any records which are to be
read by the program from SYSIN. A standard XPL job stream has the
following structure:

/LOAD XPL

XPL source statements
/DATA

program input

Other XPL Files

Two other files of interest to XPL programmers can be found in the
VPS 1library. The file XPLBNF contains the BNF grammar for XPL
expressed in a form suitable for input to the syntax analysis program.
The file XPLSKELE contains the XPL source for the skeletal compiler.
Part or all of these files may be incorporated into a programmer’s
source file using the VPS editor.

The /JOB Statement

The /JOB statement may be used to select the type of processing
desired. If the /JOB statement is not used, XPL source statements will
be compiled with the XPL compiler and the resulting XPL object will be
loaded and executed. Using the [JOB statement the programmer may
request compilation only (COMPILE), execution only (EXECUTE), or the
XPL syntax analysis program (ANALYZE).

If used, the /JOB statement must follow the /LOAD XPL statement in
the job stream. The XPL /JOB statement has the following format:

/JOB COmpile
EXecute
ANalyze

Note that the keywords may be abbreviated down to the first two
characters. If COMPILE is specified, the XPL compiler will be used to

VPS Guide to Programming Languages 107

Chapter 11: XPL

compile the XPL source statements writing XPL object to FILEl. 1If
EXECUTE is specified, input to the XPL (or user) compiler is assumed
to follow the /JOB statement (see '"Separating Compilation from
Execution in Time" below for a complete explanation of the use of this

option). If ANALYZE is specified, the XPL source statements will be
analyzed with the XPL syntax analysis program.

Separating Compilation from Execution in Time

It 1is not necessary to recompile an XPL program each time the
programmer wishes to execute a program if the XPL source has not been
modified. In fact, it is highly advantageous not to recompile since
compilation is costly and time consuming. To avoid recompiling, all
the programmer need do is save the XPL object from an XPL compilation
and then execute the object.

Because of the nature of XPL, saved object can only be kept in a
work file. Before saving any XPL object on VPS the programmer must
first obtain a work file allocation from the Computing Center. The XPL
source program should then be compiled with the compile only option
and a permanent work file created containing the XPL object by
overriding FILEl. In the following example the XPL object is saved in
the work file - ur.prg976.xplobj4:

/FILE UNIT=(DISK,NAME=FILEL),DSN=UR.PRG976.XPLOBJ4,DISP=(NEW,KEEP),
/ RECFM=F ,LRECL=18000,BLKSIZE=18000
/LOAD XPL
/JOB COMPILE
XPL source statements

After the compilation, the program may be executed any number of
times by specifying the execute only option and overriding the PROGRAM
file to wuse the saved XPL object. Note that in this case a /DATA
statement should not be used and the program input should be placed
immediately after the /JOB statement. In the following example, the
object created in the above example is used in execution:

/FILE UNIT=(DISK,NAME=PROGRAM),DSN=UR.PRG976.XPLOBJ4,DISP=SHR
/LOAD XPL
/JOB EXECUTE

program input

ABEND Codes Returned by the Submonitor

The submonitor will return the following user completion codes in
the event of errors:

Code Description
100 Error in opening PROGRAM, SYSPRINT, or SYSIN.
200 Unexpected end of file encountered reading
PROGRAM.
300 I/0 error while reading PROGRAM.

108 VPS Guide to Programming Languages

400

500

800+1

900+i

1000+i

1200+i

1400+i

2000+

2200+

4000

Chapter 11: XPL

Not enough memory to load program.
Invalid request to submonitor.
I/0 error on OUTPUTi.

Reference to OUTPUTi specifies a nonexistent
file.

I/0 error on INPUTi.

Program tried to read past end of file on
INPUTi.

Reference to INPUTi specifies a nonexistent
file.

I/0 error on FILEi.

Program tried to read past end of file on
FILEi.

XPL program requested termination by executing
the statement - call exit;

VPS Guide to Programming Languages 109

Appendix A: The /JOB Statement

The /JOB statement may be used with FORTRAN, PL/I, PASCAL, or COBOL
to pass parameters to the VPS system programs that provide the "0S/VS"
environment in which these compilers and their compiled programs run.
The /JOB statement must appear after the J/LOAD statement and before
the first source or object code record. Multiple /JOB statements may
be placed in the job stream, but continuation is not supported. The
format of the /JOB statement appears below.

/JOB [Go ,LET | JMAP , SEARCH
| NOGO ,NOLETJ , NOMAP ,NOSEARCH
[,PRINT , SUMRY [,SYSLIB=(syslibname ,...?]
,NOPRINT , NOSUMRY ddname
[,MEMBER=1mname] ,JOBLIB=(ddname R |
syslibname
1_“ = 1 AN \ N 3 \ E Ty
LLOC.“ rt;(\|L"-:JT ¢ W= NG Dy Ol 't { |
GO | NOGO -
Specifies whether the program should be executed after it has been
compiled.
LET | NOLET

Specifies whether a program should be executed if, during loading
of the object, unresolved external references are detected.

MAP | NOMAP
Specifies whether the Loader should produce a map of module

locations and entry points.

PRINT | NOPRINT
Specifies whether the Loader should print the informatory message

giving the total length of the loaded program.

SEARCH | NOSEARCH
Specifies whether the Loader should attempt to resolve external
references from the subroutine libraries (see SYSLIB, below).

SUMRY | NOSUMRY
Specifies whether the Loader should print the informatory message
giving the entry point of the loaded program.

VPS Guide to Programming Languages 111

Appendix A: The /JOB Statement

SYSLIB=

Specifies the subroutine library or libraries to be searched to
resolve external references after the object module(s) have been
processed. A single system library name or ddname (from the NAME=
keyword of a /FILE statement) or a list of system library names
and ddnames enclosed in parentheses and separated by commas may be
specified. The libraries will be searched in the order specified.
The default search list for each compiler can be found in the
respective chapter of this manual. If a ddname is specified, a
corresponding /FILE statement must appear in the job stream
defining the subroutine library to be referenced.

MEMBER= (for load module execution only)

Specifies the name of the load module to be loaded into storage
and executed.

JOBLIB= (for load module execution only)

112

Specifies the load module library or 1libraries to be searched for
the load module name specified in the MEMBER= keyword and for any
other load modules which may be loaded during execution. A ddname
(from the NAME= keyword of a /FILE statement) or list of ddnames
and/or system library names enclosed in parentheses and separated
by commas may be specified. If a ddname 1is specified, a
corresponding /FILE statement must appear in the job stream
defining the load module library to be referenced.

VPS Guide to Programming Languages

Appendix B: Creating and Executing Load Modules

Unlike PLC, WATFIV, and ALGOLW (to name a few), the FORTRAN, PL/I,
and COBOL compilers and the Assembler are designed to produce object
modules which can be saved in the VPS library and executed at a later
time, bypassing the compilation phase. In the chapters describing each
of these compilers we have attempted to explain ways in which
execution from object can dramatically improve the efficiency of
running jobs.

This improvement can be taken a step further by creating load
modules out of object for programs which are executed frequently and
modified infrequently. When object is loaded into memory by the VPS
Loader, among other things, external references must be resolved and,
if necessary, compiler subroutines (in load module form) loaded. Each
time object is executed this process must be performed. For load
modules, this process takes place only once, when the load module is
created using the VPS Linkage Editor.

It is not our intent to document the Linkage Editor which is fully
described in the VPS Utilities Manual, rather we assume the reader is
familiar with the Linkage Editor and in this section we will explain
its use when creating load modules from FORTRAN, PL/I, and COBOL
programs.

Creating Load Modules

There are two prerequisites which must be satisfied before a load
module can be created on VPS. They are:

1) The program or programs must be compiled and object produced.

2) A work file allocation must be obtained from the Computing
Center for the load module library. This is necessary since
load modules can exist only in work files.

Assuming these tasks are accomplished, load modules may now be
created and placed in the work file. It should be noted that multiple
load modules may be placed in the same work file (if it is large
enough) and each load module is wholly independent of the other
modules in the work file. In other words, a work file may contain
FORTRAN, PL/I, COBOL, etc. programs in load module form.

As documented in the VPS Utilities Manual, the Linkage Editor has a
number of different options which may be passed to it on a /JOB
statement. For example, when creating a new load module Ilibrary,
FORMAT must be specified on the /JOB statement. Another important
option is the SYSLIB= parameter which defines the list of load module
libraries that the Linkage Editor is to search to resolve external
references. Below is the minimum list the programmer must specify for
the indicated compiler:

VPS Guide to Programming Languages 113

Appendix B: Creating and Executing Load Modules

The FORTRAN compilers -

/JOB SYSLIB=SYS.FORTLIBX
The PL/I compiler -

/JOB SYSLIB=SYS.PLIXLIB
The COBOL compiler -

/JOB SYSLIB=SYS.COBLIB

In the following example a load module library is created for a
FORTRAN program, whose object is in the library file AMAIN, and two
subprograms, whose object is in the file SUBS. The load module is
given the name AMAINF.

/FILE UNIT=(3,DISK),DSNAME=UR.PLG100.LOADLIB,DISP=(NEW,KEEP),
/ SPACE=(TRK,6),DSORG=DA,0PT=FORMAT

/LOAD LKED

/JOB FORMAT MAXMEM=10 LIST MAP SYSLIB=SYS.FORTLIBX

/INC AMAIN,SUBS

NAME AMAINF

In the next example another load module is placed in the same
library. The PL/I program object is included from the *2 file and the
Linkage Editor will search PLIXLIB and TEKLIB for external references.
The load module is given the name PLOT4.

/FILE UNIT=(3,DISK),DSNAME=UR.PLG100.LOADLIB,DISP=0LD
/LOAD LKED

/JOB SYSLIB=(SYS.PLIXLIB,SYS.TEKLIB) LIST MAP

/INC *2

NAME PLOT4

Executing Load Modules

After a load module 1is created with the Linkage Editor it can then
be used in place of the object to execute the program. For Assembler
load modules which do not require the "0S/VS" enviromment for
execution, the /LOAD statement as documented in the VPS Handbook
should be wused. For FORTRAN, PL/I, and COBOL load modules and
Assembler load modules which require the "0S/VS" environment the
following /LOAD statement must be used:

/LOAD OSLOAD

OSLOAD will invoke the system programs that provide the "0S/vS"
environment.

Following the /LOAD statement a /JOB statement must appear with the
parameters MEMBER=, indicating the load module name to be executed,
and JOBLIB=, indicating the /FILE statement which defines the load
module library. Note that a /FILE statement must appear in the job
stream defining the load module library. Both parameters are fully

114 VPS Guide to Programming Languages

Appendix B: Creating and Executing Load Modules

documented in Appendix A. For PL/I or COBOL load modules the JOBLIB
list must contain either 8YS.PLIXLIB, for PL/I, or SYS.COBLIB, for
COBOL, since these programs require run time routines from the
appropriate library that are not linked into the load module (commonly
known as transient routines). For PL/I or COBOL load modules which use
the Sort/Merge Package, the JOBLIB list must contain SYS.SORTLIB.

Like FORTGl, FORTX, PLIOPT, etc., OSLOAD invokes a VPS internal
procedure which defines a number of default /FILE statements available
for execution. The /FILE statements defined in this procedure are the
same as those documented for execution in the FORTRAN and PL/I
chapters of this manual. If any /FILE statements are to be overridden
or others defined, they must appear before the /LOAD OSLOAD statement
in the job stream.

If data is to be read from the input stream. It should be placed
immediately behind the /JOB statement (/DATA statement should not
appear before the data).

In the following example the load module PLOT4 is executed out of
the work file created in the previous examples. Data in the library
file PLOTSIN is to be read from the input stream (SYSIN) and a tape
file created (PLOT40T).

/FILE UNIT=(DISK,NAME=LINKLIB),DSNAME=UR.PLG100.LOADLIB,DISP=SHR
/FILE UNIT=(TAPE,NAME=PLOT40T),VOL=SER=PLGTPE,LABEL=(1,NL),

/ RECFM=FB,LRECL=120,BLKSIZE=12000,DISP=(NEW,KEEP)

/LOAD OSLOAD

/JOB MEMBER=PLOT4 ,JOBLIB=(LINKLIB,SYS.PLIXLIB)

/INC PLOTSIN

VPS Guide to Programming Languages 115

SENTRY statement description
96

$JOB statement description
95

*DATA statement description
68

*0PTIONS statement
description 68

*PL/C statement description
68

*PROCESS statement
description 68

/FILE statement
description 70
description for PL/I 80
example 71
example for PL/I 81

/JOB use with PL/I 77

/JOB statement
FORTRAN example 49,50
definition 111
use with COBOL 25
use with FORTRAN 49
use with XPL 107

/LOAD
use with COBOL 19
use with PL/I 73

JLOAD statement
use with ALGOL 3
use with FORTRAN 44
use with PASCAL 59
use with PLC 68
use with XPL 105
use with the Assembler 7

/PARM use with PL/I 76

/PARM statement
FORTRAN example 50
use with COBOL 23
use with FORTRAN 48

#ALGOL ALGOL control
statement 3

ZDATA ALGOL control statement
4

ALGOL
AALGOL statement 3
#DATA statement &
compiler options 4
control statements 3
invoking the compiler 3
ALGOLW example 6
Assembler

Index

Index

assembly example 9
execution example 10
invoking 7

options 8

parameters 8
procedure files 7
program execution 9

BASIC
I/0 15
considerations 14
error handling 16
example 16
invoking it 14
language 11

CSOPTIONS statement
description 95
CSPROFOFF statement
description 96
CSPROFON statement
description 96
COBOL
/JOB statement 25
/LOAD control statement 19
/PARM statement 23
ASSIGN clause 23
BASIS compiler directive
38
BATCH compilation 26
COPY compiler directive 38
I/0 28
SYSPRINT dummy status 20,
25
carriage control 38
compiler files 20
compiler options 23
debugging parameters 24
debugging techniques 37
direct files 30
execution time files 21
inhouse subs 34
invoking the compiler 19
literals 38
loader options 25
manuals 19
multiple compilations 24,
26
object files 26
procedure 19
relative record files 32
sample job setup 23
sample program 39
sequential files 29
sort 39

117

subprograms 26

support qualifications 38
symbolic debug parameters
24

user /PARM 27

FORTGI1
/LOAD control statement 44
compiler files 45
invoking FORTRAN Gl 44
procedure 45

FORTRAN
/JOB statement 49
/PARM statement 48
SYSPRINT behavior 49
compiler files 45
compiler options 48
debug facility 56
debugging 56
direct files 52
execution time files 46
i/o 51
inhouse subs 53
invoking a compiler &4
loader options 49
manuals 43
memory requirements 50
object files 50
sequential files 52
which to use 44

FORTX
/LOAD control statement 44
compiler files 45
invoking FORTRAN H Extended

44

procedure 45

GO parameter /JOB statement
111

JOBLIB= parameter
/JOB statement 112,114

LET parameter /JOB statement
111
Linkage editor use 113
Load module
creating 113
executing 114

MAP parameter /JOB statement
111
MEMBER= parameter
/JOB statement 112,114

118

OSLOAD use 114

PASCAL
compiler options 61
example 63

file use 59
invoking 59
listing control 64
memory requirements 61
notes on I/0 61
object code 64
procedure 59
use of /DATA 60
user—defined files 60
PL/C
compiler options 69
control statements 68
facilities 67
files 70
other files 70
running under VPS 68
sample run 72
PL/I
/JOB statement 77
JLOAD control statement 73
/PARM statement 76
compiler files 74
compiler options 76
consecutive file notes 82
consecutive files 81
efficient debugging 88
execution time files 75
files 80
inhouse subs 85
invoking the compiler 73
loader options 77
manuals 73
memory requirements 78
object files 79
procedure 74
regional files 83
unsupported features 80
use of SYSPRINT 78
PRINT parameter /JOB
statement 111

SEARCH parameter /JOB
statement 111

SNOBOL
/INCLUDE statement 91
I1/0 associations 92
default /FILE stmts 91
example 92,93
invoking it 91

SUMRY parameter /JOB

VPS Guide to Programming Languages

statement 111
SYSLIB= parameter /JOB
statement 111

WATFIV
I/0 units 97
compiler options 96
control statements
debug sample program

interactive debugging
invoking under VPS 95

language 95
sample job 99

XPL
compile only 108
execute only 108
invoking it 105
other files 107
procedure 105
procedure files 106

submonitor codes 108

use of /DATA 107
use of /JOB 107

Index

119

