

Preface

This 1is the third in a series of four manuals describing the
features of VPS™ (the other three being - The VPS Handbook, VPS Guide
to Programming Languages, and VPS System Facilities for Assembler
Programmers). The VPS Handbook, which 1is referenced at various times
in this manual, describes in detail the commands and modes of
operation of the VPS system. We suggest users become familiar with
the information contained in the Handbook before attempting to read
this publication.

This is a general purpose manual, in that the commands and programs
described should be useful to a large segment of the VPS user
population.

This manual was produced entirely on VPS using the VPS Editor
(/EDIT) and Script (/SCRIPT), a text preparation program. Both
utilities are fully documented in Chapters 1 and 2.

We would like to acknowledge the following people who wrote some of
the utilities documented in this manual: Don Feinberg (/SORT), Joe

Dempty and Lew Nathan (FILELIST), and Charles Brown (the Linkage
Editor and Loader).

John H. Porter
Marian G. Moore

May, 1980

© 1980 Boston University

VPS is a registered trademark of Boston University

-

Sy

Contents

Introduction « « ¢ o ¢ o« o ¢« s s s & = = =

Section 1: VPS Utility Commands

Chapter 1: /EDIT - The File Editor
How to Read This Chapter . - + « « « =
The /EDIT Command .« « « « = 2 = » o o+ =
General Description of Editor Operatio
Syntax of Editor Commands
On the Special Nature of TOP
Verify and Brief Modes « « « « « &« o & &
Command Suffixes . « « « « & « &« & o & &
The Zone « « « « « & s s s s s s s s =
Logical Expressions =« « + « « « « « - =
Block Editing =« « « + & & o o s o s o o
Editor Programs .« « « s« &+ o + s s + = o
TRAN and NOTRAN . « « « o« & & o o o o =«
Hexadecimal Editing . « « +« « « « « « &
/XEDIT - Editing Large Files
WEDT - Editing Work Files . . « « . . .
Editor Commands . -« « « « &« « o« « & & &
Example FOrmats .+ « « o o s o o s & o
SASMCOM + & v & o o o = o = s = & « &
SASMFIX . & « o ¢ & o s o s s s s s s =
SSEQ « ¢ ¢ 5 % o 5 o8 s s e w b e ow ow s s
ADD & & & o o & s 8 & » & %= s s 2 o2 s
AIN &+ o & o o o o o = = = s s s s s s
ALPH . « « s s o s s s = o 2 o s s s o &»
BLANK & & o o 5 = = « s & % s s o & & &=
BOTH « « ¢ o o & & & 2 2 @ @ 2 & o & & &
BOTTOM « « o o o o o s s s s & s s s »
BRIEF =« « & & o & s o % s s o s o s &
CHANGE o o o o = = 2 o =« o s s = o 3 o 3
COPY v o o + o o & o 3 5 = s s o s & & 3
DELETE « « o « o o s s o s s s ¢ s s + =
DUP & 5 & /e & % & & % W % & ¥ & & fb s
EIJMP « « &« o« & s & s s a s s s & o &« o &
ENOP « o o o s = & & & o 2 3 @ & s & &
EXEC & & & v 0 a0 % # "6 % o % = # & o e o
FILE « & & « & o = s s o o 2 % a 5 « &
FIND o« o o o « o« & 4 s o s & s s s s s @
FLIP & &« 5 o 5 s s s o % # & & s & & @ &
CGET & & &' %l ¥ & % @ @ & % ¥ &9 %
GYRATE .+« « & & & & o s s s s s s s & s &
HEX & ¢ o 4 o » @ o & 5 s s & « & s & =
INPUT .« ¢ o o o o & s o s o s 5 s« s o &
INSERT 4« o = s = o » 5 & s « = s o & & &
JOIN o « « o o o s & 5 o s & o o 5 s a s
LIST o o« o o s o 5 s o 5 5 s 3 & 8 s a o
JOCATE « o & o s & & o o 5 5 s s o & # =
MOVE o « o« & o o o o s s 5 s % s s s 2

Lo

Voo~ W ww

NEXT i s a5 & &% % % % ¥ o @ @ o 6 o @ w5 & & §%9 % & ¢ 62
NOTRAN + v o0 0 % & v 6 a0 @ & & ok w0 e & w & 56 0 % & & % @' % s & 03
OVERLAY s 0 o 2 & umom %09 3 » o coiiw i » » iw o o w w e w0 m w w Of
PRINT 5 o v 0 % oome oo i % % owoiwh w6 % m o vd @ @ m ot ves we & % & G5
QUIT . & o & o o o o s o s = s o 2 2 s s s« o s s + s o s « s« o« +» b6
BEPEAT ¢ & s & & o o % @ & & 8 & &% % & ¢ 0 % o & 8 & 5 % & s« o 67
BEPLACE & & s & ¢ & o o & s & 4 8 9 & & o & s s » o & o s 5 = o 68
REILE v o ¢ ¢ ¢ o o 4 & o o 4 o o o s s o a 5 8 s s s s s+ 8 « « B9
REAVE: o ioiviov » & iie wim w o0 55 o0 @ ® & @ moow s w0 e w w w e AL
BAVE: » o v sin o oo om0 m w o i e meom @ w o mee wm w e e w @ & e B3
SEARCH o o: i w m v opoo 0 8 w0 w ud w0 4 & w0 ien o w i oo @ e A9
BIZE ¢ ¢ % w3 & & % 8 K 0 e a8 $ e s s v e 5 voe T
BPLIT & ¢ & = ¢ o ¢ ¢ & s » = s o » s s s s s o o s s s 2 s s o /8
SWITCH + o « v « o o o s o s & s o s » & = o s s s« o« s s s s « « 80
TOP w woowow w @ veromeoe % % % 0w lwote e & @ 08 W WD B % el W wet e % 9 e B
TRAN o w om0 o % % ier ian 6 % & % w0 %0 % % 8 o e w4 @ ow e wom & s o 82
UNCHANGE o + 2 o o o s % o s o 5 % s #» o s s s s s« s s s s s &« » 83
UP 4 o o 0 o o o @ @ 5 s s s & o 5 8 & s 5 9% 8 s 8 5 0.5 s s o B4
UPFIND o o s o o o o a s 5 o 8 o 8 % o s o 5.5 v v o o 5.2 ¢ » o 85
UPLOCATE « & &+ ¢ ¢ s & & s = = s s 2 s o » s s s s a s s« s s o o 87
VERLFY oo o 5 5 o s @ % % ' 58 %9 % & 0@ % % @ v % & & e ‘BD
EIN oo owoosi 8 & & @ 50 5 % # U8 S 805 & @00 W 9 & % @ 55 & w e 90
ZONE o cowoomie o moimc wo oo 8 owmocwn e e W & % ok e W w e Ge W ww 8 ooe e 9T

Chapter 2: /SCRIPT - The Text ProcesSor . « « « =« « « =« » = « « &« 93
The /SCRIPT Command « « + + « o o o o o s o s s o« s « « s « o « 93
Using /SCRIPT From Terminals « « « « o s o o s s s o o s & « & « 94
Using /SCRIPT From the Batch « + ¢« « ¢ ¢ 4 ¢« « ¢« o o« o o « « « - 94
Notes on the Behavior of /SCRIPT Under VPS + « + « + « . 95
Script Text Formatting « « + « + ¢ o o « o o 2 =+ = s = o« s o« o« &« 95
Preparing Text for Script .+ + + o ¢ o o s o o v« « w 5 s s s oo 96
Script Control Lines +« « « « «¢ & o o o o o o o o o s s o« o« o o o 97
Serdpt Control Words & s o s & 3 4 o & @ o » « 8 % @ & & & a s 97
WlBPE e % 8 ¢ T W s W B o8RRI E ¥ ¥ w s ¥ e e E £ oew e 100
AR e % ¢ e e e o W &b W % s & SR W A % o s % e ¥ ow e 101
Bl o s & @ ow o w om @ ow s e B R B oE e G 8 @ e oan s ¥ e 102
sBM, o o v oo m s om owoe e o e w e e s e e e w ® w e s BOS
SBRY e e omocw e me ow om o omoowm e e e a W wooer G w8 e e e ow w e e we 1RO
BS, & R ¢ & e E o e oE e e W R e AR § B & 8o s 105
OB i g A W RIS 5 ¥ FW S 8 F SME s 5 SNG4 iw e e 106
Sl R E I L R B EE L T EELE L L
e e R R L R E T T EETE I L
o e R Y s TN T T Y)
SGE e e ow ow o oes wn e w0 e ne e D e o UmD e wh o W w er oo @ & o e s L
sDC & ¢ 4 o a s & 5 = 2 % 3 s 8 8 + 8 8 8 a8 & 8 & s & = = = o o 112
LTINS R Rl R R T TR E Y T
sEM o % 5 o s o s 5 s & @ s e s s 5 s w s o wm am s % s e e s w 114
FD 4 ¢ 4 ¢ o & & & & & s s s s s s 3 85 s s & s s s s 2 s s« « « 115
FE! wiir v oo 5 0% W B AW e 8 SRR Y e s ¥ 8w e L16
FM w6 o m m % & & o %0 % @ 0T e v @ e w8 w e ow w 117
3 I L.
P T 10

BV G54 § e lai i s e @l i B 8 8 mon e @ B 8w wmnis & #oe e oa 12T
IHD - - L L - L - - - - - L] . L - L - - - - - - - - - - L L] - - 122

-HE L I L . - L] e . = « 8 * @ LI | . . - .]_23

HM . . 0 .
AV o 0 0 e
T
IM e e s e
JIN o v e e e
JU v v e 0
I
% . P
NC o e .
NF o ¢ & & &
B
OF o o v o
T
PD v e v e
PL . s e e
PN .o s .
PR
PV L o s e
BRA Lo e
RC ¢ ¢ s .
RD
RM
RO
8P e s w e
SR ¢ o o o s
88 o omos ow o
TB « o« o« o« &
i A
M. . e .
TR + ¢ ¢ « &
I8 e % oW e
B v s o« @
AON v w v 0
1 -
Script Example

Chapter 3: /SORT
Sort Keys . .

Saving the Sorted Output

/SORT Example

- LI .
- . T |
L] s s
. w - .
- - .
= e . .
. + = -
- s & &
- . = =
& & & -

s & = @
. = = =
- e @
. = . .
- 8 & =
* = . =

L] & @&
e & = =

s ® -
. LI T]
. @ LI |
. » . e

T] L] .
* = 0w -
- & @ .
- s & -
L] - s
. w s .
LI] -

. » - .
- LI] .
- . &

Library

- a8 -

. LI] . s @» -
. . e - . = -
- . 8 » . . .
. - . » L L]
- - . @ - .
- . = L] -
. w - - @ s @
- . . - O} .
- = & & LR "
- . s = e @

. = = » LI T
® = = = LI s
. "+ & ® = =
- = & = = @ -
L] - . = e =
DR T « & = =

» ® = & =& = @
. e - ® = s =
- L] & = s @
« & = . = ® -
- = & & & @ -
- . = 8+ 8 = =
- - LI . 8 -
- » s & 8 & =
- - & L
. » " s 8 & =
- ® = s LI} -
= s = @ . e -
. . - O . =
. L T & & =
TR T e = s+ =
= = = s & = &
- . LR) = = .

File Sorting

File =« « « &

- . s - s 8 &

Section 2: VPS Utility Load Modules . -

Chapter 4: COPY - File Copying Program .

Chapter 5: Linkage Editor

Linkage Editor Control

NAME Statement
ALIAS Statement
ENTRY Statement

INCLUDE Statement

CHANGE Statement . .« + =«

REPLACE Statement
OVERLAY Statement
INSERT Statement .

Statements .

- - . . . =
. . s 8 s - -
. = - . = -

s 5 8 s = =
P
. . .

s s & = = e =
« & ® s 8w & e

125
126
127
128
130
131
132
133
134
135
136
137
139
140
141
142
143
144

. 145

146
147

148

150
151
152
155
156
157
158
159
161
162
163
164
165

167
167
168
168

169

169

175
175
176
176
177
177

178

178
179
180

Parameters which may be Specified for LKED .
Linkage Editor Job Setup - « « + o & & « « &
Preparing Load Module Libraries
Use of BEP Cards < i + o % % s » o 'a & s s &
Executing Load Modules + &+ + &« & &
LMLIST Program « « » « s » o « « & s « & o o
Overlaid Modules « + o 4 % % % » & & 4 = o &

Chapter 6: Loader -« - + + + = + = s » o « &
Paramaters which May Be Specified For Loader
Job Set-up For Loader . . + + « & + + o o« &
Current System Libraries
Object Deck Formats Accepted by the Loader .
The ESD Utility Program . . - + + « & o + &

Section 3: VPS Utility Programs + « .

Chapter 7: COMPARE - File Comparing . . « . .
Specifying Program Parameters
COMPARE Example « o« o + « o s o « & o « = &

Chapter 8: FILELIST - Listing Files
FILELIST Example « .« « +« « + & o o o o o« o« «

Chapter 9: OS SORT/MERGE Package +« « « + « » &
The Library File — SORTMERG . « &+ + « « « .
Calculating Temporary SORT/MERGE Work Space
SORT/MERGE Control Statements
Examples + . « 4 & 4 o o o o o o o o o & o &
File Merging « « « ¢ o « o « o o o ¢ s o « »
Merging Example .« o« « + o« & o o « & & « &

Chapter 10: TRCASE - Upper/Lower Case File Conversion

Specifying Program Parameters . . . « . . .
Upper and Lower Case « « ¢ « = = = s s o o =
TRCASE Example . « ¢ « « o o & o s « « &« & &

Y
Appendix A: Object Deck Card Formats

FHAEE o w w oo o0 & @ & oo o f0 % @ B Ce Ge m G

180
183
184
184
185
185
186

191
191
193
194
194
196

199

199
199
199

201
201

203
203
204
205
205
205
206

207
207
207

. 208

209

213

Introduction

One thing all computer systems have in common is that they exist to
organize and manipulate information (i.e. data). Some computer
systems are highly specialized in that they are built to handle
specific types of information — such as process control systems, bank
teller systems, and video games. VPS, on the other hand, is a general
purpose computing system which is designed to allow wusers to create,
maintain, and process sets of information (commonly known as files) in
a simple and efficient manner.

This manual describes a number of general utility programs which
may be used on VPS to maintain or manipulate data files. This is by
no means a complete description of all the utilities which exist on
VPS; rather it is a collection of the most general, useful, and widely
used programs supported by the Computing Center for information
handling.

Organization of this Manual

This manual 1is organized into three sections by manner of
invocation of the wutility. The first section describes utility
programs which are initiated wusing a VPS command (e.g. the general
purpose file editor is entered using the /EDIT command). The second
section describes wutilities which exist as load modules and are
initiated using the /LOAD statement (see the VPS Handbook for more
information on /LOAD). The third section describes wutility programs
which are invoked using the /EXEC command (once again, see the VPS
Handbook).

Below is a table showing the wutilities documented here, where they
are located, and a short description of their function.

[

| [|
Utility	Page	Function
/EDIT	3	Create and modify library or work files.
/SCRIPT	93	Format text. I
/SORT	167	Sort library files. I
		F
Copy	169	Copy sequential files.
Linkage Editor	175	Create and change load modules. I
; Loader } 191 ; Load object code into memory and execute it-{		
Compare	199	Compare two library files.

| Filelist | 201 | List library files on the printer. |
| 0S SORT/MERGE | 203 | Sort or merge library, tape, or work files. |
: Trcase | 207 | Upper/lower case translation. :

| i

Section 1: VPS Utility Commands 1

Chapter 1: /EDIT - the File Editor

How to Read this Chapter

This description of the editor is intended to be reasonably
concise and to avoid covering the same ground too many times. As a
result, various examples of commands appear in the text even though,
in most cases, these commands have not been previously described.
While this will probably present no hardship to the reader already
familiar with other editors, it is recommended that those new to
editors regard reading this chapter as an iterative process. The steps
suggested are:

1) Read all the sections down to "Logical Expressions"” to get the
general flavor of the editor, not worrying about the
examples or other oddities.

2) Look over the command table on pages 18 and 19 and the
descriptions of any commands which appear to be interesting.

3) Reread the material read in step (1), but this time worry
about everything. (Reading the remaining material in this

section is recommended but may be postponed until you are
more comfortable with the editor.)

4) Check out the command table and command descriptions again,
but this time get on a terminal and do some actual editing.

Note that a subset of the editor”s functions is presented in a more
tutorial fashion in the VPS Primer.

The /EDIT Command

The /EDIT command is used to run the VPS file editor. The editor
is a general purpose text manipulation program used to create and
modify library files (or work files, see page 15, below). Detailed
explanations of library files and work files may be found in the VPS
Handbook.

The format of the /EDIT command is:

/Edit |[filename [,LRecl=number]
*

*2

—— —— —

filename
specifies the name of an existing file which is to be changed.
The file name parameter may be either a valid file name or a "#*"

Section 1: VPS Utility Commands 3

Chapter 1: /EDIT - the File Editor

or "*2" indicating the appropriate temporary file. If the /EDIT
command is entered with no file name the editor assumes a new file
is being created.

LRECL

specifies the record length of the file being changed or created.
If LRECL is not specified, and a new file is being created, the
record length will default to 80. If LRECL is not specified, and
an old file is being changed, the record length will be taken from
the old file. If an old file is specified and an LRECL is coded
which is smaller than the record length, the file will be
truncated. The smallest LRECL value which can be specified is 20,
the largest is 255.

Notes:

The largest file that can be edited is about 5000 records if the
record length is 80 bytes (for files with a record length different
from 80 bytes the record capacity will vary accordingly: fewer records
for files with larger record lengths and vice versa). The reader is
referred to the description of the /XEDIT command (page 15) for
editing large library files.

General Description of Editor Operation

The editor is an interactive program which allows the user to
create, inspect, and modify files. When the editor is used to modify
an already existing file, it makes a temporary copy of that file, and
all changes are made to that copy, using appropriate editor commands.
The copy then replaces the original file when the user requests it
(RSAVE, RFILE commands). Therefore, the user may terminate the edit
session at any time without altering the original file (e.g., if
erroneous modifications are made which would be too troublesome to
reverse, or if second thoughts arise). Similarly, when the editor is
used to create a new file, the file being created is not actually
placed in the 1library until the user specifically requests it (SAVE,
FILE commands), and the edit session may be terminated at any time
without any new file actually being created. Termination of an edit
session without the saving or replacing of a file may be achieved with
either the QUIT command or with the system /CANCEL command (see the
VPS Handbook).

The most commonly used editor commands allow the user to:
Type out part or all of the edited file (PRINT).

Search the file for 1lines containing specific character
strings (FIND, LOCATE, SEARCH).

Add new lines to the file (INSERT, INPUT).

Delete or replace existing lines (DELETE, REPLACE).

4 VPS Utilities

Chapter 1: /EDIT - the File Editor

Modify individual lines (CHANGE, BLANK, OVERLAY, ADD).

Move or copy groups of lines from one part of the file to
another (MOVE, COPY).

This is by no means an exhaustive list of the editor”s capabilities
and is intended merely to give the new user a feeling for what the
editor is about.

The file being edited may be viewed as a sequence of records -
the first record being called the "top"” of the file, and a phantom
record following the last record of the file the "bottom"” of the file.
This phantom record is used to terminate the action of several
commands which are able to access or modify more than just one line of
the file (e.g. CHANGE, PRINT, DELETE). When this line is reached, the
message "*EOF" is printed, and the command terminates. In addition to
the top and bottom of the file, some line in the file is always
considered the "current line"”. This may be any line in the file, or it
may be the phantom *EOF line - the current line may be printed out by
simply entering the PRINT command with no parameters specified.
Commands which act only on a single line of the file (e.g., one-line
CHANGE commands, ADD, DELETE without parameters, REPLACE) act on the
current line. The user may move around in the file (make another line
the current line) by moving a specified number of lines toward the
bottom of the £file (the NEXT command) or toward the top of the file
(the UP command) or by going directly to the top or bottom (TOP,
BOTTOM commands). This motion may also be produced by requesting that
the editor move in the desired direction to the nearest line
containing some given character string or strings (FIND, LOCATE,
UPFIND, UPLOCATE). Certain commands, such as multi-line CHANGE or
DELETE commands, also cause a different line to become the current
line.

The editor has two modes of operation — edit mode and input mode.
In edit mode, lines typed in by the user are interpreted as editor
commands (e.g. PRINT, CHANGE, FIND), and the user may perform the
operations outlined above, such as moving around in the file,
modifying lines of the file, and so forth. In input mode, on the other
hand, all 1lines entered are simply put in the file. This is useful
when more than one or two lines are to be added to the file, as when a
new file is being created or a block of records is being placed in an
existing file. Input mode is entered from edit mode via the INPUT
command. Return to edit mode is accomplished by entering a null line -
a line containing no characters. This null line may be sent by simply
hitting carriage return in response to a keyboard read or, if a
logical line delimiter character is defined (see the VPS Handbook), by
entering the delimiter character as the first character of a physical
input line or by placing two adjacent line delimiters in a physical
input line. A blank line may be placed in the file in input mode by
typing at least one blank before hitting carriage return. When input
mode is entered, the editor responds with the message "INPUT", and
when edit mode is entered, it responds with "EDIT". The "EDIT" message
will also be typed out whenever the editor is in edit mode and a null
line is entered. When /EDIT is first issued, the editor is placed in
edit mode, unless the filename parameter has been omitted from the

Section 1: VPS Utility Commands 5

Chapter 1: /EDIT - the File Editor

/EDIT command. This is true whether or not the named file actually
exists = if it does not exist, an informatory message is produced
before edit mode is entered. If the filename parameter is omitted, the
editor will be placed initially in input mode.

The user should also bear in mind that the record length of the
edited file is fixed at the time the editor is invoked (/EDIT) and may
not be changed during the edit. Therefore, if a file is to be given
records longer than its current record length, the new record length
must be specified on the /EDIT command (the LRECL parameter, see page
3). The record length of any library file may be altered by simply
editing the file with the new record length specified and replacing
the old copy with the new.

Syntax_gg Editor Commands

All editor commands begin with a keyword, such as PRINT, CHANGE,
or LOCATE, which must appear as the first characters of the entered
line. Most of the commonly used keywords may be abbreviated to
minimize typing - P for PRINT, C for CHANGE, DEL for DELETE, and so
forth. Some commands, such as TOP and BOTTOM, consist only of the
keyword. Other commands, such as NEXT, DELETE, and PRINT, may be
optionally given parameters which modify their actions, and still
others, such as CHANGE, MOVE, and SPLIT, must be given parameters. One
blank should appear between the command keyword and the parameter. The
editor does not enforce this rule for all commands (e.g. “PRINT6" is
equivalent to "PRINT 6"), but it does enforce it for commands which
could otherwise allow ambiguities to arise (e.g. the abbreviation for
INSERT is I, therefore, if the separating blank rule were not enforced
for INSERT, the fairly common typo INPTU for INPUT would cause the
line "NPTU" to be inserted into the file). The form of parameter which
is appropriate for any given editor command depends on that command,
but a few general remarks may be made about some of the elements which
appear in these parameters.

Some commands, such as PRINT, NEXT, and DELETE, allow a parameter
to be specified giving the number of lines to be acted upon (e.g.
"PRINT 6" means print 6 lines starting with the current 1line). The
only restriction imposed on this number is that it must not exceed 4
decimal digits, so that 9999 is the largest value that may be
specified. This restriction also applies to the line number parameters
which may be used with the MOVE and COPY commands.

A number of commands allow or require parameters which contain
character strings. Depending on the command, a string must be in
either the delimited or the non-delimited form. For commands requiring
the non-delimited form, the character string is typed exactly as it is
to be used by the editor. For example, the parameter expected by the
INSERT command, which inserts a line into the file after the current
line, consists simply of the contents of the 1line which is to be
inserted. Thus, to insert the line "“THE LINE" after the current line,
we enter the command "INSERT THE LINE".

On the other hand, commands with a more complex syntax (e.g-.,
requiring that more than one string be specified, allowing alternate

6 VPS Utilities

Chapter 1: /EDIT - the File Editor

non-string forms, or having both strings and other parameters) require
that strings be typed in the delimited form. In this form, the user
chooses a character to act as a string delimiter and types the string
with one delimiter character at each end. If two or more contiguous
strings are required by the command (e.g. the string form of MOVE),
only a single delimiter character is typed between each pair of
strings. The editor determines what character is being used as a
string delimiter from the context of the command. The delimiter chosen
must not appear in any of the strings to be delimited and, for DELETE,
MOVE, and COPY, must not be numeric (i.e. 0-9). This latter
restriction exists because the parameters for these commands have
alternate numeric forms.

In the examples shown in this chapter, the slash, "/", is usually
used as the string delimiter because it is in a handy place on the
keyboard, and because it looks good. Obviously, if any slashes appear
in the strings to be specified, some other character must be chosen
for the delimiter. For example, the command to change the string "BUG"
to "FIX" in the current line is "CHANGE /BUG/FIX/", where we have used
the slash as the delimiter. If, on the other hand, we wish to change
the string "X/2.0" to "X*.5" we could not use the slash. Thus, we
might use "CHANGE $X/2.0$X*.58".

On the Special Nature of TOP

It will occur to the reader, if it hasn”t already, that if INSERT
inserts a line into the file after the current line, and the top of
the file is the first line of the file, then there seems to be no way
to insert a line before the first line of the file. Well, fear not —
if the INSERT command is issued immediately after a TOP command, the
new line will be inserted before the first line of the file — if any
command other than TOP appears between the TOP and the INSERT this
special action will not occur. Thus the sequence

TOP
INSERT 123

inserts the line "123" before the first line of the file, and

TOP
PRINT
INSERT 123

inserts it after the first line.

The effect of an immediately preceding TOP is also felt by INPUT,
GET, FIND, and LOCATE. In the case of INPUT and GET, the new lines
will be added to the file before the first line of the file, and in
the case of FIND and LOCATE the search will begin with the first,
rather than the second, line of the file.

Section 1: VPS Utility Commands 7

Chapter 1: /EDIT - the File Editor

Verify and Brief Modes

The editor may be used in either verify mode or brief mode. In
verify mode, the current line is printed or "verified" whenever it is
altered (e.g., by CHANGE, ADD, OVERLAY) or whenever a new current line
results from a request that the editor move around in the file (e.g.,
via UP, NEXT, FIND, UPLOCATE). In brief mode, this wverification is
suppressed. Unless brief mode has been specified in the user profile
(see EDFLAG under /PROFILE in the VPS Handbook) the editor will always
begin in verify mode. Brief mode is set by the BRIEF command, and
verify mode by the VERIFY command. The VERIFY command may also be used
to specify how many columns of the current line are to be typed out
each time a verification occurs. Furthermore, a "flip character" may
be defined and used to temporarily reverse the current verify/brief
mode setting for any command which may cause verification (see below
under "Command Suffixes").

Command Suffixes

A number of editor commands may be modified by the addition of a
suffix to the command keyword. The three suffix types which exist are:

Cm.n where m and n designate the beginning and ending
columns of the portion of the 1line or lines to be
examined or modified by the command (see "The Zone"
below for details). For example, the suffix C6.12
indicates that only columns 6 through 12 (inclusive)
are to be treated. The default wvalues for m and n,
respectively, are 1 and the 1last character in the
record (LRECL). Thus, if the edited file has records 80
bytes long, Cl0 means columns 10 through 80, and C.25
means columns 1 through 25.

L indicates that the command is in the so-called logical
form, as described below under “Logical Expressions"”.
If the Cm.n and L suffixes are allowed for a particular
command, they are mutually exclusive.

flip character = a character which may be appended to the
command keyword to reverse the current verify/brief
setting for that instance of the command. This
character may be set for any given edit session with
the FLIP command, and a default flip character may be
defined in the user profile (see FLIP under /PROFILE in
the VPS Handbook). When a flip character is used in
conjunction with a Cm.n or L suffix, it must follow
that suffix.

As an example, consider the LOCATE command, which allows all
three suffix types. This command may be abbreviated L, so

L XYz

will cause the editor to look at each line of the file from the line
following the current line to the bottom of the file until a line

8 VPS Utilities

Chapter 1: /EDIT - the File Editor

containing "XYZ" is found and then make that line the current line. If
the editor is in verify mode, the new current line will be typed out.
On the other hand, the modified command

LC12.60 XYZ

will perform the same search except that only colummns 12 through 60 of
each line will be examined. If the user has set the flip character to
"$§", the typeout of the new current line caused by the above two
commands will be suppressed if

L$ XYZ
or

LC12.608 XYZ
respectively, is used instead.

The LOCATE command also has a logical form, invoked by using the

L suffix. As described in detail below, a logical expression is an
expression containing character strings and logical operators which
has a value of either TRUE or FALSE for any given line of the file.
The logical form of LOCATE is

LL (logical expression)
This command is analogous to the string form of LOCATE discussed
above, except that the search stops when a line is found for which the
logical expression has a value of TRUE. As before, the typeout in
verify mode may be suppressed by

LL$ (logical expression)

The Zone

A number of commands, such as LOCATE, FIND, and the string form
of DELETE, examine lines of the file for specified character strings,
and other commands, such as CHANGE, ADD, and OVERLAY, modify lines of
the file. As intimated above under "Command Suffixes”, the action of
these commands may treat the entire line or may be restricted to a
portion of the line. If no Cm.n suffix is explicitly specified, the
portion of the line to be acted wupon is that specified by the current
“"zone" setting. When the editor is first invoked, the zone is set to
the entire line from column 1 to the last column of each line (LRECL).
The zone is changed with the ZONE command (q.v.). When a new zone is
specified for a command by use of the Cm.n suffix as described above,
the specification is in effect for that instance only.

Section l: VPS Utility Commands 9

Chapter 1: /EDIT - the File Editor

Logical Expressions

A number of commands have alternate forms which employ logical
expressions, allowing the user to specify more complex conditions on
file searching and modification than would be possible wusing simple
character strings. The basic element of a logical expression is the
delimited string. A delimited string in a logical expression yields a
value of TRUE or FALSE depending on whether it appears or does not
appear in the 1line being examined (only the portion of the 1line
defined by the current zone setting will be examined unless the zone
is overridden as described below). These strings may be related by the
binary logical operators AND, OR, and XOR (alternate forms &, |, and
X), meaning and, inclusive or, and exclusive or, respectively. The
unary operator NOT (alternate forms .NOT, =) may also be used. (Note
that ASCII terminals on VPS use the circumflex, =, for | and the
tilde, ©, for -.) A logical expression must be enclosed in an outer
set of parentheses, and additional sets of parentheses may be used
within the expression to define sub-expressions.

The simplest logical expression contains only a single string.
For example, the expression

(/FURD/)

will evaluate as TRUE for any line containing the string "FURD" within
the currently defined zone. On the other hand, the expression

(/THUNDER/&/THUD/)

is TRUE only for lines containing both "THUNDER" and "THUD" within the
current zone. Similarly,

(/THUNDER/ | /THUD/)

is TRUE for lines <containing either "THUNDER"™ or "THUD" within the
current zone. Getting a bit more elaborate, the expression

(/JOKE /&(/FUNNY/ |~ /PUN/))

is TRUE only if the zone contains "JOKE" and either contains "FUNNY"
or does not contain "PUN".

The wuser may modify the effective zone for any string in a
logical expression by appending a modifier term to it immediately
after the second delimiter. The modifier term consists of either a
Cm.n parameter or the parameter "F", or both, enclosed in parentheses.
If both are given, they must be separated by a comma and may appear in
either order. The Cm.n parameter specifies the portion of the line
which is to be examined for that particular string, and F means that
the string must start in the first column of the portion being
examined. For example,

(/RED/(C10.30)&/BLUE/(F,C55))
is TRUE only for 1lines in which "RED" appears somewhere between

10 VPS Utilities

Chapter 1: /EDIT - the File Editor

columns 10 and 30 and "BLUE" appears starting in column 55. If F only
is specified, it refers to the first column of the current zone. Thus,
if the zone is set to columns 1 through 80, then

(/FROTZ/(F))
is TRUE only for lines which have "FROTZ" starting in column 1.

The string delimiter character is determined separately for each
string in a logical expession. For example, if we need an expression
which is TRUE for lines containing "THING" and "6.0/X" we cannot use
the customary slash to delimit the second string. Thus, we might use

(/THING/&$6.0/X3$)

Block Editing

In the general description of editor operation above we said that
the editor creates a single temporary copy of the edited file, and
that it is this temporary copy to which all modifications are applied
during the edit session. While this simplified picture is adequate for
the great majority of edits, it is occasionally useful to be able to
juggle around two or more such temporary copies of the edited file or
parts of the edited file, or other files or parts of files. Therefore,
the editor is equipped with ten "blocks” called ":0", ":1", and so on,
through ":9". (Note that some commands do not require a colon.) Each
block is a separate editable entity and can contain any number of
records, provided the number of records in all blocks combined does
not exceed the capacity of the editor workspace. The record length of
each block is the same as that of the originally edited file, as
determined at the time the /EDIT command is issued, and cannot be
altered during the session. At any given moment, some block 1is
considered the "current block” - i.e., the block being edited, and all
file searching and modification commands are applied to this block.

The SWITCH command (page 80) is used to make a different block
the current block so that it may be edited. If the editor is in verify
mode when SWITCH is issued, the current line in the switched-to block
will be printed. Each block has its own current 1line, which is
preserved if the user switches away from that block, and this line
will become the active current line if the block is switched back to-
The LIST command (page 57) may be used to type out a block other than
the current block, and the GET command (page 51) may be used to copy a
block other than the current block into the current block after the
current line. Furthermore, the MOVE and COPY commands may be used to
move or copy a group of records from the current block into another
block after the current line in that block. The SIZE command (page 77)
may be used to determine the number of lines in any block, and the =
command (page 25) may be used to determine the position of the current
line in any block.

When the editor is first invoked, the copy of the edited file is
in block :0, and this block is the current block. All the other
blocks, :1 through :9, are empty. Since it is used for the originally
edited file, block :0 is called the principal block. If a SAVE, RSAVE,

Section 1: VPS Utility Commands 11

Chapter 1: /EDIT - the File Editor

FILE, or RFILE command is issued, and the current block is not the
principal block, :0, the message "WARNING - CURRENT BLOCK NOT
PRINCIPAL, REPLY Y IF OK, N IF NOT" will be typed, and the user must
indicate whether the command should proceed. The conversational read
list is cleared before the user is polled, so any commands that had
been entered after the SAVE, RSAVE, FILE, or RFILE command on the same
physical input line are lost. While this feature is mildly annoying
when one actually intends to put the contents of the current block in
the library, the grief it saves on those rare occasions when absent
mindedness takes one to the brink of disaster more than justifies it.

Editor Programs

It is sometimes necessary or desirable to make modifications to a
file which require that a large number of the same or similar
sequences of editor commands be executed. Since such repititious
activities are best handled by machine, a facility has been put in the
editor which allows the user to create and execute programs of editor
commands. An editor program must reside in a block and consists of the
sequence of commands which is to be executed. Each command must appear
on a separate line in the same format as it would be typed if it were
being issued directly by the user, except that the command keyword
must be preceded by at least one blank or by a label beginning in
column 1 and at least one separating blank.

Two editor commands exist which are meaningful only in editor
programs: ENOP and EJMP. The ENOP command (page 44) is a dummy command
used only to provide a place to hang a label when the user prefers not
to label a normal command (such labels are a pain if another command
has to be inserted between the label and the labeled command). The
EJMP command (page 43) provides a conditional or unconditional branch
to any label in the program.

An editor program is executed by means of the EXEC command (page
45), and one editor program may EXEC another, although recursion is
not permitted. A program terminates when control passes beyond the
last line of the program, or if an error occurs during its execution.
Reaching the *EOF¥ line is considered an error for this purpose (e.g.,
by issuing a NEXT or multiline CHANGE command).

As an example, the following program will delete every line
containing an asterisk in column 1 (we assume the left boundary of the
current zone is 1):

TOP
LOOP ENOP

EJMP (/*/(F)) DEL

NEXT

EJMP LOOP
DEL ENOP

DELETE

EJMP LOOP

This program will terminate when *EOF is reached by either the NEXT or
the DELETE command. Another program which would perform the same

12 VPS Utilities

Chapter 1: /EDIT - the File Editor

function is:

TOP
LOOP FIND *
DELETE
UP
EJMP LOOP

except that this one might leave an asterisk line at the top of the
file which had previously been the second line of the file (why?).
This program will terminate when either the FIND fails to find a line
beginning with an asterisk, or the DELETE causes *EOF to be reached.
Naturally, the abbreviations for the various commands (F for FIND, DEL
for DELETE, etc.) could have been used in these programs.

TRAN and NOTRAN

When lines of the file are typed out (e.g. with PRINT or as a
result of verification) unprintable characters are normally replaced
with blanks. The purpose of this translation is to prevent the
untoward behavior of certain terminals, especially the more elaborate
models with plotting modes and such, when the user is editing files
containing characters outside the normal set of printable characters
(e.g., object decks). This translation will be suppressed if NOTRAN
(page 63) is issued and will be reinstated if TRAN (page 82) is
issued.

Hexadecimal Editing

While each byte (character) of a file may take on any of 256
possible values, only about a third of these constitute printable
characters. Therefore, to allow complete generality, the editor
provides modes of operation in which data bytes are represented as
two—digit hexadecimal numbers.

Two hexadecimal output modes are available: HEX and BOTH. When
HEX is set (via the HEX command, page 53), lines typed out with PRINT
or as a result of verification are displayed only in hex. For example,
if the current line is "AB CD" and we issue PRINT with HEX in effect,
the editor will type out

C1C240C3C4

When BOTH is set (BOTH, page 32), on the other hand, each line is
displayed in both normal and hexadecimal form, with the character
equivalent of each byte appearing above the left hand digit of the
pair of digits representing that byte. If BOTH had been in effect when
the above PRINT was issued, the editor would have responded with

AB CD
Clc240C3cC4

In BOTH mode, if a byte does not represent a printable character the
corresponding position in the upper 1line 1is left blank. The ALPH
command (page 29) is wused to reset the output mode to the normal

Section 1l: VPS Utility Commands 13

Chapter 1: /EDIT - the File Editor

printable character form.

Input to the editor may also be specified in hexadecimal form.
When XIN is issued, a preprocessor is activated which translates all
lines typed in input mode and the parameters (operands) of all
commands entered in edit mode from "generalized hexadecimal™ form into
a "result string" which is passed on to the editor for interpretation.
The parameters of a command are assumed by the preprocessor to start
with the first non-blank character after the blank which terminates
the command keyword and any suffixes attached to it. In generalized
hexadecimal form, bytes are represented by pairs of hexadecimal
digits, and any number of blanks may appear between such pairs (the
blanks are stripped off during translation). Furthermore, any
non-blank character which is not a valid hexadecimal digit and which
appears after an even number of hexadecimal digits is transferred to
the result string unmodified, and any characters at all, including
0-9, A-F, and blanks, may be specified by enclosing them in
apostrophes; apostrophes meant to appear in the result string being
represented by double apostrophes in the usual way. Any number of such
apostrophe—delimited strings may appear in an input line, and the line
may slip into and out of apostrophe mode as many times as desired.
Remember that blanks appearing outside apostrophes are deleted, while
blanks appearing inside apostrophes are retained. If the remainder of
a line 1is to be interpreted as within apostrophes, only the leading
apostrophe is required - the closing apostrophe will be assumed.

For example, the following are all valid representations of the
character string "/AB CD/"

/C1C2 40 C3 c4 /
“/AB CD/~
61Cclc2z - Cp/
“/” clc2 © - c3c4 °/”
Note that since the lines entered are processed before they are
interpreted as commands a bit of caution is sometimes required. For
example, a slash has the hexadecimal representation 61, so the command
CHANGE /61/40/

entered in XIN mode, would appear to the editor to be
CHANGE /// /

which is obviously invalid.

The input preprocessor is deactivated and normal input mode
resumed by the AIN command (page 28).

14 VPS Utilities

Chapter 1: /EDIT - the File Editor

/XEDIT - Editing Large Files

The /XEDIT command is used to run the same editor as the /EDIT
command, except that the editor is given a larger workspace. This is
useful when it is necessary to edit files larger than will fit in the
normal editor workspace. The capacity of the editor when invoked by
/XEDIT is about 27,000 records for a file with 80 byte records.

The format of the /XEDIT command is:

/XEdit filename [,LRecl=number]
*

*2

I
I
I
I
I

where the parameters have the same meanings as those defined for /EDIT
(page 3).

WEDT — Editing Work Files

A work file (see DISK files in the VPS Handbook) may be edited if
its record length (LRECL) is not greater than 256 bytes. To edit such
a file, one need only run the job:

/FILE UNIT=(4,DISK), ...
/INC WEDT

where ... represents the rest of the parameters necessary to define
the work file (DSNAME, VOL, DISP). The only difference between the
operation of the editor when editing a work file and its normal
operation is that FILE, RFILE, SAVE, and RSAVE commands issued without
parameters cause the contents of the current block to be written to
the work file rather than into the library. If a file name is given
for any of these commands, the block contents will be placed in the
library under that name, as usual.

Section 1: VPS Utility Commands 15

Chapter 1: /EDIT - the File Editor

Editor Commands

On the following pages a box -

is used to enclose the definition of an editor command. The format of
the information inside this box is defined as follows:

- The symbols [], {}, , and ... are used to indicate how a
command may be written. DO NOT CODE THESE SYMBOLS. Their
general definitions are given below:

[] indicates optional operands. The operand enclosed in
brackets may or may not be coded, depending on whether or
not the associated option is desired or whether a default
is to be taken. If more than one item is enclosed in
brackets, one or none of the items may be coded.

{} indicates that a choice must be made. One of the operands
from the vertical stack must be coded, depending on which
of the associated functions is desired.

indicates a value that is used in default of a specified
value. This value is assumed if the operand is not coded.

+++ indicates that an operand, or set of operands, may be
repeated. The number of repetitions is dependent upon the
function desired.

- When a command has an abbreviated form the abbreviation will
appear just below the command name. For example, in the ADD
command description (page 26) the command name is written as -

ADD
A

indicating that either ADD or A may be used as the command name.

- Operands written entirely in lower case are used to denote that
the user is to make the indicated substitution of a value, name,
etc. For example, the definition of the NEXT command (page 62)
is given as follows:

| |
| NEXT [(number |
| N 1 |
F I

The wuser is instructed to replace “number” with the actual
number of lines to move (or take the default value of 1).

16 VPS Utilities

Chapter 1: /EDIT - the File Editor

- Where the selected operand is a combination of wupper and lower
case letters - such as the column range operand of the CHANGE
command (page 35) -

,Cm[.n]

The user is to code the capital letter(s) exactly as shown and
make the indicated substitutions for the lower case letters.

= Commas and delimiters should. be coded exactly as shown, omitting
only the comma following the last operand coded.

Note: Upper case letters are used in the command definitions only to
differentiate between symbols and keywords required by the editor
commands, and names or values selected by the user. If a command is
being typed in on a terminal it should not be typed in upper case.

Column and Logical Forms

For commands having a column and/or logical form the definition of
the special form can be found in the section deseribing the standard
form of that command.

Example Formats

Two basic types of examples are used in the command descriptions.
The first type consists of a description of a function followed by the
command(s) necessary to perform that function, as in the EJMP command
(page 43) and the SAVE command (page 73). The second type of example,
and the most common, shows a line or set of lines in a file followed
by a command followed by the 1lines as they were modified by that
command. This is a “before” and "after” example. In these examples
an arrow (-=>) is wused to show the current line before the execution
of the command and the current line after the execution of the
command. (Note, the editor does not print an arrow. The arrow is
used in the examples to better clarify the operation of the command.)
The examples wused for the CHANGE command (page 35) and the INSERT
command (page 55) are both of the second type. If a particular
example is confusing, the user is encouraged to get on a terminal and
try it.

Section l: VPS Utility Commands 17

Chapter 1: /EDIT - the File Editor

	I LT					
Pg	Command	Abr	C	L	F	Function
I	[11					
		11				
21	$AsMcoM		1		Add comments to assembler source.	
22	SASMFIX					Column-align assembler source.

24	$SEQ		1		Place sequence numbers in cols. 73-80.	
25	=		1		Print line number of current line.	
26	ADD	A	X		X	Append characters to end of zone.
28	AIN					Set normal character input mode.
29	ALPH		I		Set normal character output mode.	

| 30 | BLANK | BL |X| |X| Blank columns using mask. |
| 32 | BOTH | | | | | Set character and hex output mode. |
| 33 | BoTToM | B | | | | Go to bottom of file. f
3¢	BRIEF	BR				Set brief mode.
35	CHANGE	C [X	X]X	Change character string in line(s).		
38	cory	IX]		Copy line(s) from one place to another.		
40	DELETE	DEL	X	X	X	Delete line(s).
42	pup					Duplicate current line.
43	EJMP I				Branch in editor program.	
44	ENOP					no-operation in editor program.
45	EXEC	E				execute editor program.
46	FILE		1		Write block to library or work file.	
48	FIND	F IX		X	Find given string in lst column of zone.	
50	FLIP	I]	set flip character.		
51	GET					Read in block or library file.
52	GYRATE	¢			X	Interchange current and next lines.
53	HEX		1		Set hex output mode. I	
54	INPUT		X			Enter input mode. I
; 55 I INSERT I . #x{ I[I| Insert line into file. ||

18 VPS Utilities

Chapter 1: /EDIT - the File Editor

— — — — T T — —— . —— — — —— —— — — —— — ——— i — A ——— —— —

I I I [T 11
| Pg | Command | Abr |C|L|F| Function
| | NN
| | | R
| 56 | JOIN | J | | |%] Join current and next lines.
| 57 | LIST | | | | | List block or library file.
| 58 | LoCATE | L |X|X|X| Locate line containing given string.
| 60 | MOVE | |X] | | Move line(s) from one place to another.
| 62 | NEXT | ¥ | | |X] Move down in file.
| 63 | NOTRAN | | | | | Turn off output translator.
| 646 | OVERLAY | 0 |X| |X| Replace columns using mask.
| 65 | PRINT | P | | | | Type out lines of file.
| 66 | QUIT | @ | | | | Terminate edit without saving file.
| 67 | REPEAT | | | | | set repeat count for next BL or O.
| 68 | REPLACE | R |X| | | Replace current line.
| 69 | RFILE | RFIL| | | | Replace 1lib. file with current block.
| 71 | RSAVE | RSAV| | | | RFILE and QUIT.
| 73 | SAVE | | | | | FILE and QUIT.
| 75 | SEARCH | S |X|X|X| Equivalent to TOP followed by LOCATE.
| 77 | SIZE | | 1 | | Print number of lines in block.
| 78 | sPLIT | sP |X| |X| Divide current line into two lines.
| 80 | SWITCH | SW | | |X| Switch to another block.
| 81 | TOP | T | | | | Go to top of file.
| 82 | TRAN | | | | | Turn output translator on.
| 83 | UNCHANGE| UNC | | |X| Undo modifications to current line.
| 84 | UP | U | | |X] Move up in file.
| 85 | uPFIND | UF |X| |X| Like FIND but in upward direction.
| 87 | UPLOCATE| UL |X|X|X| 1like LOCATE but in upward direction.
| 89 | VERIFY | V | 1 | | Set verify mode and length.
| 90 | XIN | | | | | Set hex input mode.
| 91 | ZONE | Z | | | | Set default zone.
| I | [11|
Columns:
Pg - the page on which the command is decribed.
Command - the command name.
Abr - the command abbreviation (if any)-.
C - X indicates this command has a column form.
L - X indicates this command has a logical form.
F - X indicates that the flip character may be used.

Section l: VPS Utility Commands

19

$ASMCOM

Suffixes:
(none)

The $ASMCOM command may be used to add comments to assembler
language source files. After the $SASMCOM command is issued in edit
mode, the current 1line will be printed wup to and including the last
non-blank character on the line. The user may then type a comment
(which normally must be preceded by a blank), and when finished, press
carriage return. This sequence will then be repeated for each line
remaining in the file. The user may type "Sedit" instead of a comment
to terminate SASMCOM before the end of the file is reached. The
standard form of the $ASMCOM command is shown below.

| $ASMCOM I

Section 1l: VPS Utility Commands 21

SASMFIX

Suffixes:
(none)

The $ASMFIX command may be used to column justify an assembler
language source file. The standard form of the $ASMFIX command is

shown below.

10 16 35

SASMFIX [inst column] § [oper colum#] 3 [com column]

— — ——
—_—— e —

inst column
is the column in which the assembler instruction field is to

begin. The default is column 10.

oper column
is the column in which the operand field is to begin. The default
is column 16.

com column
is the column in which the comment field is to begin. The default
is column 35. If 73 is specified all comments will be deleted.
If com column is greater than or equal to 74 all comments and
comment lines will be deleted.

Note:
SASMFIX will not column justify those lines in which one of the
following characters apears in column 1:

/
#

*

Also, SASMFIX will not column justify object code. The command will,
however, justify all other lines in the file including data lines, if
they happen to be present.

Example:

1) In the following example a typical assembler language source file
is column justified.

22 VPS Utilities

SASMFIX

Before --> prog csect
balr 12,0 establish addressability
using *,12
la 4,field begin process

Sasmfix
After =--> prog csect
balr 12,0 establish addressability
using *,12

la 4,field

begin process

Section l: VPS Utility Commands 23

$SEQ

Suffixes:
(none)

The $SEQ command may be used to place sequence numbers in columns
73 through 80 of each 1line of a file. Normally, the first sequence

number is 10 and the increment is 10. The standard form of the $SEQ
is shown below.

l
| $SEQ [identifier] , [nl , [n2
| 10 10

identifier
is a four character identifier which is to be placed in columns 73
through 76. If “identifier” is omitted the sequence number will
appear in the entire field padded to the left with zeroes.

nl
is the starting sequence number. The default is 10.
n2
is the increment. The default is 10.
Example:
1) la r4,1(,r4)
1r r8,r7
b start
Sseq ardv
la r4,1(,r4) ardv0010
1r r8,r7 ardv0020
b start ardv0030

24 VPS Utilities

Suffixes:

(none)
The = command may be used to find the current line number. In
other words, if the number 8 was returned when the = command was

issued, the current line is the eighth line in the file. The standard
form of the = command is shown below.

| = [block number] |

block number
is the number of the editor block in which the number of the

current line 1is to be listed. If block number is not specified

the number of the current line in the current editor block is
listed.

Section l1: VPS Utility Commands 25

Suffixes:
Column
Flip character

The ADD command may be used to add a character string to the end of

the current line. The standard form of the ADD command is shown
below.

DD string

string
is a string of characters to be added to the end of the current
line immediately following the last non-blank character. Note
that the ADD command assumes that the first character in the
string is one space past the command name, i.e. -

String Start String Start

v
ADD A

Column Form:

ADDCm[.n] string
ACm[.n]

The column form of ADD may be used to add a string after the last

non-blank character within the column range “m” and “n~. Note that
the string will be truncated if it falls past column “n”.

Examples:

1) In the following example the string ~8910” is added to the current
line.

==> 1234567
a 8910

==> 12345678910

26 VPS Utilities

2) In the following example the character
-=> bird of paradise
ac4.5 s

——> birds of paradise

Section 1: VPS Utility Commands

T

is added after column 4.

27

28

AIN

Suffixes:
(none)

Normal input to the editor is in character form,

command (see page 90) may be used to allow hexadecimal input.

command is wused to reset the editor to
standard form of the AIN command is shown below.

however, the XIN
The AIN

character input mode. The

| AIN

VPS Utilities

ALPH

Suffixes:
(none)

Normal printed output from the editor is in the form of characters,
or text. However, the HEX (see page 53) or BOTH (see page 32) commands
may be used to produce hexadecimal output. The ALPH command is used

to reset the editor to character output mode. The standard form of
the ALPH command is shown below.

| ALPH |

Section 1: VPS Utility Commands 29

BLANK

Suffixes:
Column
Flip character

The BLANK command may be used to set one or more columns of the
current line to blanks. The standard form of the BLANK command is
shown below.

BLANK string

e~]
I

string
is blank and non-blank characters. For each non-blank character
of string, the corresponding column of the current line is set to
blank. Note that column 1 of string is one space past the command
name, i.e. -

Column 1 Column 1

v v
BLANK BL

Column Form:

BLANKCm[.n] string
BLCm[.n]

The column form of BLANK allows the user to begin the blanking

action at column “m” rather than column 1. “n” specifies the column
in which the blanking action is to be terminated.

Examples:

1) In the following example the current line is blanked in columns 1,
2, 6, and 8.

==> apples are usually red
bl zz 2z =z

——> ple re usually red

30 VPS Utilities

BLANK

2) In the following example the current line is blanked in columns 10
and 13.

—=> how now brown cow
blel0.13 z =z

-—> how now b ow cow

Section 1: VPS Utility Commands 31

BOTH

Suffixes:
(none)

The BOTH command may be used to specify that both character and
hexadecimal representations of lines are to be printed in output mode.
To reset the editor to character output mode the reader is referred to
the ALPH command (page 29). The standard form of the BOTH command is
shown below.

| BOTH |
|

32 VPS Utilities

BOTTOM

Suffixes:
(none)

The BOTTOM command may be used to move to just after the last line
in the file (i.e., to *EQF). The standard form of the BOTTOM command
is shown below.

BOTTOM
B

Section 1: VPS Utility Commands 33

BRIEF

Suffixes:
(none)

The BRIEF command may be used to discontinue the editor action of
listing referenced and changed lines for certain commands such as,
CHANGE, NEXT, UP, etc. (see also the VERIFY command - page 89). The
standard form of the BRIEF command is shown below.

BRIEF

=]
=

34 VPS Utilities

CHANGE

Suffixes:
Flip character
Logical

The CHANGE command may be used to replace one character string with
another character string, of the same or a different length, om a line
or set of lines. The editor will automatically expand or compress the
line relative to the replacement string length. If the replacement
character string causes the 1line to extend beyond the file 1line
length, excess characters will be truncated. The standard form of the
CHANGE command is shown below.

|

‘ CHANGE /stringl/stringZ/[éount] 1,61 V1 I,;F] [.Cml«n]]
G *

|

II [,P]

/ (slash)
signifies any unique delimiting character that does not appear in
the character strings involved in the change.

stringl
is the character string to be replaced. If “stringl” is null
(i.e., ¢ //string2/...) then the replacement string will be placed
preceding the first character of the line.

string?2
is the character string which is to replace “stringl”. 1f
“string2” is null (i.e., c /stringl//...) then “stringl” will be
deleted from the line.

count
is the number of lines, starting with the current 1line, in which
this change is to be made. “*” indicates that the change 1is to
all lines from the current line to the bottom line of the file.

G
specifies that each occurrence of “stringl” in a line is to be
replaced. Note that if G 1is not specified, only the first
occurrence of “stringl” will be replaced.

v

specifies that the editor is to list all changes if multiple lines
are being changed. Note that if V is not specified and “count” is

Section 1l: VPS Utility Commands 35

CHANGE

specified, only the last changed line will be listed.

F
specifies that the replacement is to be made only if “stringl”
starts in the first column of the zone (normally, column 1).

Cm[.n]
specifies that the replacement is to occur only if “stringl” is
between columns “m” and “n” of the 1line. If this parameter is
specified, any expanding, compressing, or truncating will take
place within the given column range.

P

specifies that the editor is to query the user before each
replacement of a multiline change is made. The wvalid replies to
the query are:

y — indicates that the change should be made.
n = indicates that the change should not be made.

§ = 1indicates that the change should not be made and that the
command should be terminated, returning to edit mode.

I
1

indicates that the line number should be printed.

<
I

indicates that verify mode should be set to on.

Logical Form:

CHANGEL (expr) /stringl/stringZ/[%ount [,6G1 [,V] [,F] [,Cm[.n]]
CL *

[,P]
The logical form of the CHANGE command is the same as the standard

form except the logical expression “(expr)” must test TRUE for the

change to occur (for a description of logical expressions see page
10).

Examples:
1) —> four and seven years ago
¢ /four/four score/

-=> four score and seven years ago

36 VPS Utilities

2) —> turnips are good and radishes are good
¢ /good/good also/c35.80
-—> turnips are good and radishes are good also
3) ——> do i=l to nj
array(i, j)=array(i, j)+array(i,2);
end;
c /i/k/3,g
do k=1 to n;

array(k, j)=array(k, j)+tarray(k,2);
-=> end;

Section 1: VPS Utility Commands

CHANGE

37

COPY

Suffixes:
Column

The COPY command may be used to copy one or more lines of a file to
another location within the file. The standard form of the COPY

command is shown below.

COPY | (n3, nl,n2
:block number,

{?stringB :} /stringl/string2/[F]

:block number

n3,nl,n2

:block number,n2,n3
where “n3” is the line number after which the copied lines are to
be inserted, “nl” is the first line number of the lines to be
copied, and “n2” is the last line number of the 1lines to be
copied.

If a colon (:) followed by a block number is specified instead of
“n3”, the lines will be copied into the indicated editor block and
inserted after the current line in that editor block. Note, line
numbers may be found using the = command (see page 25).

/string3/stringl/string2/

tblock number, /stringl/string2/
where / (slash) is any unique delimiting character (other than O
through 9 and :) which does not appear in the character strings.
“string3” is a character string. The lines to be copied will be
placed after the line containing the first occurrence of “string3”
when searching from the top of the file. “stringl” is a character
string. The first 1line to be copied will be the line containing
the first occurrence of “stringl” when searching from the top of
the file. “string2” is also a character string. The last line to
be copied will be the line containing the first occurrence of
“string2” when searching from the top of the file.

If a colon (:) followed by a block number is specified instead of
“string3”, the lines will be copied into the indicated editor
block and inserted after the current 1line in that editor block.
Note that the line containing “string2” must be found at least one
line below the 1line containing “stringl”. F 1is optional and
indicates that the string searches must only begin in the first
column of the current zone (normally, column 1).

38 VPS Utilities

COPY

Column Form:
COPYCm.[n] /string3/stringl/string2/[F]

The column form of the COPY command may be used to search for the
three strings only within the column range “m” through "n”. F implies
that the search will begin only in column "m~.

Example:

1) Before:

x=0 {-- assuming this is line number 408
y=0

call action(x,y);

put skip edit (x,y) (2 £(5.2));

e we

copy 411,408,409

After:
x = 0;
y =03

call action(x,¥);

put skip edit (x,y) (2 £(5.2));
x = 0;

y =03

Section 1: VPS Utility Commands 39

DELETE

Suffixes:
Column
Flip character
Logical

The DELETE command may be used to delete one or more lines from a
file. The standard form of the DELETE command is shown below.

DELETE number
DEL 1

Jstring/

number
is the number of lines starting with the current line which are to
be deleted. If no parameter is specified, 1 will be used as the
default - deleting the current line.

/string/
where / (slash) is any unique delimiting character not appearing
in “string” nor the digits O through 9. “string” is a character
string and indicates that all lines from the current line down to,

but not including, the next line containing the character string
will be deleted.

Column Form:

DELETECm[.n] /string/

The column form of the DELETE command may be used to search for the
character string only in the column range “m”~ through “n”.

Logical Form:

DELETEL (expr)
DELL

The logical form of the DELETE command may be used to delete all

lines from the current line down to, but not including, the first line
for which the logical expression “(expr)” is TRUE (for a description
of logical expressions see page 10).

40 VPS Utilities

Note:
In all forms of the DELETE command, after the command has completed

the current line will be the line after the last line deleted from the
file.

Examples:

1)

2)

—> the brown cow ate grass, jumped
over the fence, and took
a bus to Detroit.

del 2
-=> a bus to Detroit.
-—> x = 0;
y = 0;

call action(x,y);

deleld /[x/

==> call action(x,y);

Section 1: VPS Utility Commands

DELETE

41

DUP

Suffixes:
Column

The DUP command may be used to duplicate the current line one or
more times. The standard form of the DUP command is shown below.

—— —

|

| bpup number
| 1

I

number
is the number of times the current line is to be duplicated. 1 is
the default.

Column Form:

DUPCm[.n] number
1
. The column form of the DUP command may be used to duplicate the
information in the current line which appears within the column range
“m” through "n”.

Note:
After the DUP command has completed, the current line will be the
last duplicated line.

Examples:
1) ——> a(i) =a@d) +2; 1i=1+1;
dup 2
a(i) = a(i) +2; 1i=1+ 1;
a(l) =a(l) + 25 41 =1 + 13
-=> a(i) =a(i) +2; i=1+4+ 1;
2) —> x=x+2; x=x+1;
dupel2.40 2
x=x+2; x=x+ 1;
x =x + 1;
== x=x+1;

42 VPS Utilities

EJMP

Suffixes:
(none)

The EJMP command is used to cause a conditional or unconditional
branch to be taken within an editor program (for a desecription of
editor programs see page 12). The standard form of the EJMP command
is shown below.

| |
{ [label] EJMP [(expr)] {jump label} :

(expr)
is a logical expression which when true will cause the branch to
be taken (for a description of logical expressions see page 10).

jump label
is the label of the command to which the branch is to be made.

Note:
If no logical expression is supplied, the branch is unconditional
and will always be made.

Example:

1) The following editor program would print every fifth line of a
file:

loop n 5
ejmp loop

Section 1: VPS Utility Commands 43

ENQOP

Suffixes:
(none)

The ENOP command may be used as a “no operation” facility for
editor programs (similar to CONTINUE in FORTRAN and ANOP in Assembler
Macro language). For a description of editor programs, the reader is

referred to page 12. The standard form of the ENOP command is shown
below.

| |
I [label] ENOP |

Example:

1) The following editor program would print every fifth line

of a
file:

loop enop
n S5
ejmp loop

b4

VPS Utilities

EXEC

Suffixes:
(none)

The EXEC command may be used to execute an editor program (for a
description of editor programs see page 12). The standard form of the
EXEC command is shown below.

EXEC {block number}
E

block number
is the number of the block containing the editor program to be

executed.

Section 1: VPS Utility Commands 45

FILE

Suffixes:
none)

The FILE command is used to save the contents of the current editor
block (normally, the edited file) as a new VPS library file without
terminating the edit session (to replace an existing library file see
the RFILE command, page 69). The standard form of the FILE command is
shown below.

I I

| FILE filename [,accattr,accattr,...) |

filename
is any 1 to 8 character name under which the edited file (or
contents of the current editor block) is to be saved. If the file
is to be «created under an account different from the user’s
account, the file name must be immediately followed (no
intervening blanks) by the owning account number enclosed in
parentheses (this requires a privilege).

accattr
specifies an access attribute the user wishes to change (note that
if this parameter is not specified default access attributes will
be taken from the user”s profile). It may be specified as a
single attribute or a list of attributes separated by commas. The
access attributes permitted are:

READ (R) = specifies that the file may be read or copied by
other accounts.

NOREAD (NOR) - specifies that the file may not be read or copied
by other accounts.

EXEC (E) - specifies that the file may be the argument of the
/EXEC command (the file may be executed) by other accounts.

NOEXEC (NOE) - specifies that the file may not be the argument
of the /EXEC command (the file may not be executed) by other
accounts.

PURGE (P) - specifies that the file may be updated, edited,
replaced, or purged by other accounts.

NOPURGE (NOP) - specifies that the file may not be updated,
edited, replaced, or purged by other accounts.

P=(A=acctrange,accattr) - specifies the account or account range
to be given special access to the file and the access
attributes allowed for these account(s). “acctrange” may be
specified as a single account; a range of accounts separated
by a dash ("-"), in which case all accounts within that
range will be given the special access attributes; a
"partial account" (represented by a partial account number
followed by an asterisk ("*")), indicating that all accounts
beginning with the "partial account” should be given the

46 VPS Utilities

special access attributes; or, finally,

FILE

a range of "partial

accounts” separated by a dash, indicating that all accounts
starting with the first account beginning with the first

"partial account” to the last account

beginning with the

second "partial account"” should be given the special access

attributes. “accattr” is any of the access
listed above.
Alternatively, the following access attributes may
specified:
PUBL - which corresponds to "READ", "EXEC", and
aACCess.
PRIV - which corresponds to "NOREAD", "NOEXEC",
access.
X0 = which corresponds to “NOREAD", "EXEC", and
access.

NOXO - which corresponds to "NOEXEC" access.

Examples:

attributes

also be

"NOPURGE"

and "NOPURGE"

"NOPURGE"

1) In the following example a current copy of the edited file is saved

under the new VPS library file name — BUMPERS:

file bumpers
*SAVED

2) In the following example a current copy of the edited file is saved

under the new VPS library file name - JUMPERS
attribute NOEXEC is specified:

file jumpers,noe
*SAVED

Section 1: VPS Utility Commands

- and

the access

47

FIND

Suffixes:
Column
Flip character

The FIND command may be used to move to the next line in the file
which contains the specified character string starting in the first

column of the current zone (normally, column 1). The standard form of
the FIND command is shown below.

IND {string}

string

is a character string. Note that the FIND command assumes that
the first location in the string is one space past the command
name, i.e. -

String Start String Start

v v
FIND F

Column Form:

FINDCm[.n] {string}
FCm[.n]

The column form of the FIND command may be used to search for the

character string starting in column “m” rather than the first column
of the current zone.

Note:

If the FIND command is unsuccessful in searching for the character
string, the current line remains the same.

48 VPS Utilities

FIND

Examples:
1) ==3 1z r7,r8
la r6,nextone
b start
nextone ds Oh
f next
1r r7,r8
la r6,nextone
b start
--> nextone ds Oh
2) —> 1r 718
la r6,nextone
b start
nextone ds Oh
fcl9 next
1r r7,r8
-=> la r6,nextone
b start
nextone ds Oh

.

Section 1: VPS Utility Commands 49

FLIP

Suffixes:
(none)

The FLIP command may be used to define an active £lip character
which may be appended to a subset of the editor commands (in this
manual any command allowing the flip character is indicated as such
under the subheading Suffixes). If the active flip character is
appended to one of these commands, the current verify/brief mode
setting will be reversed for that command execution. The standard
form of the FLIP command is shown below.

| I
| FLIP {symbol} I
I |

symbol
is any character which is to be wused as the currently active flip

character.

Examples:
Assuming that the current verify/brief mode setting is verify, note
the difference between the following command sequences:

Command Sequence 1:

top
f the cow
THE COW JUMPED OVER THE MOON

Command Sequence 2:

top
flip §
f$ the cow

P
THE COW JUMPED OVER THE MOON

50 VPS Utilities

Suffixes:
(none)

GET

The GET command is used to copy part or all of a VPS library file
or an editor block into the file being edited. The standard form of

the GET command is shown below.

GET [nl,n2,] Jfilename
:block number

nl,n2

where “nl” is the line number of the first line in the file (or
block) to be copied and "n2” is the iine number of the last line

in the file (or block) to be copied. If “nl” and "n2”

are

omitted, the entire file or block is copied. Note, the copied

lines will be placed after the current line.

filename
is the name of the VPS library file to be copied.

block number
is the number of the editor block to be copied. Note that
block number must be preceded by a colon (:)-.

Example:

1) Suppose editor block number 2 contains the following:

q=ys

doi =1 to 10;
x(i) = 0;
end;

the

In this example lines 2 through 4 of the editor block are copied

into the file.

-=> b =gq;
get 2,4,:2
b =q;
doi=1 to 10;

x(i) = 0;
——) end;

Section 1: VPS Utility Commands

51

GYRATE

Suffixes:
(none)

The GYRATE command may be used to physically move the current line,
placing it below the next line in the file. The current line remains
the current 1line. The standard form of the GYRATE command is shown
below.

| |
| GYRATE |
| ¢ |
[I
Example:
1) ==> x =a + b;
a=a+1;
g
a=a+1;
==> x=a+ b;

52 VPS Utilities

HEX

Suffixes:
(none)

The HEX command is wused to specify that only the hexadecimal
representations of lines are to be printed in output mode. To reset
the editor to character mode the reader is referred to the ALPH

command (page 29). The standard form of the HEX command is shown
below.

| HEX I

Section l: VPS Utility Commands 53

INPUT

Suffixes:
Column

The INPUT command is used to enter input mode so that new lines may
be added to a file. The new lines will be added after the current
line (note that if the command immediately preceding INPUT was TOP,
the lines will be added before the first line of the file). To return
to edit mode from input mode the user should enter a “null” 1line
(containing only a carriage return). The standard form of the INPUT
command is shown below.

| INPUT |

Column Form:
INPUTCm[.n]

The column form of the INPUT command may be used to enter new lines
into a file but placed in the column range “m” through “n” rather than
starting in the first column of the current zone (normally, column 1).

Examples:
1) ==> do i =1 to 10;

input
INPUT
x(i) = 0;
end;
<{== Null line (carriage return)

do i =1 to 10;
x(1) = 0
- end;

2) —> doi =1 to 10;

inpute5
INPUT
x(i) = 0;
end;
{== Null line (carriage return)

do i =1 to 103
x(i) = 0;
- end;

54 VPS Utilities

INSERT

Suffixes:
Column

The INSERT command may be used to enter a new line in the file
after the current line (note that if the command immediately preceding
INSERT was TOP, the line will be inserted before the first line of the
file). The standard form of the INSERT command is shown below.

I
| INSERT {new line}
| 1

|

new line
is any string of characters to be added as a separate line in the
file. Note that the INSERT command assumes that the first
location in the new line is one space past the command name,
i.e. -

String Start String Start

v

INSERT I

Column Form:

INSERTCm[.n] {new line}
ICm[.n]

The column form of the insert command may be used to insert a new

line into a file but placed in the column range “m” through “n” rather
than starting in the first column of the current zone.

Examples:
1) ==> z =x+y;

z =x + ¥y3
-=> v =a % b;
2) = z=x%y;

b;

Section l: VPS Utility Commands 55

JOIN

Suffixes:
Flip character

The JOIN command may be used to append the next line to the current
line after the last non-blank character. The standard form of the
JOIN command is shown below.

JOIN [/string/]
J

—_—— e —
— e

.

(slash)
is any wunique delimiting character that does not appear in the

character string.

string
is a character string which is to be inserted between the end of
the current line and the information appended from the next line.
If “string” is not specified the first location in the next line
will be placed immediately following the last non-blank character
of the current line.

Examples:

1) —=> abc
12345

j
—=> abcl2345

2) ==> dear mom,
send money

j / howdy, /

——> dear mom, howdy, send money

56 VPS Utilities

LIST

Suffixes:
(none)

The LIST command may be used to print all or part of a VPS library
file or another editor block at the user”s terminal while editing a
file. The standard form of the LIST command is shown below.

| I
| LIST [numl, num2,] (filename |
| Ty LAST, :block number |
| TAST, LAST-num3, |
| LAST-num3, {
|

first parameter

specifies the line number in the file where printing is to begin.
The first line in the file being line number 1. The parameter may
be specified either as a number (represented by "numl” above)
relative to the beginning of the file; as the keyword LAST,
indicating that the last line in the file is to be printed; or as
the keyword LAST followed by a minus sign ("=" and a number
(represented by "num3" above), indicating that the first line to
be printed is line number "LAST-num"” relative to the end of the
file. Line number 1 is the default.

second parameter

specifies the line number in the file where printing is to end.
The parameter may be specified as a number (represented by "num2”
above) relative to the beginning of the file; as the keyword LAST,
indicating the printing should continue until the end of the file
is reached; or as the keyword LAST followed by a minus sign ("-"
and a number (represented by “num3” above), indicating that the
last line to be printed is line number "LAST-num" relative to the
end of the file. If only the first parameter is specified, it is
used as the default for the second parameter (i.e., only one line
will be printed). If neither parameter is specified, LAST is used
as the default for the second parameter.

filename
is the name of the VPS library file to be listed.

block number
is tne number of the editor block to be listed. Note that the
block number must be preceded by a colon (:).

Section 1: VPS Utility Commands 57

LOCATE

Suffixes:
Column
Flip character
Logical

The LOCATE command may be used to move to the next line in the file
which contains the specified character string anywhere in the current
zone (normally, the entire 1line). The standard form of the LOCATE

command is shown below.

LOCATE {string}
L

—_————
— i e——

string
is a character string. Note that the LOCATE command assumes that
the first location in the string is one space past the command
name, i.e. =

String Start String Start

LOCATE L

Column Form:

LOCATECm[.n] {string}
LCm[.n]

The column form of the LOCATE command may be used to search for the

character string in the column range “m” through “n” rather than the
current zone.

Logical Form:

LOCATEL | *, (expr)
LL number,

The logical form of the LOCATE command may be used to locate a line
under the control of a logical expression “(expr)” (for a description
of logical expressions see page 10). The search is successful when
the next line is found for which the logical expression is TRUE.

If “*” is specified all lines (from the next line to the bottom of
the file) for which the logical expression is TRUE will be listed
regardless of the verify/brief mode setting. In this special case of
the LOCATE command the current line remains unchanged.

58 VPS Utilities

LOCATE

If a number (“number”) 1is specified preceding the logical
expression, only those lines for which the logical expression is TRUE
from the next line for "number” lines will be listed regardless of the
verify/brief mode setting. In this special case of the LOCATE command
the current line remains unchanged.

Note:

In all forms of the LOCATE command (except the two special cases
noted above) if the search for the character string is successful or
if the 1logical expression is satisfied, the line containing the
character string or satisfying the logical expression becomes the
current line. If the search is wunsuccessful the current line remains
the same.

Examples:
1) == Ir r7,r8
la r6,nextone
1a r6,1(,r6)
b start
1l start
1r r7,c8
la r6,nextone
la r6,1(,x6)
-—> b start
2) ==> 1r r7,r8
la r6,nextone
la r6,1(,r6)
b start
1c22.23 r6
1r r7,r8
la r6,nextone
- la r6,1(,r6)
b start

Section 1: VPS Utility Commands 59

MOVE

Suffixes:

Column

The MOVE command may be used to move one or more lines of a file to

another location within the file or to another editor block. The
standard form of the MOVE command is shown below.

MOVE n3, nl,n2
:block number,

{?stringS :} /stringl/string2/[F]

:block number,

n3,nl,n2
:block number,nl,n2

where "n3” is the line number after which the moved lines are to
be inserted, “nl” is the first line number of the lines to be
moved, and “n2” is the last line number of the lines to be moved.

If a colon (:) followed by a block number is specified instead of
“n3”, the lines will be moved into the indicated editor block and
inserted after the current line in that editor block. Note, line
numbers may be found using the = command (see page 25).

/string3/stringl/string2/
:block number, /stringl/string2/

60

where / (slash) is any unique delimiting character (6ther than O
through 9 and :) which does not appear in the character strings.
“string3” is a character string. The lines to be moved will be
placed after the line containing the first occurrence of “string3”
when searching from the top of the file. “stringl” is a character
string. The first line to be moved will be the line containing
the first occurrence of “stringl” when searching from the top of
the file. “string2” is also a character string. The last line to
be moved will be the 1line containing the first occurrence of
“string2” when searching from the top of the file.

If a colon (:) followed by a block number is specified instead of
“string3”, the lines will be moved into the indicated editor block
and inserted after the current line in that editor block. Note
that the line containing “string2” must be found at least one line
below the line containing “stringl”. F is optional and indicates
that the string searches must only begin in the first column of
the current zone (normally, column 1).

VPS Utilities

MOVE

Column Form:

MOVECm. [n] /string3/stringl/string2/[F]

The column form of the MOVE command may be used to search for the

three strings only within the column range “m” through “n”. F implies
that the search will begin only in column “m”.

Example:

1) Before:

x = 03 {-— assuming this is line number 408
y =03

call action(x,y);

put skip edit (x,y) (2 £(5.2));

move 411,408,409

After:

call action(x,y);

put skip edit (x,y) (2 £(5.2));
x = 03

y = 0

Section 1: VPS Utility Commands 61

NEXT

Suffixes:
Flip character

The NEXT command may be used to have the editor move down one or
more lines. The standard form of the NEXT command is shown below.

NEXT number
N 1

e e, oy i

number
is the number of lines the editor is to move. The default is 1.

Example:

1) ==> do i =1 to 10;

x(i) = 0;
end;
n 2
do i =1 to 10;
x(1) = 03
- end;

62 VPS Utilities

NOTRAN

Suffixes:
(none)

The NOTRAN command is used to set no-translation mode for output
printing. In no-translation mode special characters appearing in
files will be printed on the terminal (normally, these special
characters are translated out before printing). To reset translation
mode see the TRAN command, page 82. The standard form of the NOTRAN
command is shown below.

| NOTRAN I

Section 1: VPS Utility Commands 63

OVERLAY

Suffixes:
Column

The OVERLAY command may be used to overlay a line or portion of a
line with the characters of a string. The standard form of the
OVERLAY command is shown below.

|

| OVERLAY {string}
| o
l

string
is a character string. Each non-blank character of “string” will
replace the corresponding character of the current line. Note
that the OVERLAY command assumes that the first location in the
string, corresponding to the first column of the current zone
(normally, column 1), is one space past the command name, i.e. -

String Start String Start

OVERLAY 0]

Column Form:

OVERLAYCm[.n] {string}
0Cm[.n]

The column form of the OVERLAY command is similar to the standard

form except that one space past the command name corresponds to column
“m” rather than the first column of the current zone.

Examples:
1) ==> 1234567890
ocabec
--> a2b4c67890
2) ==> 1234567890
0oc4.10 a b ¢

-=> 123a5b7¢90

64 VPS Utilities

PRINT

Suffixes:
(none)

The PRINT command may be used to 1list one or more lines starting
with the current line. The standard form of the PRINT command is
shown below.

PRINT [humbef] [,1ength]
P 1

number
is the number of lines to be listed. The default is 1. Note that

after the PRINT command has completed, the current line will be
the last line listed.

length
is a number representing the number of columns starting with
column 1 which are to be listed in each 1line. If “length” is
omitted all columns of the lines are listed.

Examples:

1) -=> dear mom,
send money

p 2
DEAR MOM,
SEND MONEY

2) —-> dear mom,
send money

p 2,4

DEAR
SEND

Section 1: VPS Utility Commands 65

QUIT

Suffixes:
(none)

The QUIT command may be used to terminate an editor session without
saving the edited file. The terminal session is returned to “*go~.
The standard form of the QUIT command is shown below.

66 VPS Utilities

REPEAT

Suffixes:
(none)

The REPEAT command is used to repeat a following BLANK or OVERLAY
command one or more times, moving down the file one line after each
BLANK or OVERLAY command execution. The standard form of the REPEAT
command is shown below.

|

| REPEAT [number
| 1

| .

number
is the number of times the BLANK or OVERLAY command is to be
executed. The default is 1.

Note:

After a REPEAT command has been issued it will remain in effect
until a BLANK or OVERLAY command is issued or another REPEAT command
is issued, irrespective of what comes in between.

Example:
L) == la 4,1(,4) 00000400
1r 6,7 00000410
b next 00000420
repeat 3

blec73.80 XXXXXXXX

la 4,1(,4)
1ir 6,7
- b next

Section 1: VPS Utility Commands 67

REPLACE

Suffixes:
Column

The REPLACE command is used to replace the current line with the
contents of a character string. The standard form of the REPLACE
command is shown below.

REPLACE {string}
R

— s — —

string
is a character string which is to replace the current line. Note
that the first location in the string, corresponding to the first
column in the current zone (normally, column 1), is one space past
the command name, i.e. -

String Start String Start

v
REPLACE R

Column Form:

REPLACECm[.n] {string}
RCm[.n]

The column form of the REPLACE command may be used to replace only

the information on the current 1line between the column range m
through “n~.

Examgles:
1) —> x =a * b;

]
V.
«

1

N

+
4

2) —-> =x

]
o

*
o
ws

rc6.10 z + y

-—> x=z+y;

68 VPS Utilities

RFILE

Suffixes:
(none)

The RFILE command is used to save the contents of the current block
(normally, the edited file) in an existing VPS library file without
terminating the edit session (to create a new library file see the
FILE command, page 46). The standard form of the RFILE command is
shown below.

RFILE [filename] [,accattr,accattr,...]
RFIL

filename

is any 1 to 8 character name which the current edited file is to
replace. If the file exists under an account different from the
user”s account, the file name must be immediately followed (mno
intervening blanks) by the owning account number enclosed in
parentheses (this requires a privilege). If the file name is not
specified the editor will attempt to replace the file whose name
was on the /EDIT command.

accattr
specifies an access attribute the user wishes to change (note that
if this parameter is not specified the existing access attributes
of the file will remain unchanged). It not specified default
access attributes will be taken from the user”s profile). It may
be specified as a single attribute or a list of attributes
separated by commas. The access attributes permitted are:

READ (R) =~ specifies that the file may be read or copied by
other accounts.

NOREAD (NOR) - specifies that the file may not be read or copied
by other accounts.

EXEC (E) - specifies that the file may be the argument of the
/EXEC command (the file may be executed) by other accounts.

NOEXEC (NOE) - specifies that the file may not be the argument
of the /EXEC command (the file may not be executed) by other
accounts.

PURGE (P) =— specifies that the file may be updated, edited,
replaced, or purged by other accounts.

NOPURGE (NOP) - specifies that the file may not be updated,
edited, replaced, or purged by other accounts.

P=(A=acctrange,accattr) — specifies the account or account range
to be given special access to the file and the access
attributes allowed for these account(s). “acctrange” may be
specified as a single account; a range of accounts separated
by a dash ("-"), in which case all accounts within that
range will be given the special access attributes; a

Section 1: VPS Utility Commands 69

RFILE

"partial account” (represented by a partial account number
followed by an asterisk ("*")), indicating that all accounts
beginning with the "partial account” should be given the
special access attributes; or, finally, a range of "partial
accounts"” separated by a dash, indicating that all accounts
starting with the first account beginning with the first
"partial account” to the 1last account beginning with the
second "partial account” should be given the special access
attributes. “accattr” is any of the access attributes

listed above.

Alternatively, the following access attributes may also be

specified:
PUBL = which corresponds to "READ", "EXEC", and "NOPURGE"
access.
PRIV - which corresponds to "NOREAD", “NOEXEC", and "NOPURGE"
access.
X0 - which corresponds to "NOREAD", "“EXEC", and "NOPURGE"
access.

NOX0 = which corresponds to "NOEXEC" access.

Examples:

1) In the following example a current copy of the edited file replaces
the VPS library file - BUMPERS:

/edit bumpers

rfil
*REPLACED

2) In the following example a current copy of the edited file replaces
the VPS library file - JUMPERS - and the access attribute NOEXEC is

specified:

70

rfil jumpers,noe
*REPLACED

VPS Utilities

RSAVE

Suffixes:
(none)

The RSAVE command is used to save the contents of the current block
(normally, the edited file) in an existing VPS library file and
terminate the edit session (to create a new file see the SAVE command,
page 73). The standard form of the RSAVE command is shown below.

|
| RSAVE [filename] [,accattr,accattr,...]
| RSAV

I

—— ——

filename

is any 1 to 8 character name which the current edited file is to
replace. If the file exists under an account different from the
user”s account, the file name must be immediately followed (no
intervening blanks) by the owning account number enclosed in
parentheses (this requires a privilege). If the file name is not
specified the editor will attempt to replace the file whose name
was on the /EDIT command.

accattr
specifies an access attribute the user wishes to change (note that
if this parameter is not specified the existing access attributes
of the file will remain unchanged). It not specified default
access attributes will be taken from the user”s profile). It may
be specified as a single attribute or a list of attributes
separated by commas. The access attributes permitted are:

READ (R) - specifies that the file may be read or copied by
other accounts.

NOREAD (NOR) - specifies that the file may not be read or copied
by other accounts.

EXEC (E) - specifies that the file may be the argument of the
/EXEC command (the file may be executed) by other accounts.

NOEXEC (NOE) - specifies that the file may not be the argument
of the /EXEC command (the file may not be executed) by other
accounts.

PURGE (P) = specifies that the file may be updated, edited,
replaced, or purged by other accounts.

NOPURGE (NOP) - specifies that the file may not be updated,
edited, replaced, or purged by other accounts.

P=(A=acctrange,accattr) - specifies the account or account range
to be given special access to the file and the access
attributes allowed for these account(s). “acctrange” may be
specified as a single account; a range of accounts separated
by a dash ("-"), in which case all accounts within that
range will be given the special access attributes; a
"partial account"” (represented by a partial account number

Section 1: VPS Utility Commands 71

RSAVE

followed by an asterisk ("*")), indicating that all accounts
beginning with the "partial account” should be given the
special access attributes; or, finally, a range of "partial
accounts” separated by a dash, indicating that all accounts
starting with the first account beginning with the first
"partial account” to the last account beginning with the
second "partial account" should be given the special access
attributes. “accattr” is any of the access attributes

listed above.

Alternatively, the following access attributes may also be

specified:

PUBL = which corresponds to "READ", "EXEC", and "“NOPURGE"
access.

PRIV - which corresponds to "NOREAD", "NOEXEC", and “NOPURGE"
access.

X0 - which corresponds to "NOREAD", "EXEC", and "NOPURGE"
access.

NOXO - which corresponds to "NOEXEC" access.

Examples:

1) In the following example a current copy of the edited file replaces
the VPS library file - BUMPERS:

/edit bumpers

rsav
*REPLACED
*GO

2) In the following example a current copy of the edited file replaces
the VPS library file - JUMPERS - and the access attribute NOEXEC is

specified:

72

-
.

rsav jumpers,noe
*REPLACED
*GO

-

.

VPS Utilities

SAVE

Suffixes:
(none)

The SAVE command is used to save the contents of the current block
(normally, the edited file) as a new VPS library file and terminate
the edit session (to replace an existing library file see the RSAVE
command, page 71). The standard form of the SAVE command is shown
below.

| SAVE filename [,accattr,accattr,...] |

filename
is any 1 to 8 character name under which the edited file (or
contents of the current editor block) is to be saved. If the file
is to be created under an account different from the user’s
account, the file name must be immediately followed (no
intervening blanks) by the owning account number enclosed in
parentheses (this requires a privilege).

accattr
specifies an access attribute the user wishes to change (note that
if this parameter is not specified default access attributes will
be taken from the user”s profile). It may be specified as a
single attribute or a list of attributes separated by commas. The
access attributes permitted are:

READ (R) - specifies that the file may be read or copied by
other accounts.

NOREAD (NOR) - specifies that the file may not be read or copied
by other accounts.

EXEC (E) - specifies that the file may be the argument of the
/EXEC command (the file may be executed) by other accounts.

NOEXEC (NOE) - specifies that the file may not be the argument
of the /EXEC command (the file may not be executed) by other
accounts.

PURGE (P) = specifies that the file may be updated, edited,
replaced, or purged by other accounts.

NOPURGE (NOP) - specifies that the file may not be updated,
edited, replaced, or purged by other accounts.

P=(A=acctrange,accattr) — specifies the account or account range
to be given special access to the file and the access
attributes allowed for these account(s). “acctrange” may be
specified as a single account; a range of accounts separated
by a dash ("-"), in which case all accounts within that
range will be given the special access attributes; a
"partial account” (represented by a partial account number
followed by an asterisk ("*")), indicating that all accounts
beginning with the "partial account"” should be given the

Section 1: VPS Utility Commands 73

SAVE

special access attributes; or, finally, a range of “"partial
accounts” separated by a dash, indicating that all accounts
starting with the first account beginning with the first
"partial account” to the last account beginning with the
second "partial account” should be given the special access
attributes. “accattr” is any of the access attributes
listed above.

Alternatively, the following access attributes may also be
specified:

PUBL = which corresponds to "READ", "EXEC", and "NOPURGE"

access.

PRIV = which corresponds to “NOREAD", "NOEXEC", and "NOPURGE"
access.

X0 - which corresponds to "NOREAD", "EXEC", and "NOPURGE"
access.

NOX0 - which corresponds to "NOEXEC" access.

Examples:

1) In the following example a current copy of the edited file is saved
under the new VPS library file name - BUMPERS:

save bumpers
*SAVED
*GO

2) In the following example a current copy of the edited file is saved
under the new VPS 1library file name - JUMPERS - and the access
attribute NOEXEC is specified:

save jumpers,noe
*SAVED
*GO

74 VPS Utilities

SEARCH

Suffixes:
Column
Flip character
Logical

The SEARCH command may be used to move to the first line din the
file which contains the specified character string regardless of the
location of the current 1line (equivalent to issuing a TOP command,
page 81, followed by a LOCATE command, page 58). The standard form of
the SEARCH command is shown below.

|

| SEARCH {string}
| s
[

string
is a character string. Note that the SEARCH command assumes that
the first location in the string is one space past the command
name, i.e. =

String Star: String StarE

SEARCH S

Column Form:

SEARCHCm[.n] {string}
SCm[.n]

The column form of the SEARCH command may be used to search for the

character string in the range “m through "n” rather than the current
Zone.

Logical Form:

SEARCHL [*,] (expr)

SL number

The logical form of the SEARCH command may be used to search for a
line wunder the control of a 1logical expression “(expr)” (for a
description of Jlogical expressions see page 10). The search is
successful only when the logical expression is TRUE.

If “*” is specified all lines for which the logical expression is
TRUE will be listed regardless of the verify/brief mode setting. In

this special case of the SEARCH command the current line remains

Section 1: VPS Utility Commands 75

SEARCH

unchanged.

If a number (“number”) 1is specified preceding the logical
expression, only those lines for which the logical expression is TRUE
within the range of line numbers 1 to “number” will be listed
regardless of the verify/brief mode setting. In this special case of
the SEARCH command the current line remains unchanged.

Note:

In all forms of the SEARCH command (except the two special cases
noted above) if the search for the character string is successful or
if the logical expression is satisfied, the line containing the
character string or satisfying the 1logical expression becomes the
current line. If the search is unsuccessful the current line remains
the same.

Examples:
1) 1r r7,r8
1la r6,nextone
la r6,1(,r6)
-—> b start
s b
1x r7,r8
-=> la r6,nextone
la r6,1(,r6)
b start
2) 1r r/7,r8
la r6,nextone
la r6,1(,r6)
-—> b start
sc22 rb6
1r r7,r8
la rb,nextone
-—> la r6,1(,r6)
b start

76 VPS Utilities

SIZE

Suffixes:
(none)

The SIZE command is used to determine the number of lines in a file
(or block) being edited. The standard form of the SIZE command is
shown below.

| SIZE |

Section 1: VPS Utility Commands 77

SPLIT

Suffixes:
Column

The SPLIT command may be wused to split a line into two separate
lines at a specified character string. The line created from the right
hand piece 1is inserted after the remainder of the original 1line and
becomes the new current line. The standard form of the SPLIT command
is shown below.

SPLIT /string/ Cm[.n] [,ICq]
SP

— e —
— —— —

/ (slash)
signifies any unique delimiting character that does not appear in
the character string.

string
is a character string. All characters up to, but not including,
the first occurrence of the character string will remain
unchanged. The remainder of the line, including the character
string, will be moved to a new line which becomes the current
line.

Cm[.n]
specifies that the search for “string”™ 1is to be between columns
“m” and “n” of the line.

ICq
where “q” is the column number in which the split-off chunk is to
begin. If this parameter is not specified the first character of
“string” will be placed in the first column of the current zone
(normally, column 1).
Examples:
1) doi =1 to 10;
. x(i) = 0; end;
sp / e/
do i =1 to 10;
x(i) = 0;
-—> end;

78 VPS Utilities

SPLIT

2) == next la r2,1(,r2)
sp /la/iclO

next
- la r2,1(,r2)

Section 1: VPS Utility Commands 79

SWITCH

Suffixes:
(none)

The SWITCH command is used to switch from one editor block to
another. The standard form of the SWITCH command is shown below.

|

| SwITCH {block number}
| sw
[

block number
is the number of the block to which the user wishes to switch.

Notes:

If the new block is empty, the editor will respond with “*eof”. If
the new block contains lines of information and the editor is in
verify mode, the editor will 1list the current line in the block.
Further information on block editing can be found on page 1ll.

80 VPS Utilities

TOP

Suffixes:
(none)

The TOP command may be used to have the editor move to the top of
the file. The standard form of the TOP command is shown below.

TOP

Section 1: VPS Utility Commands 81

82

TRAN

Suffixes:
(none)

The TRAN command is used to reset the editor to translation mode.
In translation mode special characters appearing in lines of a file
are translated to blanks before they are printed (the characters in

the file are not changed). This 1is the normal editor setting. The
standard form of the TRAN command is shown below.

VPS Utilities

UNCHANGE

Suffixes:
(none)

The UNCHANGE command is used to nullify the effect of changes made
to the current line with such commands as ADD, CHANGE, OVERLAY, etc.
The UNCHANGE command is effective only if the editor has not moved
away from the current line since the unwanted changes were made. Note
that internal motion will also cause the UNCHANGE command to be
ineffective (e.g., an unsuccessful LOCATE). The standard form of the
UNCHANGE command is shown below.

UNCHANGE

=
=
]

Example:

1) —> life is a drag
¢ /drag/bowl of cherries/
LIFE IS A BOWL OF CHERRIES

unc

—=> life is a drag

Section l: VPS Utility Commands 83

UpP

Suffixes:
Flip character

The UP command may be used to have the editor move up one or more
lines in a file. The standard form of the UP command is shown below.

UP number
vo|1

— ———

— s .

number

is the number of lines the editor is to move.

Example:
1) la
1r
=3 b

u 2

-—> la
1r
b

84

r4d,1(,r4)
r7,r8
start

rd,1(,r4)
r7,r8
start

The default is 1.

VPS Utilities

UPFIND

Suffixes:
Column

The UPFIND command may be used to move to the first line above the
current line which contains the specified character string starting in
the first column of the current zone (normally, column 1). The
standard form of the UPFIND command is shown below.

FIND {string}

oo
g

string
is a character string. Note that the UPFIND command assumes that
the first character in the string is one space past the command
l'lame, i-e- -

String Start String Start
‘.
UPFIND UF

Column Form:

UPFINDCm[.n] {string}
UFCm[.n]

The column form of the UPFIND command may be used to search for the
character string starting in column "m” rather than the first column
of the current zone.

Note:
If the UPFIND command is unsuccessful in searching for the
character string, the current line remains unchanged.

Section 1: VPS Utility Commands 85

UPFIND

Examples:

1) nextone

uf next

--> nextone

2)

-=> nextone

ufell r

nextone

86

ds

1r
la

ds

1r
la

ds

Oh

r/,r8
rb,nextone
start

Oh

r7,r8
r6,nextone
start

r7,r8
rb6,nextone
start

Oh

r7,r8
r6,nextone

start
Oh

VPS Utilities

UPLOCATE

Suffixes:
Column

The UPLOCATE command may be used to move to the first line above
the current line which contains the specified character string
anywhere in the current =zone (normally, the entire 1line). The
standard form of the UPLOCATE command is shown below.

UPLOCATE {string}
UL

string
is a character string. Note that the UPLOCATE command assumes

that the first location in the string is one space past the
command name, i.e. -

String Start String Start

v v

UPLOCATE UL

Column Form:

UPLOCATECm[.n] {string}
ULCm[.n]

The column form of the UPLOCATE command may be used to search for

the character string in the column range “m”~ through n” rather than
the current zone.

Note:

In all forms of the UPLOCATE command if the search for the
character string is successful, the line containing the character
string becomes the current line. If the search is unsuccessful the
current line remains unchanged.

Section 1: VPS Utility Commands 87

UPLOCATE

Examples:

L

2)

88

-=>

ul next

1r
1la
la

1r
la
la

1r
la
la

Ir
la
la

r7,r8
r6,nextone
r6,1(,r6)
start

r7,r8
rb6,nextone
r6,1(,r6)
start

r7,r8
r6,nextone
r6,1(,r6)
start

r7,r8
r6,nextone
r6,1(,r6)
start

VPS Utilities

VERIFY

Suffixes:
(none)

The VERIFY command is used to set the editor to verify mode so that
referenced and changed lines will be 1listed (see also the BRIEF
command, page 34). Note that verify mode is the default editor mode
setting (unless the user”s profile indicates otherwise). The standard
form of the VERIFY command is shown below.

VERIFY [number]
v

—— — ——

number
is the number of columns to be printed when listing referenced and
changed lines. If number is not specifed, all columms of the
current zone will be printed.

Section 1: VPS Utility Commands 89

XIN

Suffixes:
(none)

The XIN command is used to set the editor to hexadecimal input
mode. In hexadecimal input mode all input strings are assumed to be
in generalized hexadecimal form (see page 13). To reset the editor to

character input mode see the AIN command, page 28. The standard form
of the XIN command is shown below.

| XIN |

90 VPS Utilities

ZONE

Suffixes:
(none)

The ZONE command is used to change the editor zome. Initially, the
zone is from column 1 to the logical record length (the entire line)
indicating that all commands will operate on all columns of the line
(except, of course, for the column form of appropriate commands). The
ZONE command can be used to change this default zone (or reset it);
in which case subsequent editor commands will operate only on the
specified zone — as if nothing else existed on the lines. The
standard form of the ZONE command is shown below.

ZONE [m.n]
Z

m.n
where “m” is the first column number of the new zone and “n” is
the last column number of the new =zone. If “m.n” dis not
specified, the editor will reset the zone to the full line.

Examples:
1y —=> ltr ré4,r4
bnz start
la rd, 1(,r4)
start ds Oh
z 1.8
1 start

ltr r4,r4

bnz start

la r4,1(,r4)
—-=> start ds Oh

2) —> x(i) = x(i+l) + 1;

z 8.20
c /i/a/

=2 x{l) ==zlatl) + 1

Section 1: VPS Utility Commands 91

Chapter 2: /SCRIPT = the Text Processor

Script* is a program that allows the user to print English language
text in a form suitable for term papers, theses, publications,
resumes, etc. The Script program formats a file containing text and
Script control 1lines and produces an edited listing. The file must
first be typed in on a terminal, using the VPS Editor, and saved in
the VPS library. Control lines entered in the file along with the
text allow the wuser to control page numbering, top and bottom margin
specifications, left and right margin specifications, underlining,
etc.

The /SCRIPT Command

The /SCRIPT command invokes the Script program to format the text
file. This command may be used either at a terminal or in a VPS batch
job. If run in the VPS batch, the formatted listing will be printed
on the batch printer. The format of the /SCRIPT command for both
terminal and batch is shown below.

| |
{ /SCRIPT {filename} [,option,option,....] |

filename
specifies the name of the Ilibrary file the user wishes to have
formatted and printed.

option
specifies a /SCRIPT control option. It may be specified as a
single option or as a list of options separated by commas. The
following is a list of the control options available:

CEnter - specifies that the listing should be centered on 132
position printout paper.

NOwait - specifies that the printing of the text should begin
immediately without pausing for the user to adjust the
paper.

NUmber - specifies that the name of the text file and the line
number of each 1line should be 1listed next to the left
margin.

* The VPS Script program is based on the M.I.T. NSCRIPT text
processor. Parts of this chapter have been taken from the NSCRIPT
Reference Guide, Copyright 1973, Massachusetts Institute of
Technology, and are used with the permission of M.I.T. Information
Processing Services.

Section 1: VPS Utility Commands 93

Chapter 2: /SCRIPT - the Text Processor

OFfline = specifies that though this script execution is being
run at the terminal, printer control characters are to be
used in the scripted output. This option should be used if a
/FILE statement has been defined for unit 6 setting the unit
type to PRINTER and the file is being scripted at the
terminal.

PAGExxx — specifies that scripting should begin at page "xxx".
Note "xxx" must be entered as three numeric digits (e.g.,
PAGEOO3).

SIngle - specifies that the listing should terminate after one
page is printed.

STop — specifies that the listing of the text should stop after
each page is printed. This allows the insertion of standard
typewriter paper if desired.

UNformatted - specifies that the file should be listed without
formatting.

TRanslate -= specifies that character translation should occur
using a translation table that may be present as part of the
text file.

2PASS - specifies that the /SCRIPT program should make one pass
through the text file performing all indicated formatting
without producing any output. A second pass 1is then made,
during which output 1is produced. This option 1is primarily
useful for handling a text file which uses reference names
defined later in the file.

Using /SCRIPT From Terminals

After the /SCRIPT command, with the appropriate options, has been
entered at the user”s terminal, the following message will appear:

vps/nscript
load paper; hit return.

Script will now wait wuntil the user positions the paper in the
terminal. The paper should be positioned one line above the top of
the page to be printed. Seript will begin printing the formatted
listing when the user presses the carriage return key. If single
sheets of typewriter paper are used instead of continuous form
terminal paper, the user should specify the STOP parameter on the
/SCRIPT command (see above) so that Script will allow the user to load
new paper between pages of formatted text.

Using /SCRIPT From the Batch

To print a scripted 1listing on the batch printer, the following
batch job format should be used:

/ID account
/SCRIPT filename,option,option,...
/END

If the user wishes to place the scripted listing into a special
output class for, say, special forms, then the following batch job

94 VPS Utilities

Chapter 2: /SCRIPT - the Text Processor

format should be used (note that in this example the scripted listing
would be placed in sysout class §5):

/ID account

/FILE UNIT=(6,PRINTER),CLASS=S,0PT=NOSKIP
/SCRIPT filename,option,option,...

/END

Notes on the Behavior of /SCRIPT under VPS

/INCLUDE control statements (see the VPS Handbook) may not be used
in seript files. Script supports two control words which allow the
appending of files (.AP, see page 100) and the imbedding of files
(.IM, see page 128) during /SCRIPT processing. These control words
should be used to perform the functions of /INCLUDE control
statements.

When wunderlining (see the .UL control word, page 162) or
overprinting (see the .BS control word, page 105) /SCRIPT sends three
characters to the terminal for each character location on the print
line (e.g., when underlining the characters sent are - the character
to be underlined, a control character to physically backspace the
terminal, and the underscore character). Therefore, when doing heavy
underlining or overprinting it may be necessary to increase the
linesize value known to VPS; since VPS will fold lines longer than the
current linesize = causing interesting (though not necessarily what
the user intended) script listings. The 1linesize may be increased by
using the /CTL command (see the VPS Handbook). The following would
set the linesize to 250 characters:

/CTL LINESIZE 250

Script Text Formatting

The following is a list of the Script program defaults which were
chosen to print text with margin control on standard 8 1/2 by 11 inch
typewriter paper using an IBM 2741 10-pitch font:

Top Margin: 5 blank lines

Bottom Margin: 3 blank lines

Left Margin: Defined by position of paper

Right Margin: 60 spaces to the right of the left margin, e.g.,
line length of 60 spaces

Lines per page: 66 lines

These default settings may be changed by using Script control words
described later in this chapter. Note that this manual was produced
with Script on an AJ 832 wusing a 12-pitch font and the following
settings:

Top Margin: 7 blank lines
Bottom Margin: 4 blank lines
Left Margin: Defined by position of paper

Section 1: VPS Utility Commands 95

Chapter 2: /SCRIPT - the Text Processor

Right Margin: 70 spaces to the right of the left margin, e.g.,
line length of 70 spaces
Lines per page: 66 lines

Once Script has determined the margin settings it then manipulates
the text to fit within these margins. Two methods are used to adjust
the text - concatenation and justification. Concatenation is the
process of Jjoining together consecutive sentences, or sentence
fragments, so that no short or long lines will appear in the body of a
paragraph. For example, if the original text is entered as:

This is an example
of the concatenation
feature

of Script.

Script will concatenate these lines to read:
This is an example of the concatenation feature of Script.

Justification is the insertion of extra blank spaces between words
in a line of text so that the last letter of the last word will always
be printed at the right margin colummn, insuring a straight right
margin. For example, if the original text was entered as:

This is an example of the Script justification feature
The formatted Script listing would look like:
This is an example of the Sceript justifiecation feature

Certain special conditions exist for the Script concatenation and
Jjustification features. The last line of a paragraph will not be
justified as it is a valid short 1line. Any line of text which begins
with a blank space will cause concatenation and justification to
terminate with the previous line and to begin anew with the line
containing the blank. This feature, called a "break", prevents Script
from concatenating several individual paragraphs into one long
paragraph. An explicit break may also be caused by the break command
word (.br). Implicit breaks are caused by any of the control words
that cause normal line spacing to be interrupted (control words which
cause a break are designated as such in the control word descriptions
later in this chapter).

Preparing Text for Script

The successful use of Script is based on certain conventions that
must be followed when preparing the text. The first line of a
paragraph must be indented at least one space from the left margin
unless blank 1lines or break control words (e.g., .BR) are inserted
between paragraphs. Subsequent lines 1in a paragraph must be single
spaced in the user”s text. Double spaced text listings can be

96 VPS Utilities

Chapter 2: /SCRIPT - the Text Processor

obtained by use of a special Script control word.

Due to the concatenation feature of Script, the use of hyphens (-)
to break words between syllables is not recommended. If a word is too
long to fit on a line it should be typed on the next line without
hyphenation. Hyphens used to join two words, e.g., left-justify, may
be used with Script.

Sceript Control Lines

Seript control lines may be inserted into the text that is to be
processed by Script. These control lines are not the same as the
options specified on the /SCRIPT command. The format of a Script
control line follows.

. CW parameter(s)

Each control word (".cw" above) must start with a period ("."),
identifying this line as a control line, and must begin in column 1.
The control word is followed by user specified parameters, if needed.
Control lines are not output, but are interpreted to specify the
format of the output. Control lines must be entered as single lines
in the file and the control word may be specified in either upper or
lower case.

Control lines may appear anywhere in the file, and have effect on
all output produced after their appearance. Input data should not be
placed on a control line, as it may be erroneously interpreted as a
parameter (except in the case of the .UR control word).

Script Control Words

The following pages describe in detail the control words which may
be used with Script. The symbols [], {}, _, and ... are wused to

indicate how a control 1line may be written. DO NOT CODE THESE
SYMBOLS. Their general definitions are given below:

[] indicates optional operands. The operand enclosed in brackets may
or may not be coded, depending on whether or not the associated
option is desired or whether a default is to be taken. If more
than one item is enclosed in brackets, one or none of the items
may be coded.

{} indicates that a choice must be made. One of the operands from
the vertical stack must be coded, depending on which of the

associated services is desired.

indicates a value that is used in default of a specified value.
This value is assumed if the operand is not coded.

.. indicates that an operand, or set of operands, may be repeated.
The number of repetitions is dependent upon the function desired.

Section 1: VPS Utility Commands 97

Chapter 2: /SCRIPT - the Text Processor

98

M 4 (VRN . (e e K

| | [[
¢cw	PURPOSE	PAGE
[
.AP	Append	100
.AR	Arabic page numbering ¥ ‘3	
.BL	Blank	102
+.BM	x Bottom Margin	103
.BR	% Break	104
.BS	Backspace	105
.CE	Center next line	106
.cM	Comment	107
.CN	Create index line	108
.CO	y Concatenate	110
.CP	% Conditional page	111
.b¢c	Don“t count	112
.DS	% Double space	113
.EM	Empty page	114
.FD	0dd-page footing	115
.FE	Even and odd page footing	116
.FM	Footing margin	117]
.FN	Footnote definition	118
.Fo	¥ Format	120
.FV	Even page footing	121
.HD	0dd page heading	122
.HE	Even and odd page heading	123
.HM	x Heading margin	125
.HV	Even page heading	126
.IF	Conditional	127
.IM	Imbed [128	
.IN	Indent	130
.JU ! ¥ Justify I	131 }	

VPS Utilities

Chapter 2: /SCRIPT - the Text Processor

| | |

| CWw | PURPOSE | PAGE
| | |

| | |

| .LL | ¥ Line length | 132
| .LS | Leading blank line | 133
| .NC M- No concatenate | 134
| .NF | No format | 135
| .NJ |- No justify | 136
| .OF | ¥ Offset | 137
| .PA | ¥ Page eject | 139
| .PD | 0dd page force | 140
| .PL | Page length | 141
| .PN | Page numbering i 142
| .PR | Print terminal message | 143
| .P¥ | Even page force | 144
| .RA | Right adjust | 145
| .RC | Read control | 146
| .RD | Read | 147
| .RM | Remote I 148
| .RO | Roman numeral page numbering | 150
| .sp | ¢ Space | 151
| .SR | Set reference name ! 152
| .ss | * Single space | 155
| .TB | Set output tab locations | 156
| 7% | Set tab character | 157
| .M | %% Top margin | 158
| .TR | Specify translate table | 159
| .TsS | Triple space | 161
| <UL | Underline | 162
| .UN | ¥ Undent | 163
i .UR : Use reference name : 164

Section 1: VPS Utility Commands

e i’ i . e e e e e e S R e R | S A | g | it = e i e e, . e i 2 T

99

AP

The APPEND cdntrol word allows an additional file to be appended to
the file just printed.

AP indexname.filename %
USERLIB.filename nl
nl *

=]
(o]

When the .AP control word is encountered, the current file will be
closed. Line numbers "nl" through "n2" of the "filename™ will be read
and printed as a continuation of output already produced. If an index
name is not specified, USERLIB is assumed.

Defaults:

The entire file is read in starting at the first lime and no break
is created.

Notes:

(1) "*" may be coded in place of "nl n2" to indicate that the
entire file is to be read. If no arguments appear after the
filename, "*" is assumed.

(2) 1If "nl" 1is coded, "*" may be coded in place of "n2" to
indicate that the entire file starting with item "nl" is to
be read. If the third argument is omitted, "*" is assumed.

(3) The .AP control word only allows files to be appended to the
end of the current file. If it is desired to insert file
contents at some point besides the end, the .IM control word
should be used.

(4) /INCLUDE control statements (see the VPS Handbook) may not be
used with script files. .AP or .IM (see page 128) should be
used instead.

Examples:
(a) .ap chaldcont

The file named CHA4CONT will be read and formatted for output
as a continuation of the current file.

(b) .ap fig2 12 *

The file named FIGZ will be read starting with item 12 and
output as a continuation of the current file.

100 VPS Utilities

AR

The ARABIC control word causes page numbers to use arabic numerals.

The .AR control word causes all page numbers produced hereafter in
headings or footings to be printed in arabic numerals.

Defaults:

Page numbering in arabic is in effect until an .RO is encountered.

A break is not created by this command.

Notes:

(1) Arabic numerals are the normal mode.

Section 1: VPS Utility Commands 101

-BL

The BLANK control word allows a character to be specified as the
blank replacement character.

| .BL [character] |

Each blank control character in the file will be replaced with a
blank. Since justification is done before substitution the resulting
blank space(s) will not be expanded by justification. This control
character is especially useful when a specific number of blanks is
required between two words or symbols and Script is right and left
justifying the text.

Defaults:
Unless otherwise specified, no blank character is defined.
Example:
(1) The sequence:
-bl §
(1)$This will cause only 1 blank to appear in
")ST" though this line
will be justified by Script.

Produces:

(1) This will cause only 1 blank to appear in ") T" though
this line will be justified by Script.

102 VPS Utilities

.BM

The BOTTOM MARGIN control word specifies the number of lines which
are to appear between the bottom of the output page and the last line
of ordinary or footnote text.

I

At the bottom of all subsequent output pages (including the current
page), n lines will appear between the bottom of printed text
(footnote text included) and the physical bottom of the page.

Any footing line will appear within these n lines.
Defaults:

This command does create a break. Unless otherwise specified n = 3
will be in effect. When this command word is encountered and the

operand is omitted n = 1 will be assumed.

Notes:

(1) See also the description of the .FM (Footing Margin) control
word (page 117).

(2) At no time may the value set in .BM be smaller or equal to
the value set in .FM.

Section 1: VPS Utility Commands 103

- BR

BREAK causes the immediately previous 1line to be typed without
filling in with words from the next line.

BREAK is used to prevent concatenation of lines such as paragraph
headings or the last line of a paragraph. It causes the preceding line
to be typed as a short 1line if it 1is shorter than the current line
length.

Notes:

(1) Many of the other control words act as a BREAK. No BREAK is
necessary when one of these is present. In the description of
each control word it states, in the section titled Defaults,
whether that control word acts as a break or not.

(2) A leading blank or tab on a line has the effect of a BREAK
immediately before the line.

(3) 1If NO CONCATENATE is in effect, all lines appear to be
followed by a BREAK.

(4) If a BREAK control word immediately follows a .IF control
word (see page 127) which tests FALSE the BREAK is ignored.

Example:
(1) Heading:
.br
First line of paragraph ...
This part of the file will be printed as:

Heading:
First line of paragraph ...

If the BREAK control word were mnot included, it would be
typed:

Heading: First line of paragraph ...

104 VPS Utilities

-BS

The BACK SPACE control word allows a character to be specified as
the back space or overstrike character.

| .BS [character] |

Back space characters present in the file will cause Script to back
space one character position before printing the next character found.

A .BS control word with no operands will reset the back space
character to the default.

Defaults:

Unless otherwise specified the back space character is the EBCDIC
backspace character (hexadecimal 16).

Notes:

(1) The back space character is never printed in the formatted
output listing.

(2) See also the description of the .UL (Underline) control word
(page 162).

(3) It may be necessary to increase the terminal linesize wvalue
when doing heavy overprinting with the .BS character. The
VPS /CTL command (see the VPS Handbook) should be used. The
following would set the linesize value to 250 characters:

/ctl linesize 250
Example:
(1) The sequence:

.bs @
This is an example of b@ a@ c@ k@ s@ p@ a@ c@ i@ n@ g@

Produces:

This is an example of back spacing

Section l: VPS Utility Commands 105

.CE

The line following the CENTER control word will be centered between
the margins.

The next line in the input file, including its leading blanks, will
be centered between the left and right margins.

Defaults:

This command does cause a break. Any input lines or parts of lines
that have not been typed will be typed without filling in words from
any following lines.

Notes:

(1) If the line to be centered is longer than the current line
length, it will be truncated and not centered.

(2) The left and right margins are the value of any indent value
(.IN) and the current line length, respectively.

Example:

(1) .ce
Other Methods

When this line is typed, the characters "Other Methods™ will
be centered:

Other Methods

106 VPS Utilities

.CM

The COMMENT control word is ignored and may be used to enter
comments into a script file.

| .cM [anything] |

The .CM control word allows comments to be stored in the SCRIPT
file. These comments may be seen whenever the file is printed (using
JLIST, /DISPLAY, /EDIT or the UNFORMATTED option).

Comment lines may be used to store unique identifications for use
during editing of the file.

Defaults:
This command does not cause a break.

Notes:

(1) Since only the first two characters of a control line
(exclusive of the ".") are examined to determine what control
word is present, and since undefined reference names have
null-string ("") wvalues, a reference name can be given the
value “CM”~ and used to control conditional recognition of
other control words.

Examples:

(1) .cm .nf used below.

The comment line will be seen when examining the unformatted
printout of the script file and will serve to explain what is
going on to the reader.

Section 1: VPS Utility Commands 107

.CN

The CREATE INDEX control word specifies three items of index
information to be written to the *2 file (see the VPS Handbook).

| I
| .cN *H1"a2" 83" |
| |

Where "sl", "s2" and "s3" are character
strings not containing quotation marks. Any
of the fields may be omitted, but the
quotation marks must be included to indicate
missing fields, e.g., “sl1”7s3”.

The .CN control word allows the user to create index records which
can be processed independently to form an index. Each index item is
expanded to 40 characters (padded with blanks) and a blank is appended
to the front of each record for a total record length of 121
characters.

After the source file has been scripted, the *2 file, containing
the index records, may be sorted into ascending order using /SORT (see
Chapter 3) with the following sort keys:

Key Starting Column Length
1 002 040
2 042 040
3 082 040

The sorted file can then be used as input to the SCRNDX program to
create a "2-up" index for the particular document. SCRNDX is an
interactive program which when run at a terminal will prompt the user
for the information needed to create the index.

Notes:
(1) No individual item in the index data may be longer than 40
characters.
(2) If the user intends to use the SCRNDX program against the
index data the index items should be used as follows:

"sl" - the major index item.
"s2" = the minor index item.
“s3" - the page number which can be generated using the

special symbol "7%" (see page 152).

(3) The index for this manual was generated using .CN control
words and the SCRNDX program.

108 VPS Utilities

.CN

Example:
(1) The following line appears (just below the title for the
previous page) in the script file that was used to create

this manual:

.cn ~/SCRIPT control words “.CN™%~

The user is referred to the index of this manual to see it
in its final form.

Section 1: VPS Utility Commands 109

.CO

CONCATENATE cancels a previous NO CONCATENATE control word and
causes output lines to be formed by concatenating input lines and
truncating at the nearest word boundary to fit within the specified
line length.

| +G0 |

The CONCATENATE control word specifies that output lines are to be
formed by shifting words to or from the next input line. The resulting
line will be as close to the 1line Ilength as 1is possible without

exceeding it or splitting a word.

Defaults:

This command creates a break and is in effect until an .NC (or .NF)
is encountered.

Notes:
(1) CONCATENATE is the normal mode.

(2) Output produced with CONCATENATE in effect is similar to what
a normal typist produces (only if .NJ is in effect).

110 VPS Utilities

.CP

The CONDITIONAL PAGE control word causes a page eject to occur if
less than a specified number of lines remain on the page.

| .cp {n} |

The .CP control word will cause a page eject to occur if "n" lines
do not remain on the current page.

This request is especially useful:

(1) Before a .SP control word which is used to leave room for a
drawn figure. Use of .CP will guarantee that all of the
spaces are on the same page. (Note that .LS YES must be
specified if the spaces entered in this way are to be left on
the next page.)

(2) Preceding a section heading to insure that the heading will
not be left alone at the bottom of the page. In this case
the .CP control word should follow the .SP control word which
precedes the heading.

Defaults:

This command will not cause a break. If n is omitted the command
will be ignored.

Notes:
(1) If no operand is specified, the .CP control word is ignored.
(2) By "remainder of current page” it is meant "the area between
the last typed line and the beginning of saved footnote text

(if any) or the current bottom margin (if no footnotes are
saved)."

Section 1: VPS Utility Commands 111

.DC

The DON"T COUNT control word causes all output produced by the
immediately following text line to not be counted for purposes of page
length control.

If run in the VPS batch, all output produced by the next text line
will be overprinted on the last printed line.

If run at a terminal, output produced by the next text line will be
typed normally, but will not be counted towards the page length.

The .DC control word is primarily useful to allow the user to store
equations and such in a file when two or more typeballs are necessary
during output.

Defaults:

This command will cause a break before processing the immediately
following text line and it will be in effect only for that line.
Subsequent lines will be processed normally.

Notes:

(1) Only text 1lines which immediately follow a .DC are not
counted.

112 VPS Utilities

.DS

The DOUBLE SPACE control word causes a line to be skipped between
each line of typed output.

Subsequent output lines will be double spaced.

Defaults:

This command is not in effect unless encountered. It does cause a
break to occur when specified.

Notes:
(1) Single spacing is the normal mode.

(2) .SP control words encountered while .DS 1is in effect will
produce twice the normal number of blank lines.

(3) Footnote lines are never double spaced.

(4) The operand to the .CP control word is not doubled when .DS
is in effect.

Section 1: VPS Utility Commands 113

+EM

The EMPTY PAGE control word is used to control suppression of empty
(except for headings and footings) pages.

.EM Yes
No

Empty pages (pages which would, if printed, contain only headings,
footings, and possibly footnotes) can be genmerated in a number of ways
and are not normally printed by Script.

+EM YES specifies that empty pages are to be printed. .EM NO
specifies that empty pages are not to be printed.

Defaults:

A break will not be created and empty pages will not be printed
unless .EM YES or .EM is encountered.

Notes:
(1) If the operand is omitted, "YES" is assumed, since the user
presumably intends to accomplish something with the control
word.

(2) .EM NO is the normal mode.

(3) If pages are suppressed as a result of .EM NO, page numbers
will still increment unless .PN OFFNO has been specified.

114 VPS Utilities

.FD

The ODD FOOTING control word specifies three items of title
information to be printed at the bottom of odd-numbered pages.

|
.FD sl |
“8l"827E3" I

|

-

Where "sl1", "s2" and "s3" are character
strings not containing quotation marks. Any
of the fields may be omitted, but the
quotation marks must be included to indicate
missing fields, e.g., “s1”7s37.

The .FD control word is used in a way similar to the .HE control
word. The title items defined with .FD will be printed in a footing
line near the bottom of odd-numbered pages.

The footing line is generated by:

(1) Substituting the current page number for each appearance of
the special symbol "%".

(2) Left-adjusting "sl".

(3) Centering "s2".

(4) Right-adjusting "s3".
Defaults:

A break will not be created when this command is encountered.
Unless otherwise specified, .FD “°°7 will be in effect.

Notes:
(1) No individual item in the footing data may be longer than 60
characters.
(2) "s3" may overlay "s2" if necessary, and "s2" may overlay *gl"
if necessary.
(3) The default value of the footing line is REEEEN

Section 1: VPS Utility Commands 115

-FE

The FOOTING control word specifies three items of title information
to be printed at the bottom of even- and odd-numbered pages.

.FE

|
sl |
8l s2783" |
[
[

-

Where “sl", "s2" and "s3" are character
strings not containing quotation marks. Any
of the fields may be omitted, but the
quotation marks must be included to indicate
missing fields, e.g., “sl”783~.

The .FE control word is used in a way similar to the .HE control
word. The title items defined with .FE will be printed in a footing
line near the bottom of even- and odd-numbered pages.

The footing line is generated by:

(1
(2)
(3)
(4

Defaults:

Substituting the current page number for each appearance of
the special symbol "Z%".

Left-ad justing "sl”.

Centering "s2".

Right-ad justing "s3".

A break will not be created when this command word is encountered.
Unless otherwise specified, .FE “°°7 will be in effect.

Notes:
(1)
(2)
(3)
116

No individual item in the footing data may be longer than 60
characters.

"s3" may overlay "s2" if necessary, and "s2" may overlay "sl"
if necessary.

The default value of the footing line is "~°°~ ",

VPS Utilities

-FM

The FOOTING MARGIN control word specifies the number of blank lines
which are to be left between the bottom of formatted text and any
footing line.

The .FM control word defines the footing margin, which is the
number of blank lines which will be 1left between the bottom of
formatted text and any footing line on all pages.

If the footing margin is n and the bottom margin is m, the bottom
of each page will appear as follows:

(1) n blank lines,
(2) The footing line (if any),
(3)m-n - 1 blank lines.

Defaults:

This command word creates a break when encountered and until then n

=1 will be in effect. If the operand is omitted n =1 will be
assumed.

Section 1: VPS Utility Commands 117

.FN

The FOOTNOTE control word allows the user to enter a footnote which
will be printed at the end of the current page.

|

+FN Begin |
End |

I

When the .FN begin control word is encountered, the current values
of all relevent control wvariables are saved and Script prepares to
accept footnote text.

When the .FN end control word is encountered, the values saved by
the .FN begin are restored and formatting of output continues.

Script saves enough room at the bottom of the page to print the
footnotes and three separator lines. If enough room does not exist,
footnotes will be continued at the bottom of the next page. Any
control words (except .FN) may appear within the footnote. All page
eject controls are ignored, space (.SP) requests in footnotes are in
forced single space mode and all other requests apply only to the
footnote. Format controls in effect when the .FN begin is encountered
remain in effect during formatting of the footnote unless explicitly
overridden. (E.g., if indentation of the text has been requested with
an .IN control word, the footnote will also be indented.)

Defaults:
This command does not create a break.
Notes:

(1) Footnotes are always single spaced on output.

(2) No more than 100 formatted footnote lines may be waiting for
output at any time.

(3) The .FN begin control does not act as a break. The next
regular input line, that is, the first line after the .FN
end, will be concatenated with the previous line.

(4) No footnotes will appear on a page if at least 4 lines are
not available at the end of the page. If footnotes are
generated within 5 1lines of the bottom, they will be saved
for the next page.

(5) The line which precedes a footnote definition will always be
printed on the current page. It can never be displaced to
the nexr page by accumulation of footnotes.

(6) Footnotes appear before the bottom margin set in the .bm
control.

118 VPS Utilities

.FN

Example:

(a) As Dirac -1-
.fn begin
+in 5
.un 5
-1- Dirae, P.A.M.,
The Principles of Quantum Mechanics, Oxford Press, 1958.
.fn end
has uoted, this phenomenon is indigeneous to ...

Can be used to obtain output similar to that shown here:

(a) As Dirac -1- has noted, this phenomenon is indigineous to

-1- Dirac, P.A.M., The Principles of Quantum Mechanics, Oxford Press,
1958.

Section 1l: VPS Utility Commands 119

.FO

The FORMAT control word combines the effect of CONCATENATE and
JUSTIFY.

The FORMAT control word is a short-hand way to specify CONCATENATE
and JUSTIFY. This control word specifies that output lines are to be
formed by shifting words to or from the next line (concatenate) and
padded with extra blanks to produce an even right margin (justify).
Defaults:

This command does create a break. It 1is in effect unless a .NF is
encountered.

Notes:

(1) Since FORMAT is the normal mode, the control word is used
only to cancel a previous NO FORMAT control word.

120 VPS Utilities

FV

The EVEN FOOTING control word specifies three items of title
information to be printed at the bottom of even-numbered pages.

|
.FV sl I
“51°s27s3" I
|
|

-

Where "sl", "s2" and "s3" are character
strings not containing quotation marks. Any

of the fields may be omitted, but the
quotation marks must be included to indicate

missing fields, e.g., “sl”7s3”.

The .FV control word is used in a way similar to the .HE control
word. The title items defined with .FV will be printed in a footing
line near the bottom of even—numbered pages.

The footing line is generated by:

(1) Substituting the current page number for each appearance of
the special symbol "%".

(2) Left-adjusting "sl".

(3) Centering "s2".

(4) Right-adjusting "s3".

Defaults:

A break will not be created when this command is encountered.
Unless otherwise specified, .FV “7°7 will be in effect.

Notes:

(1) No individual item in the footing data may be longer than 60
characters.

(2) "s3" may overlay "s2" if necessary, and "s2" may overlay "sl"
if necessary.

(3) The default value of the footer line is ""7°7°".

Section 1: VPS Utility Commands 121

.HD

The ODD HEADING control word is used to define three headings to be
printed at the top of odd-numbered pages.

|
.HD sl |
“sl”s2”s3” |
l
|

-

Where "sl", "s2" and "s3" are character
strings not containing quotation marks. Any
of the fields may be omitted, but the
quotation marks must be included to indicate
missing fields, e.g., “sl”“s3”.

The .HD control word is used in a way similar to .HE. The headings
defined by .HD are, however, printed only on odd-numbered pages (pages
bound on the left margin).

The heading line is generated by:

(1) Substituting the current page number for each appearance of
the special symbol "Z%".

(2) Left-adjusting "sl".

(3) Centering "s2".

(4) Right-adjusting "s3".

Defaults:

This command does not create a break when encountered. Unless
otherwise specified, .HD “““PAGE %~ is will be in effect.

Notes:

(1) Appearance of .HD does not affect headings defined for
even-numbered pages via .HE or .HV.

(2) See the description of .HE and .HV for further notes and
examples.

=
Mo
2

VPS Utilities

+HE

The HEADING control word is wused to define three headings to be
printed at the top of both even— and odd-numbered pages.

I
JHE sl |
“81°s82”83”7 I

|

-

Where "sl", "s2" and "s3" are character
strings not containing quotation marks. Any
of the fields may be omitted, but the
quotation marks must be included to indicate
missing fields, e.g., “sl1”7s37.

The .HE control word specifies 3 items of character data to be
printed near the top of all subsequent output pages.

The heading line is generated by:

(1) Substituting the current page number for each appearance of
the special symbol "%".

(2) Left-adjusting "sl".

(3) Centering "s2".

(4) Right-adjusting "s3".

If the top margin is m and the heading margin is n, the top of the
output page will consist of:

(1) m = n - 1 blank lines,
(2) the heading line, and
(3) n blank lines.

Defaults:

A break dis not created by this command. Unless otherwise
specified, .HE “““PAGE %~ will be in effect.

Notes:

(1) No individual item in the heading data may be longer than 60
characters.

(2) "s3" may overlay "s2" if necessary, and "s2" may overlay "sl”
if necessary.

(3) The default value of the header line is "“““PAGE Z~".

(4) Appearance of the .HE control word overrides any previous
values of the heading items. If no items are specified, no
heading line at all will be generated. Furthermore, items
which are omitted become null and do not retain their
previous values.

Section 1: VPS Utility Commands 123

.HE

Example:

+he “Department of Physics” “ATN-05-3-70-%"

124 VPS Utilities

.HM

The HEADING MARGIN control word specifies the number of blank lines
which are to be left between the heading line and the first line of
text.

The heading line (if any) produced on subsequent output pages will
be separated from the first line of text by n blank lines.

If the current top margin is m and the heading margin is n, the top
of each page will appear:

m-n - 1 blank lines

The heading line

n blank lines
Defaults:

This command creates a break and until it is encountered n = 1 will
be in effect. If the operand is omitted m = 1 will be assumed.

Notes:

(1) The heading margin must always be strictly less than the top
margin.

Section l: VPS Utility Commands 125

HV

The EVEN HEADING control word is used to define three headings to
be printed at the top of even-numbered pages.

|
.HV sl |
“s1782783” |
|
|

-

Where "sl", "s2" and "s3" are character
strings not containing quotation marks. Any

of the fields may be omitted, but the
quotation marks must be inecluded to indicate

missing fields, e.g., “sl”“s3”.

The .HV control word is used in a way similar to .HE. The headings
defined by .HV are, however, printed only on even-numbered pages
(pages bound on the right margin).

The heading line is generated by:

(1) Substituting the current page number for each appearance of
the special symbol "Z".

(2) Left-adjusting "sl".

(3) Centering "s2".

(4) Right—-adjusting "s3".

Defaults:

This command does not create a break when encountered. Unless
otherwise specified, .HV “““PAGE %~ is will be in effect.

Notes:
(1) Appearance of .HV does not affect headings defined for

odd-numbered pages via .HE or .HD.
(2) See the description of .HE and .HD for further notes and

examples.

126 VPS Utilities

.IF

The IF control word causes the next input line to be processed or
not depending on the result of a comparison.

.IF “sl” [op] “82”
nl n2

Where:

i e e i

"s1" and "s2" are character strings not
containing blanks, "nl" and "n2" are signed
decimal integers, and [op] is one of the
following:

-

<

WAV
]

Note that for ASCII terminals on VPS the
tilde, ~, should be used for the -.

If the comparison operation is true, the immediately following
input line is processed normally. Otherwise, the next input line is
skipped (ignored).

If the first operand begins with a quote ("), the comparison will
be between two characters strings using the standard EBCDIC collating

sequence.

If the first operand does not begin with a quote, the comparison
will be between two signed decimal integers.

Defaults:
This command does not create a break when encountered.
Notes:

(1) If the two character strings to be compared have unequal
lengths, the comparison will result in the shorter string
being considered less than the longer.

Example:
(1) .sraZ/2%2=-23%
.ur .if & =0

Will cause the next input line to be processed if the current
page number is even.

Section 1: VPS Utility Commands 127

«IM

The IMBED control word is used to insert the contents of a
specified file into the printout of the file currently being
formatted.

*

.IM indexname.filename =
nl n2

USERLIB.filename

The first argument names a file whose contents are to be included
in the input. If an index name is not specified, USERLIB is assumed.

"nl" gives the item number of the first line of the imbedded file
to be read, "n2" gives the item number of the last line to be read.
Instead of "nl n2", the single character "*" may be used to indicate
that the entire file is to be included. The "*" may also be used
instead of "n2" to indicate that the rest of the file (that is, items
"nl" through the end) are to be included.

The .IM and .AP control words perform similar functions, but .IM
allows the contents of a second file to be inserted into the printout
of an existing file rather than appended to it. Imbedding may be used
to insert standard sets of control words at desired spots, or to
control formatting of a long document out of individual files.

Files may be imbedded to 10 levels. Said in a different way, a file
may imbed another file or itself and then that file may imbed another
file or itself and then that file ... this can continue wuntil the
stack of imbedded files reaches 10.

Defaults:

This command word does mnot create a break when encountered. The
entire file is read in starting at the first line, i.e., * is assumed.

Notes:

(1) /INCLUDE control statements (see the VPS Handbook) may not be
used in script files. .AP (see page 100) or .IM should be
used instead.

Examples:
(a) .im chapter4
The contents of the file named CHAPTER4 will be included in

the input. When the end of CHAPTER4 is reached, printout of
the current file will continue.

128 VPS Utilities

.IM

(b) .im footnote 12 15

Lines 12, 13, 14, and 15 of FOOTNOTE will be imbedded.

Section 1: VPS Utility Commands 129

IN

The INDENT control word causes the left margin of the printout to
be indented a specified number of spaces.

[=¥-!
e

.IN |:

The .IN control word causes printout to be indented "n" spaces from
the left margin. This indentation remains in effect for all subsequent
lines (including new paragraphs, footnotes, and new pages) until
another .IN is encountered. It will remain in effect even if .NF is
specified.

+IN O or .IN will cancel the indentation and cause printout to
continue at the original left margin.

Defaults:

When this command word is encountered it creates a break and until
then n = 0 is in effect. When the operand is omitted n = O is assumed.

Notes:

(1) the .IN request causes any offset (.OF) setting or undent
(.UN) setting to be cleared.

130 VPS Utilities

-JU

The JUSTIFY control word causes output lines to be padded with
extra blanks so that the right margin is justified.

The .JU control word specifies that all subsequent output lines are
to be formed by padding with extra blanks to cause the right margin to

be justified.
Defaults:

This command creates a break and is in effect until an .NJ is
encountered.

Notes:
(1) Since JUSTIFY is the normal mode, this control word is used
to cancel a previous NO JUSTIFY control word or the NO
JUSTIFY part of a NO FORMAT control word.

(2) If a line exceeds the current line length, and NO CONCATENATE
is in effect, the line is printed as is.

(3) This control word is seldom used without CONCATENATE, which

is the same as specifying FORMAT, which combines the two
functions.

Section 1: VPS Utility Commands 131

.LL

The LINE LENGTH control word specifies the number of horizontal
character positions which are to be printed in subsequent output
lines.

w__ W

The .LL control sets the length of subsequent output lines to "n
characters.

Defaults:

When this command word is encountered it creates a break. Unless
otherwise specified n = 60 characters per line (including blanks) will
be in effect. If no argument is supplied then n = 1 will be assumed.
Notes:

(1) Most terminals and printers print 10 characters per
horizontal inch. The default wvalue of 60 is sufficient to

give 1 1/2 inch left and 1 inch right margins on 8 1/2 inch
paper-.

132 VPS Utilities

LS

The LEADING SPACES control word is used to control suppression of
blank lines at the beginning of a page.

.LS Yes
No

Blank lines may occasionally be the first lines of formatted output
to be printed on a page. For example, a .SP 10 may have appeared 5
lines from the bottom of the previous page. Script does not print such
blank lines except at the top of the first page of output.

Since blank lines may sometimes be desirable at the beginning of a
page (e.g., when centering a figure on a page). the .LS control is
provided.

.LS YES allows blank 1lines to begin a page. .LS NO prevents blank
lines from beginning a page.

Defaults:

This command does not create a break and .LS NO is in effect until
.LS YES or .LS is specified. (If the operand is omitted, "YES" is
assumed.)

Notes:

(1) If the operand is omitted, "YES" is assumed.

(2) .LS NO is the normal mode.

(3) Leading spaces are allowed on the first page of printed
output.

(4) This discussion applies only to formatted text, not to
headings or top margins.

Section 1: VPS Utility Commands 133

.NC

The NO CONCATENATE control word stops words from shifting to or
from the next line.

| .NC |

The NO CONCATENATE control word stops words from shifting to and
from the next line. There will be a one-to—one correspondence between
the words in input and output lines.

Defaults:

This command word does create a break and is not in effect until
encountered.

Notes:

(1) Concatenation will be completed for the 1lines which precede
the .NC control word, since it also acts as a BREAK.

(2) TIf JUSTIFY 4is in effect, the right margin will still be
adjusted.

134 VPS Utilities

.NF

The NO FORMAT control word causes lines to be typed as they appear
in the input by negating the effect of JUSTIFY and CONCATENATE.

The .NF control word is a short-hand way to specify .NJ and .NC.
Subsequent output lines will by typed exactly as they appear in the
input until a .FO, .JU, or .CO control word in encountered.

Tables and equations are more easily entered if .NF is wused to
suppress formatting just before them.

Defaults:

This command does create a break and is not in effect until
encountered.

Notes:
(1) The diagnostic "LINE TOO LONG OR PRINTER ERROR" is commonly

caused by failing to specify .FO after a section produced
under .NF.

Section 1: VPS Utility Commands 135

-NJ

The NO JUSTIFY control word stops justification of the right
margin.

The .NJ control word causes Script to cease inserting extra spaces
into lines in order to justify the right margin. If CONCATENATE is in
effect, the output lines will be as long as possible without exceeding
the current line length and without breaking words in the middle. The
resulting output will be similar to what an ordinary typist would
produce.

Defaults:

This command does create a break and is not in effect wuntil
encountered.

136 VPS Utilities

.OF

The OFFSET control word causes all but the first line of a section

to be indented.

— i — T—

" B

The .OF control word is used to indent the left side of
printout "n" spaces after printing the next output line.
indentation remains in effect until a BREAK or wuntil another

control word is encountered.

The .OF control word may be used within a section which is

the
The
.OF

also

indented with the .IN control word. Any subsequent .IN control word

causes the indentation set by .OF to be cleared.

If it is desired to start a new section with the same offset as the

previous section, it is necessary to repeat the .OF request.

Defaults:

This command creates a break when encountered. If no argument is

supplied then n = 0 will be assumed.
Notes:
(1) If the following sequence is input:
.of m
{text>
.of n

{text>

The second offset will be added to the first.

Section 1: VPS Utility Commands

137

-0OF

Examples:

(1) Many of the sections of this manual (including the example
text) are produced by a sequence like this:

<{section header>
.in 5

.of 4

(1) <text>

.of 4

(2) <text>

.in

138 VPS Utilities

.PA

The PAGE control word causes an output page eject.

| .PA [n] |

When the .PA control word is encountered, the rest of the current
page is skipped, any saved footnote lines are printed, the footer line
is printed, and a new page is begun whose number is "n".

Defaults:

This command word does create a break when encountered. If the
operand is omitted then the current page number plus one (%2 + 1) is
assumed.

Notes:

(1) If the STOP option was specified in the control 1line which
invoked Script, output will cease at the end of the current
page to allow the typist to insert the next page of paper.

(2) If the current page is empty and .EM NO is in effect, either
by default or through explicit statement, the .PA control has
no effect other than causing the page number to be
incremented or reset. Consequently, heading lines are not
printed until there is a text line about to be printed which
allows dynamic changes to page headings and possibly remote
lines imbedded in the text of that page.

(3) Heading lines, margins, etc., must be specified before the
first line of text which will appear on the new page.

(4) If no argument is supplied, the page number will be
incremented by 1.

Section 1: VPS Utility Commands 139

.PD

The ODD PAGE control word causes output to continue on an

odd-numbered page.

The .PD control word causes one or two page ejects
continues on an odd-numbered page.

Defaults:

This command will create a break when encountered.

Notes:

(1) If empty-page suppression is on (.EM NO),
will be incremented to the next odd page

continue on the next physical page.

140

so that output

the page number
and output will

VPS Utilities

+PL

The PAGE LENGTH control word specifies the physical size of the
output page in units of typewriter lines.

L

The .PL control word allows the use of various paper sizes for
output.

e ——

Normal 8 1/2 =x 11 inch paper is 66 lines long on a IBM 1403
printer, a IBM 2741 type of terminal, or any other device which types
6 lines per vertical inch.

Defaults:

This command word will create a break and unless otherwise
specified n = 66 will be in effect. If the command is encountered and
the operand is omitted n = 1 will be assumed.

Notes:
(1) Use of the .PL conttol word for any other purpose than
specifying the actual physical size of the output page is

discouraged. The TOP MARGIN and BOTTOM MARGIN control words
should be used to control the dimensions of printed text.

Section 1: VPS Utility Commands 141

-PN

The PAGE NUMBER control allows the user to control the incrementing
of page numbers.

I I
| .PN ON l
I OFF ,
I OFFNO ,
I I

OFFNO Suppresses incrementing of page numbers.

OFF Suppresses the printing of page numbers.

ON Causes incrementing and printing of page numbers to

resume.

The .PN control word is used to control the automatic incrementing
of page numbers. If OFFNO is specified, page numbers will not increase
as subsequent pages are output. If ON is specified, incrementing and
printing will resume.

Defaults:

This command word will not create a break. Unless otherwise
specified "ON" will be in effect.

Notes:

(1) If page incrementing is suppressed, the even and odd page
force control words (.PV and .PD) function exactly like .PA.

142 VPS Utilities

.PR

The PRINT control word causes one line of information to be typed
on the user”s terminal.

| .PR [information] |

If output is to the user”s terminal, the .PR control is ignored
(except during the first pass of a 2PASS run, when .PR causes output

normally). Otherwise, the entire operand field is printed on the
terminal.

The .PR control may be of use, for example, immediately preceding a
.RC (Read Control) control word as a reminder of what to do.

Defaults:

This command word will not create a break when encountered.

Example:

.pr Type Name and Address (3 lines)
.re
.br
= o
+br
«TC
. br

Section 1: VPS Utility Commands 143

. PV

The EVEN PAGE control word causes output to continue on an
even-numbered page.

| .pv |

The .PV control word causes one or two page ejects so that output
continues on an even-numbered page.

Defaults:
This command word will create a break when encountered.
Notes:
(1) If empty-page suppression is on (.EM NO), the page number

will be incremented to the next even page and output will
continue on the next physical page.

144 VPS Utilities

.RA

The RIGHT ADJUST control word causes the next input line to be
right adjusted in the output line.

The next input text line, including any leading or trailing blanks,
will be right adjusted in the output line.

Defaults:

This command word will create a break when encountered.

Notes:

(1) If the next line is longer than the current line length, it
will be truncated.

Example:
(1) .ra
(1.5)
Produces:
(1.5)
145

Section 1: VPS Utility Commands

-.RC

The READ CONTROL control word allows the user to enter control or
input lines during processing of the input file.

.RC [n

When the .RC control word is encountered the user”s terminal
keyboard is unlocked and n lines are accepted and processed as if they
had been in the input file. The lines thus read may be prose or
control information.

| =
| NIRRT

Defaults:

The .RC control word does not act as a break in itself. However,
control words read under its control may act as breaks. If the
operand is omitted then n = 1 is assumed.

Notes:

(1) A completely null line is taken to mean that the user is done
typing input lines. The .RC 1is terminated regardless of
whether n lines have been read. A null line signals an End Of
File (EOF).

(2) The user might wish to use .RC in order to dynamically
specify control words or prose.

Example:

.cm user will enter name and address here
.rc & ’

146 VPS Utilities

.RD

The READ control word allows the user to type a line on the output
page during Script output.

S

When the .RD control word is encountered during output to the
user”s terminal, Script will unlock the keyboard until "n" carriage
returns have been typed. The lines typed are ignored completely except

for purposes of counting lines on the current page.

When the .RD control word is encountered during output to the
offline printer, Script will insert n blank lines in the output.

This control word may be useful to allow addresses to be inserted
in form letters or to allow the user to change type elements.

Defaults:

This command word does create a break when encountered. If the
operand is omitted n = 1 is assumed.

Notes:

(1) If output is offline and the .RD is received within n lines
of the bottom margin and .LS NO is in effect, spaces will not
appear at the top of the next page. If, however, output is
online and the other two conditions are met, spaces will

appear at the top of the next page.

Section 1l: VPS Utility Commands 147

-RM

The REMOTE control word allows the user to save one or more input
lines, which will be automatically imbedded at a specific place on the
current page, the next page, or subsequent pages.

I I

| .RM (n]) SAVE |

I NOSAVE |

| DELETE |

| I
Where:

n is a decimal integer in the range:
TOP MARGIN < n < BOTTOM MARGIN

The input lines between the first .RM and the next .RM are saved.
When the next 1line n is to be printed, the saved lines are
automatically interpreted.

If NOSAVE is specified or assumed by default, the saved lines are
erased after the first use.

If SAVE is specified, the remote sequence is saved and invoked on
line n of every page until a .RM n DELETE is received specifying the
same line number.

The .RM control word is useful for defining multi-line headers or
for causing automatic insertion of figures.

Following the imbedding of a remote sequence, line formatting
options are restored to their values prior to the insertion of the
remote.

Defaults:

This command word will not create a break when encountered. If
both operands are omitted the first operand will be set to the TOP
MARGIN plus one, i.e. (n =TM + 1), and the second operand will become
"NOSAVE". If only the first operand is specified, the second will
become "NOSAVE".

Notes:
(1) Any lines whatever may appear within the .RM (except another
«RM) and are interpreted when the remote sequence is

inserted.

(2) The combined total number of footnote and remote lines may
not exceed 100.

148 VPS Utilities

(3)

(4)

(3

Example:

(1)

-RM

Remote sequences are "triggered” when line n of the output
page is about to be printed. While a remote sequence is being
used for input, no other remote may be triggered. If two or
more remotes specify the same line number, only the oldest
will be triggered.

A .RM DELETE deletes the oldest sequence for the specified
line number.

If no arguments are presented, a line number one bigger than
the current top margin is assumed.

Assume a TOP MARGIN of 6. The following sequence places a
figure at the top of the next page:

.rm 7
.in
(Figure)
.ce
FIGURE ONE: Water Concentration in Lake Erie as
.ce
a Function of GNP.
.rm

Section 1: VPS Utility Commands 149

RO

The ROMAN control word causes page numbers to use lower-case roman
numerals. '

| .RO |

The .RO control word causes all page numbers produced hereafter in
headings or footings to be printed in lower-case roman numerals.

Defaults:

This command word will not create a break and unless encountered
will not be in effect.

150 VPS Utilities

.SP

The SPACE control word generates a specified number of blank lines
before the next typed line.

The SPACE control word causes n blank lines to be typed. ILf the end
of the page is reached before satisfying the request, the remaining
spaces may or may not be typed on the next page depending on whether
.LS YES has been specified. If DOUBLE SPACE or TRIPLE SPACE 1is in
effect, twice the specified number of spaces are typed.

Defaults:

This command does create a break when encountered and if the
operand is omitted n = 1 will be assumed.

Notes:

(1) .SP control words within footnotes cause blank lines to be
generated within the printout of the footnote at the bottom
of the page-

Section 1: VPS Utility Commands 151

-SR

The SET REFERENCE control word allows the user to assign a
character or numeric value to a symbolic reference name.

.SR name “string” [s] [1]

numeric-expression

—_—— e —

|
I
|
l
l

Where "s" 1is the starting column of the
substring to be assigned (the default is 1)
and "1" is the length of the substring (the
default is = length of substring - s + 1).

The reference name named by the first operand is given the value of
the second operand. If the reference name does not exist, it will be
created.

The .SR control word may be used for a variety of purposes. For
example:

(1) Symbols may be defined as having as their value the number of
the page on which they appear and can be used to construct a
table of contents.

(2) Symbols can be assigned to count the number of equations
being used and to number the equations as they appear on the
output.

The reference name may be any character string of length 7 or fewer
which does not contain a blank or period. The name is converted to
upper case prior to use.

The character string may include blanks and apostrophes within the
string must be doubled.

The form of the numeric-expression which may be used as the
assigned value is as follows:

{expression> =:: <{term> | <expression> <op> <termd
{term> =:: <symbol> | <decimal-integer>

op> =:: + | = | % | /

At least one blank must separate all items in the expression. That
is, "5+ % - 7" is valid, while "5+%-7" is not. One unary "+" or "="
is allowed to immediately precede the number (with no intervening
blanks). Operators are performed left to right.

The following special <symbol>“s are recognized:
(1) "z" Current page number.

(2) "<*" Current line number of file.
(3) "<1" Current line number of page.

152 VPS Utilities

.SR

Defaults:

This command word will not create a break when encountered. If one
or both operands are omitted it will be treated as an error.

Notes:

(1) No more than 200 reference names may be defined during one
run of Script.

(2) See the description of the .UR control word and the 2PASS
option for further hints on the use of .SR.

Example:

(1) The sequence:

.sr eqnno 0

.ur .sr eqnno &eqnno + 1
.ur .sr xeqn &eqnno

.ur x = erfc(a - bc) (&eqnno.)
.ur .sr egnno &eqnno + 1
.ur v = erfc(a + be) (&eqgnno.)

.ur Using the previous result for x (Equation &xeqn.)...

Produces:
x = erfe(a = be) (1)
y = erfc(a + be) (2)

Using the previous result for x (Equation 1)...
(2) The sequence:

+sr a 0

.8r b =5

.8r ¢ "a”

.sr d b°

,ur .ur .sr &c &&&d + 1
«ur a = &a..

.ur-b = &b..
Produces:

a = =4,
b = -5.

Section 1: VPS Utility Commands 153

.SR

(3) The sequence:

.sr page %
.ur The number of this page is é&page.-.

Produces:
The number of this page is 154.
(4) The sequence:

.sr value 16

.ur .sr v2 “&value “15

~SUur ***&V2¢***

Produces:

*%%]6 EE T

154

VPS Utilities

«55

The SINGLE SPACE control word causes output to be single spaced.

Subsequent output lines will be single spaced.

Defaults:
When this command word is encountered it will create a break.
Unless otherwise specified .85 will be in effect.

Notes:

(1) Since SINGLE SPACE is the normal mode, this control word is
used to undo the effect of a previous .DS or .TS.

Section 1: VPS Utility Commands E55

.TB

The TAB SETTING control word specifies the logical tab locationms
Script is to use when the logical tab character (see also the .TC
control word) is found in the following text lines.

| |
| .TB tl t2 ...tn |

A tab character present in the text 1is replaced with one or more
blanks to simulate the effect of physical tabs. The .TB control word
specifies the locations of the logical tabs.

A .TB control word with no operands causes reversion to the default
tab settings.

Defaults:
The control word creates a break when encountered. Until .TB is

found with operands the logical tab locations are columns 5, 10, 15,
..., 80.

156 VPS Utilities

.TC

The TAB CHARACTER control word allows a character to be specified
as the Script logical tab character.

| |
| I [character] |

A tab character present in the text is replaced with one or more
blanks up to the next logical tab location (see the .TB control word).

A .TC control word with no operands resets the logical tab
character to the default.

Defaults:

Unless otherwise specified the logical tab character is the EBCDIC
tab character (hexadecimal 05).

Notes:

(1) The tab character is never printed in the formatted output
listing.

Examples:
(1) The sequence:

.tc

4 12
Produces:

4 12

Section 1: VPS Utility Commands 157

.TM

The TOP MARGIN control word specifies the number of lines which are

to be placed between the physical top of the output page and the first
line of text.

Subsequent output pages will begin with m lines (which may include
a heading line) before the first line of text.

Defaults:

This command word will create a break and until encountered m = 5
will be in effect. When encountered without an operand m =1 will be
assumed. This may result in an error.

Notes:

(1) The TOP MARGIN must always be strictly greater than the
HEADING MARGIN.

(2) The margin specified by .TM will apply to the current page if
no output has yet been produced on it.

158 VPS Utilities

. TR

The TRANSLATE control word allows the user to specify the contents
of the translate table used to implement the TRANSLATE option.

I I
| .TR sl tl [s2 t2 ...] I
I I

Where "sl", "tl", etc., are single characters
or two-digit hexadecimal numbers using upper
or lower case letters.

If the TRANSLATE option was specified in the command line which
invoked Script, all subsequent output lines will be printed with all

occurrences of "sl" replaced by "tl", etc.

The .TR control word is primarily of use when output must wuse a
different character set than was used to create the file. For example,
the user may print on line a file which uses special characters not
available on the terminal (e.g., the TN train”s superscript characters
are not available on the 2741 terminal).

Defaults:

This command will not create a break when encountered. Lower case
to upper case translation will be in effect until .TR is encountered
with operands.

Notes:

(1) Heading, footing, and footnote lines are translated under
control of the translate table current when the line is
output.

(2) Script control lines are never translated.
(3) Translate pairs remain active until explicitly re-specified.

(4) The default translate table takes lower case letters into
upper case letters and leaves all other characters the same.

(5) Hexadecimal numbers are recognized by the presence of 2
characters (instead of one) and may use upper or lower case
letters A-F.

(6) The last pair in a .TR line may consist of only onc argument,

which indicates that the corresponding character is to be
translated into itself (left unchanged).

Section 1: VPS Utility Commands 159

.TR

Examples:

160

(1)

(2)

(3

.tr 80 (9D) BOO ... B9 9
Causes the TN train”s superscript parentheses and numbers to
print as ordinary parentheses and numbers.

«tr 40 ?

Causes all blanks in the file to be typed as "?" on output.
«tr 40 ?

Causes all blanks in the file to be typed as "?" on output,
and the " " to appear as " " (i.e., to be translated into
itself.)

VPS Utilities

T8

The TRIPLE SPACE control word causes two lines to be skipped
between each line of typed output.

Subsequent output lines will be triple spaced.

Defaults:

This control word is not in effect unless encountered. It causes a
break to occur when specified.

Notes:
(1) Single spacing is the normal mode.

(2) .SP control words encountered while .TS is in effect will
produce twice the normal number of blank lines.

(3) Footnote lines are never triple spaced.

(4) The operand to the .CP control word is not tripled when .TS
is in effect.

Section 1: VPS Utility Commands 161

-.UL

The UNDERLINE control word allows a character to be specified as
the underline character.

v [character] |

After the underline character is specified, the presence of an
underline character in the text will cause Script to wunderline all
characters (excluding blanks) until the next occurrence of the
underline character. If blanks are to be underlined the Back Space
character should be used.

Defaults:
Unless otherwise specified, no underline character is defined.

Notes:.

(1) See also the description of the .BS (Back Space) control word
(page 105).

(2) It may be necessary to increase the terminal linesize value
when doing heavy underlining with the .UL character. The VPS
/CTL command (see the VPS Handbook) should be used. The
following would set the linesize value to 250 characters:
/ctl linesize 250
Example:

(1) The sequence:

«ul
This is an example of the underline function

Produces:

This is an example of the underline function

162 VPS Utilities

.UN

The UNDENT control word forces the next output line (only) to start
a specified number of columns to the left of the current indent.

" @

The .UN control word causes only the next output line to begin n
spaces further left than the current indentation.

The .UN control word serves a similar purpose as .OF, but in a
different way. The choice between the two is largely a matter of
personal preference.

Defaults:

This command will create a break when encountered. If the operand
is omitted then n = O will be assumed.

Notes:
(1) The undentation may not exceed the current indentation.
Examples:
(1) The following two sequences are equivalent:
«in 5
.of 4
{text>
.in 9

.un 4
{text>

Section 1: VPS Utility Commands 163

.UR

The USE REFERENCE control word causes an input line to be
reformatted by substituting the current values of specified reference
names in the line and to be processed as if it had been in the input.

| .UR line |

The 1line which begins one blank after the .UR control word is
reformatted by replacing occurrences of strings of the form "&name"”
with the current value of the reference name called "name".

A reference name instance is denoted by the appearance of a "&"
followed by the name of the desired reference name followed by either
a blank or a period. The current value of the reference name is
converted (if necessary) to a character string and substituted for the
string "&name."” (if a period is used for delimiting) or the string
"&name' (if a blank is used).

The line thus constructed is processed as if it had been in the
original input stream.

Defaults:

The .UR control word does not act as a break itself. However,
control words within the 1line may create a break when the 1line is
reinterpreted after substituting symbolic references with their
values. If line is omitted a blank line is assumed.

Notes:

(1) See the description of the .SR control word for additional
information.

(2) If reference names appearing in the line have not yet been
assigned a value via .SR, a null character string value will
be assumed. Note, however, the effect of the "2PASS" option
previously described. Note also that such reference names do
not count toward the total of 200,

(3) Text &s in a .UR line are indicated by "&&". Only one "&"
appears in the reformatted line.

(4) Negative values are allowed for numeric reference names and

result in a signed integer suitable for use with the .SR
control word.

164 VPS Utilities

Script Example

SAMPLE INPUT TO SCRIPT

ul

.ce

SAMPLE OUTPUT FROM SCRIPT

.rm 45

.Ta

EXAMPLE OF REMOTE CONTROL

. Tm

.sp 2

"Oh nuts! I have to type this whole page over”. That
complaint is probably heard many times in the course of
preparing manuscripts——reports, letters, minutes,and so on.
Then there is the problem of making duplicate original
copies of a typed

manuscript. When we use an ordinary typewriter,
text-processing, as this is called, can be a time—consuming
and harrassing job. The Script facility, which operates
under VPS(¥*),

.fn begin

(*) Virtual Processor System

.fn end

was written to handle these procedures for you;

you merely type in the first version and make

any necessary corrections. By

using the "commands" that you type in with your lines of
text, the computer prints out as many "first” copies as you
wish, with margins, spacing, indentation, etc., performed
in accordance with your commands.

.sp 1

One of the most useful features of Script is right-margin
justification, as in book and newspaper printing. This
means that your text is spaced as evenly as possible
between the margins of your printed page, filling in with
blanks where necessary. The printed line is

under control of a "line-length” command; any

short line that you type in will "grab" words

from a longer line above or below it, and f£ill out the
line with blanks where necessary to avoid splitting words
at the margins. This is the ordinary (or default) mode
under Script. You can, however, have lines printed out
exactly as you type them in, with no justification
performed by Script, by including a command that instructs
the computer to turn off the format mode. This is useful
for typing figures and charts. Line justification can
later be respecified if desired.

.cm Last line of Input Text.

Section 1l: VPS Utility Commands

165

Script Example

SAMPLE OUTPUT FROM SCRIPT

"Oh nuts! I have to type this whole page over". That complaint is
probably heard many times in the course of preparing
manuscripts—-reports, letters, minutes,and so on. Then there 1is the
problem of making duplicate original copies of a typed manuscript.
When we wuse an ordinary typewriter, text-processing, as this is
called, can be a time-consuming and harrassing job. The Seript
facility, which operates under VPS(*), was written to handle these
procedures for you; you merely type in the first version and make any
necessary corrections. By using the "commands" that you type in with
your lines of text, the computer prints out as many “"first" copies as
you wish, with margins, spacing, indentation, etc., performed in
accordance with your commands.

One of the most wuseful features of Seript is right-margin
justification, as in book and newspaper printing. This means that
your text is spaced as evenly as possible between the margins of your
printed page, filling in with blanks where necessary. The printed
line is under control of a "line-length" command; any short line that
you type in will "grab” words from a longer line above or below it,
and fill out the line with blanks where necessary to avoid splitting
words at the margins. This is the ordinary (or default) mode under
Script. You can, however, have lines printed out exactly as you type
them in, with no justification performed by Script, by including a
command that instructs the computer to turn off the format mode. This
is useful for typing figures and charts. Line justification can later
be respecified if desired.

EXAMPLE OF REMOTE CONTROL

(*) Virtual Processor System

166 VPS Utilities

Chapter 3: /SORT - Library File Sorting

The /SORT command invokes an interactive program which will sort
one or more library files into ascending or descending sequence and
produce a single sorted output file. The sort is performed in core and
therefore the capacity is limited by the amount of virtual storage
available. Chapter 9 describes the 0S SORT/MERGE package which can be
used to sort large library files as well as tape files and work files.
The /SORT command may be used only at the terminal. The format of the
/SORT command is shown below.

! |
| /SORT filename, filename, ... |
| |

filename
specifies the library file(s) to be sorted. It may be specified
as a single library file name or as a list of file names separated
by commas.

Sort Keys

After the /SORT command has been entered on the terminal the
program responds with file statistics (i.e., number of files, number
of records, and record length) and then prompts the wuser for sorting
information with the following message:

*ENTER SORT KEYS

At this time the user may enter up to tem sort keys (sorting
fields) which will control the action of the sort. Sort keys have the
following format:

sSssnnno

Where:
sss — is the starting column of the sort field on each record
(the first column being column 1). Note that leading
zeroes must be typed.
nnn - is the length of the sort field in characters (bytes).
Again, leading zeroes must be typed.
o - identifies the sorting order for this field and is either

an "a" indicating ascending order or a "d" indicating
descending order.

Sort Keys are entered starting in the first position of a line and
there may be only one sort key per line. If more than one sort key is
specified, the first sort key is the major sorting field followed by
the other sort keys — minor sorting fields. /SORT processes the
records by the order of the sort keys specified (i.e., all the records
are sorted as specified by the first sort key; then, within that

Section 1: VPS Utility Commands 167

Chapter 3: /SORT - Library File Sorting

breakdown records will be sorted as specified by the second sort key;
and so on). After each sort key is entered, /SORT will respond with a
message defining the key.

To terminate the entering of sort keys, the user types the
following starting in the first position of the line:

J/end

Saving the Sorted Output File

After the sort has completed /SORT will prompt the user with the
following message:

*ENTER SAVE OR RSAV COMMAND

At this time the user may enter the keyword SAVE followed by a file
name if the sorted output file is to be saved as a new VPS library
file; or the keyword RSAV followed by a file name if the sorted output
file is to replace an existing library file.

/SORT Example

In the following example the files TRICYCLE and SCOOTER are to be
sorted using two sort keys. The major sort key starts in column 10
and has a length of 8 bytes. For this sort key the records are to be
sorted in ascending order. The minor sort key starts in column 35 and
is one byte in length. For this sort key the order is descending.
The sorted output file replaces the file TOYS.

/sort tricycle,scooter

STATISTICS FOR SORTING:

NUMBER OF FILES S e S e e
NUMBER OF RECORDS ..cvcesessssa3d2
RECORD LENGTH IS «scssseecsesal2l
ENTER SORT KEYS

010008a

KEY 01:COLUMN 010,LENGTH 008,0RDER A
0350014

KEY 02:COLUMN 035,LENGTH 001,0RDER D
/end

ENTER SAVE OR RSAV COMMAND

rsav toys

*GO

168 VPS Utilities

Chapter 4: COPY — File Copying

The COPY program is used to copy data from one file (i/o unit) to
another. COPY reads control statements from either the input stream or
the keyboard: the input stream is accessed first, and the keyboard is

read when end-of-data is reached on the input stream (if COPY is being
used on the batch, end-of-data on the input stream causes job
termination). A COPY control statement consists of a series of
keywords separated by one or more blanks. Each statement must indicate
which i/o unit is to be used for input (the IN keyword) and which for
output (the OUT keyword). A statement is not considered complete until
both IN and OUT have been specified - if the statement is being
entered through the keyboard and return is hit before both these
parameters have been defined, the wuser will be polled for more
information.

The following keywords are accepted by COPY:

IN n OUT n [QUIT] [CLEAR] [LRECL n]
ddname ddname

[PAGE :} [cc] [EUF] [DEFINE filename]
E

| NOPAG NOCC NOEOF
[SAVE filename [INFILNO n] [OUTFILNO n]
RSAV

| REPL

[INBLK n] [OUTBLK n] [INLRECL n] [OUTLRECL n]

[INRECFM recfm] [OUTRECFM recfm]

e e —— — —— — — — — — T — —
—_— e e e e s — — —— —— — —

IN
IN is a required parameter which specifies which unit is to serve
as input for the copy operation. The wunit may be given either as
a unit number or as a ddname.

ouT
OUT is a required parameter which specifies which wunit is to
receive the output during the copy operation. The unit may be
given either as a unit number or as a ddname.

QUIT

QUIT causes immediate termination of the COPY program.

Section 2: VPS Utility Load Modules 169

Chapt

CLEAR

LRECL

PAGE

EOF |

er 4: COPY - File Copying

CLEAR resets all COPY parameter settings to their default values.
This is useful if a statement has been partially entered and the
user wishes to reissue it with different parameters. Any
parameters appearing after CLEAR on the same physical input line
will be lost.

LRECL is used to specify the record length of records written to
the OUT unit. If LRECL is less than the record length of the IN
unit, the records will be truncated. If LRECL exceeds the IN unit
record length, the records will be padded on the right with
blanks. The default LRECL is the record length of the input unit.
Note that LRECL will not affect the actual record length of DISK
or TAPE output files, but it will affect the record length of
library output (LIBOUT) files. The record length of a DISK output
file is determined by the /FILE statement for that file, and the
record length of a TAPE output file will also be taken from the
/FILE statement unless it is overridden with the OUTLRECL
parameter (see below).

| NOPAGE

If PAGE is specified, page headers will be included in the output
being sent to the OUT unit. NOPAGE will suppress this function.
If the OUT unit is of type TERMOUT or PRINTER, PAGE is the
default. NOPAGE is the default for all other output unit types.

NOCC

If CC 1is specified, a blank carriage control character will be
inserted in front of each record before it is sent to the OUT
unit. NOCC suppresses this action. If the OUT unit is of type
TERMOUT or PRINTER, CC is the default. NOCC is the default for
all other output unit types.

-NOEOF

If EOF is specified, a write-end-of-file operation will be done
on the output unit when the copy is completed. No such operation
will be performed if NOEOF is given. If the output unit is of
type DISK or TAPE, EOF is the default. The default for all other
output unit types is NOEOF.

DEFINE

SAVE

170

DEFINE indicates that COPY is to redefine the file being read by
the library input (LIBIN) unit specified by the IN parameter (a
DFLIBIN operation is performed — see the VPS System Facilities
for Assembler Programmers manual). If the 1IN unit is not of type
LIBIN, the DEFINE parameter is ignored.

| RSAV | REPL

Use of one of these parameters causes COPY to save the output in
the library (SAVE) or to replace an existing library file with
the output (RSAV, REPL). If the OUT unit is not of type LIBOUT,
these parameters are ignored. RSAV and REPL are synonyms.

VPS Utilities

Chapter 4: COPY - File Copying

INFILNO
INFILNO applies only to TAPE input files and causes the file
number given in the LABEL parameter of the /FILE statement to be
redefined (see the VPS Handbook). If the IN file is not a TAPE
file, INFILNO is ignored.

OUTFILNO
OUTFILNO applies’ only to TAPE output files and causes the file
number given in the LABEL parameter of the /FILE statement to be
redefined (see the VPS Handbook). If the OUT file is not a TAPE
file, OUTFILNO is ignored.

INBLK
INBLK is used to redefine the blocksize for a TAPE input file.

OUTBLK
OUTBLK redefines the blocksize for a TAPE output file.

INLRECL
INLRECL redefines the logical record 1length for a TAPE input
file.

OUTLRECL
OUTLRECL redefines the logical record length for a TAPE output
file.

INRECFM
INRECFM allows the user to redefine the record format of a TAPE
input file. The record format is given in the same format as it
would be given in the RECFM parameter of a /FILE statement (see
the VPS Handbook) - e.g. F, VB, etc.

OUTRECFM
OUTRECFM is used to redefine the record format of a TAPE output
file. As for INRECFM, the record format is specified in the same
format as it would be given in the RECFM parameter of a /FILE
statement.

Section 2: VPS Utility Load Modules 171

Chapter 4: COPY - File Copying

Examples of File Copying

In the first example, we wish to save the first two files on tape
unit 1 in the library as TPFILl and TPFIL2. To do this, we run the job
(see the VPS Handbook for a description of VPS job structure):

JFILE UNIT=(1,TAPE),LABEL=(1,NL),VOL=SER=TAPE0O,
/ BLKSIZE=800,LRECL=80 ,RECFM=FB
/LOAD COPY

where we have defined unit 1 as the first file on the tape. We assume
that the second file has blocksize 1320 and record length 132. In this
and the other examples, messages typed out by COPY are shown in upper
case, and lines typed in by the user are shown in lower case. The
conversation appears as follows:

ENTER :in 1 out 10 save tpfill
OUTPUT LIBRARY FILE USERLIB.TPFILl: SAVED

265 RECORDS COPIED FROM UNIT 1 TO UNIT 10
ENTER :inblk 1320 inlrecl 132 infilno 2
MORE :in 1 out 10 save tpfil2

OUTPUT LIBRARY FILE USERLIB.TPFIL2: SAVED

430 RECORDS COPIED FROM UNIT 1 TO UNIT 10
ENTER :quit
*GO

Note that the LIBOUT unit used to save the files was wunit 10, which
always exists wunless it has been specifically overridden by a /FILE
statement or suppressed by a TRANS parameter (see the VPS Handbook).
Naturally, a LIBOUT wunit could have been specifically defined with a
/FILE statement and used instead.

In the next example, we write library file DATA6 onto the TAPE
unit with ddname ARCHIVE as physical file 6 and then, by suppressing
the EOF function, write the two library files STUFF98 and STUFF99 onto
the tape as file 7. The job we run is:

/FILE UNIT=(TAPE ,NAME=ARCHIVE),LABEL=(,NL),VOL=SER=ARCHTP
/FILE UNIT=(LIBIN,NAME=LIBUNIT)
/LOAD COPY

We wish to write all the records out with blocksize 4000, record
length 100, and record format FB. The conversation runs as follows:

ENTER :outblk 4000 outlrecl 100 outrecfm fb out archive
MORE :outfilno 6
MORE :in libunit define datab

598 RECORDS COPIED FROM UNIT LIBUNIT TO UNIT ARCHIVE
ENTER :outfilno 7 out archive noeof in libunit define stuff98

172 VPS Utilities

Chapter 4: COPY - File Copying

450 RECORDS COPIED FROM UNIT LIBUNIT TO UNIT ARCHIVE
ENTER :out archive in libunit define stuff99

231 RECORDS COPIED FROM UNIT LIBUNIT TO UNIT ARCHIVE

ENTER :quit
*GO

In the following example, we print the contents of the DISK file
defined as unit 2. We use the standard TERMOUT unit 6 for the output

and suppress the page headers. The job is:

/FILE UNIT=(2,DISK),VOL=SER=SYSFIL,DSN=UR.XYZ100.FILE,
/ DISP=0LD
/LOAD COPY

and the conversation takes the form:

ENTER :in 2 out 6 nopage
LINE 1
LINE 2

LINE 50

50 RECORDS COPIED FROM UNIT 2 TO UNIT 6
ENTER :quit
*GO

Section 2: VPS Utility Load Modules 173

Chapter 5: LKED - the Linkage Editor

The primary purpose of the linkage editor is to combine and link
object modules (decks) into a load module. In the process of creating
the load module all references between control sections are resolved
as though they were assembled or compiled as one module. The load
module produced by the linkage editor consists of executable,
machine-language code in a format that can be loaded into wvirtual
storage and relocated by VPS. Unlike the loader, which performs many
of the same functions, the load module produced by the linkage editor
is placed in a work file for later execution using the /LOAD
statement. Object modules must be processed in this manner each time
they are loaded for execution. For programs which are executed often
and modified infrequently, the linkage editor provides a means of
alleviating much of, the redundant processing associated with the
loading process.

In addition to combining and linking the object modules, the
linkage editor performs the following functions:

- Library calls. Program load libraries (such as those containing
standard subroutines) can be automatically searched to resolve
external references. If unresolved external references remain
after all the input to the linkage editor is processed, the
linkage editor will- search the automatic call 1libraries to
resolve the references.

- Program modification. Control sections can be replaced,
deleted, or rearranged (in overlay programs) during the linkage
editor process, as directed by linkage editor control
statements.

- Overlay module processing. The 1linkage editor prepares modules
for overlay by assigning relative locations within the module to
overlay segments and by inserting tables to be used by the
overlay supervisor during execution.

- Options and error messages. The linkage editor can:

1. Process special options that override automatic Ilibrary
calls or the effect of minor errors.

2. Produce a list of linkage editor control statements that
were processed.

3. Produce a module map of control sections in the output load
module.

Linkage Editor Control Statements

The linkage editor performs editing functions either automatically
or as directed by control statements. These editing functions provide
for program modification on a control section basis. That is, they

Section 2: VPS Utility Load Modules 175

Chapter 5: LKED - the Linkage Editor

make it possible to modify a control section within an object or load
module, without recompiling the entire source program.

The editing functions can modify either an entire control section
or external symbols within a control section. Control sections can be
deleted, replaced, or arranged in sequence; external symbols can be
deleted or changed (external symbols are control section names, entry
names, external references, named common areas, or pseudo registers).

Whatever function is used, it is requested in reference to an input
module. The resulting output load module reflects the request. That
is, no actual change, deletion, or replacement is made to an input
module. The requested alterations are used to control linkage editor
processing.

Linkage editor control statements are placed in the input sequence
along with object decks. The placement of the control statements
governs the action of linkage editor processing. The following
sections describe the linkage editor control statements and their
placement in the input sequence.

NAME Statement

The NAME statment specifies the name of the load module created
from the preceding input modules, and serves as a delimiter for input
to the load module. As a delimiter, the NAME statement allows
multiple load module processing in the same job. If the name
specified matches a member name already existing in the load library,
the new module will replace the existing load module (see the REPLACE
parameter in the section “Parameters which may be Specified for LKED”
for further information.) The format of the NAME statement is shown
below.

| |
| NAME {membername } |
|

membername
is the name to be assigned to the load module that is created from
the preceding input modules. It is from one to eight alphanumeric
characters in length and it must begin with an alphabetic
character.

ALIAS Statement

The ALIAS statement specifies additional names for the output
library member. Up to 16 names can be specified on one ALIAS
statement, or separate ALTAS statements for one library member. The
names are entered in the directory of the work file library along with
the member name specified on the NAME statement. An ALTAS statement
can be placed before, between, or after object modules or other
control statements. It must precede the NAME statement used to
specify the member name. If the alias is also an entry point name in
the load module, calling the load module by alias name will cause

176 VPS Utilities

Chapter 5: LKED - the Linkage Editor

execution to begin at that entry point in the load module. TIf the
alias name is not an entry point mname, the main entry will be used.
The format of the ALIAS statement is shown below.

| |
| ALTAS {aliasname} [,aliasname,...] |
| |

aliasname
specifies an alternate name for this load module. It can be from
one to eight characters in length and must begin with an
alphabetic character.

ENTRY Statement

The ENTRY statement specifies the symbolic name of the first
instruction to be executed when the program is called by its module
name for execution. If more than one ENTRY statement is encountered,
the first statement specifies the main entry point; all other ENTRY
statements are ignored. An ENTRY statement can be placed before,
between, or after object modules or other control statements. It must
precede the NAME statement for the load module. If an ENTRY statement
is not present in the input for a load module, the linkage editor will
assign the entry point as the first location of the first module (i.e.
object deck or INCLUDEd load module) processed in the load module. In
an overlay program, the entry point must be in the root segment. The
format of the ENTRY statement is shown below.

| |
| ENTRY {entryname} ;
F

entryname
is the name of either a control section or an entry name in the
input stream to the linkage editor.

INCLUDE Statement

The INCLUDE statement specifies load modules that are to be used as
additional sources of input to the linkage editor. INCLUDE statements
are processed in the order in which they appear in the input. An
INCLUDE statement can be placed before, between, or after object
modules or other control statements. It must precede the NAME
statement for the load module. The format of the INCLUDE statement is
shown below.

Section 2: VPS Utility Load Modules 177

Chapter 5: LKED - the Linkage Editor

|
| INCLUDE (name) (membername [,membername,...])
| unit

|

— — — —

name
specifies the name appearing in the NAME= subparameter of the
UNIT= parameter of a /FILE statement which defines a load module
work file library (see Job Set-up later in this chapter for more
details).

unit
specifies the unit number of a /FILE statement which defines a
load module work file 1library (see Job Set-up later in this
chapter for more details).

membername
specifies a load module name or 1list of load module names

separated by commas which is to be used as additional dinput in
creating the output load module. Note that the load module(s) must
have been created using REEDIT (see the section on LKED parameters

later in this chapter).

CHANGE Statement

The CHANGE statement causes an external symbol to be replaced by
the symbol in parentheses following the external symbol. The external
symbol to be changed can be a control section name, an entry name, or
an external reference. More than one such substitution may be
specified on one CHANGE statement. The CHANGE statement must be
placed immediately before either the object module containing the
external symbol to be changed, or the INCLUDE control statement
specifying a load module which is being used as additional input. The
format of the CHANGE statement is shown below.

|
| CHANGE externalsymbol(newsymbol) [,externalsymbol(newsymbol),..] |
I

!

externalsymbol
is the control section name, entry name, or external reference
that is to be changed.

newsymbol
is the name to which the external symbol is to be changed.

REPLACE Statement

The REPLACE statement may be used to replace one control section
with another, delete a control section, or delete an entry name. When
a control section is replaced, all references within the input module
to the old control section are changed to the new control section.
Any external references to the old section from other modules from

178 VPS Utilities

Chapter 5: LKED - the Linkage Editor

other modules are unresolved unless changed.

When a control section is deleted, the control section name is also
deleted from the external symbol dictionary unless references are made
to the control section from within the input module. If there are any
such references, the control section name 1is changed to an external
reference. External references from other modules to a deleted
control section also remain unresolved.

When deleting an entry name, the entry name 1is changed to an
external reference if there are any references to it within the same
input module.

The REPLACE statement must immediately precede either (1) the
object module containing the control section or entry name to be
replaced or deleted, or (2) the INCLUDE statement specifying the load
module containing the control section or entry mname to replaced or
deleted. The END record in the immediately following object module or
the end-of-module indication in the load module terminates the action
of the REPLACE statement. The format of the REPLACE statement is
shown below.

REPLACE [csectnamel[(csectname?2)]

entryname

|
|
r
r
|

csectnamel
is the name of the control section to be deleted or replaced. If

only csecnamel is present, the control section is deleted. If
csectname? is also present, the control section will be replaced.

csectname2
is the name of the control section replacing csectnamel.

entryname
is the entry name to be deleted.

OVERLAY Statement

The OVERLAY statement indicates either the beginning of an overlay
segment, or the beginning of an overlay region (see the section titled
Overlaid Modules for further information on overlaying). Since a
segment or a region is not named, the programmer identifies it by
giving its origin (or load point) a symbolic name. This name is then
used on an OVERLAY statement to signify the start of a new segment or
region. The OVERLAY statement must precede the object records of the
segment, the INCLUDE statements specifying the files containing the
object deck(s) of the segment, or the INSERT statements specifying the
control sections to be positioned in the segment. No OVERLAY
statement should precede the root segment. The format of the OVERLAY
statement is shown below.

Section 2: VPS Utility Load Modules 179

Chapter 5: LKED - the Linkage Editor

| I
| OVERLAY symbol[(REGION)] I

I I

symbol
is the symbolic name assigned to the origin of a segment. This
symbol is not related to external symbols in a module.

(REGION)
is coded as shown and indicates that this is the origin of a new
region.

INSERT Statement

The INSERT statement repositions a control section from its
position in the input sequence to a segment in an overlay structure
(for more information on overlaying see the section titled “Overlaid
Modules” 1later in this chapter). However, the sequence of control
sections within a segment is not necessarily the order of the INSERT
statements. The INSERT statement must be placed in the input sequence
following the OVERLAY statement that specifies the origin of the
segment in which the control section is to be positioned. If the
control section is to be positioned in the root segment, the INSERT
statement must be placed before the first OVERLAY statement. The
format of the OVERLAY statement is shown below.

| INSERT csectname[,csectname, «.. | |

I I

csectname
is the name of the control section to. be repositioned. A
particular control section can appear only once within a load
module.

Parameters which may be Specified for LKED

The parameters which may be specified for a linkage editor run
are described below. The parameters are placed, separated by blanks,
on one or more records which have the characters "/JOB" starting in
column 1. The /JOB records are placed immediately after the /LOAD
statement which invokes LKED, and as many may be used as are required
to hold all the parameters to be specified. The parameters are:

180 VPS Utilities

Chapter 5: LKED - the Linkage Editor

MAP SEARCH PRINT LIST STATS
NOMAP NOSEARCH NOPRINT NOLIST NOSTATS

| |
[|
| |
| |
| FORMAT REEDIT MAXMEM=n SYSLMOD=n I
| NOFORMAT NOREEDIT 174 3 I
| T - I
| SYSUT=n SYSLIB=library REPLACE |
| 4 (library list) I
| SYS.FORTLIB |
| |
MAP | NOMAP

MAP indicates that LKED is to produce a map of the control
sections and entry points, giving their addresses relative to the
beginning of the load module. NOMAP suppresses this function. MAP
is the default on batch, and NOMAP is the default on the
terminal.

SEARCH | NOSEARCH
SEARCH indicates that one or more subroutine libraries (as
specified by the SYSLIB parameter, described below) are to be
searched for any unresolved external references after all the
supplied object text has been read (weak external references will
not be searched for). NOSEARCH suppresses this action. SEARCH is
the default.

PRINT | NOPRINT
If PRINT is specified, LKED will print the length and entry point
of the load module after it has been created. NOPRINT, the
default, suppresses these messages.

LIST | NOLIST
LIST causes LKED to print out each linkage editor control
statement (NAME, ALTAS, etc.) as it is encountered. NOLIST, which

suppresses this printing, is the default.

STATS | NOSTATS
If STATS is specified, the linkage editor will print out the
block numbers of the SYSLMOD file which were used for the load
module created. The default, NOSTATS, suppresses these messages.
This is useful when the user wishes to see how full a load module
library is getting.

FORMAT | NOFORMAT
If FORMAT is specified, the linkage editor will create a new
directory for the SYSLMOD file before writing the load module
onto it. Anything previously put in this file will be destroyed.
FORMAT must be used when a load module is being placed in a newly
created file, and it may also be used to overwrite the contents
of an old file. The size of the directory created is determined
by the MAXMEM parameter (see below). The default is NOFORMAT. If
more than one load module is being created in a single linkage

Section 2: VPS Utility Load Modules 181

Chapter 5: LKED - the Linkage Editor

editor run, and FORMAT has been specified, FORMAT will be assumed
for the first load module only - NOFORMAT will be assumed for all
subsequent load modules created in that job.

REEDIT | NOREEDIT

REEDIT causes the linkage editor to include in the 1load module
the CESD (composite external symbol dictionary), which contains
all the control section names, entry points, and other symbols.
If NOREEDIT is specified, the CESD will not be written out,
saving a small amount of disk space (usually about one block per
load module). However, if NOREEDIT has been specified for a load
module, the module cannot be loaded during SYSLIB search by
LOADER or LKED, and it cannot be specified on a linkage editor
INCLUDE statement. Therefore, if a subroutine library is being
created, REEDIT (which is the default anyhow) must be in effect.

MAXMEM

The MAXMEM parameter is used to specify the size of the directory
for the SYSLMOD file. The size is expressed as the greatest
number of names (load module names plus aliases) which the
directory will be required to hold. The default is 174. This
parameter will be ignored unless FORMAT has also been specified.

SYSLMOD

The SYSLMOD parameter indicates which i/o unit is to be used for
the output load module (see the discussion under Preparing Load
Module Libraries, below). The unit must be given as a unit number
between 1 and 4, the default being 3.

SYSUT

The SYSUT parameter indicates which i/o unit is to be used as a
work area by the linkage editor. The unit must be a DISK file
with blocksize 512 and must be given as a unit number between 1
and 4. It is not necessary to supply a /FILE statement for SYSUT
or to provide the SYSUT parameter, as the system will provide a
large work file on unit 4 when the linkage editor is invoked,
unless the user has explicitly provided a /FILE statement for
unit 4.

SYSLIB

182

The SYSLIB parameter specifies the subroutine library or
libraries to be searched for unresolved references after the
object text has been read in. A single library or a list of
libraries enclosed in parentheses and separated by blanks may be
specified. Each library may be a unit number, a unit ddname, or
the name of a system library. System library names are of the
form SYS.libname, where libname is the name of an existing system
library, such as FORTLIB or TEKLIB. The libraries will be
searched in the same order as they are specified, with the
leftmost being searched first. If SYSLIB is not specified, the
default of SYSLIB=SYS.FORTLIB will be used. Subroutine libraries
to be supplied by the user must be created by the linkage editor.

VPS Utilities

Chapter 5: LKED - the Linkage Editor

REPLACE

If REPLACE is specified, the linkage editor will attempt to fit
the new load module into the space occupied by an existing load
module of the same name. If REPLACE is not specified, or if no
load module of the same name exists, the new load module will be
placed in the SYSLMOD file starting with the next free block.
Since this will eventually use up all the space in the file, it
is best to use REPLACE whenever possible. If the new load module
does not fit in the old module”s space, the linkage edit must be
rerun without REPLACE. The default is to put the module in the
free space.

Linkage Editor Job Setup

A linkage editor job consists of the following sequence of input
records:

/FILE statements, if any.

/LOAD LKED

Object input and linkage editor control
statements (ENTRY, ALIAS, OVERLAY, etc.),
except for NAME statement.

[
|
|
|
|
|
|
| /JOB records with LKED parameters, if any.
|
|
|
|
|
|
|
| NAME statement.

|

For example, the following job will allocate the file
UR.XYZ100.LOAD.PROGRAM, format it as a load module library, and place
a load module called PROG with the alias name JOKES into it:

/FILE UNIT=(3,DISK),DSN=UR.XYZ100.LOAD.PROGRAM,VOL=SYSFIL,
/ DISP=(NEW,KEEP),SPACE=(TRK,6)

/LOAD LKED

/JOB FORMAT MAXMEM=25 STATS LIST MAP

i object decks

ALTIAS JOKES
NAME PROG

Section 2: VPS Utility Load Modules 183

Chapter 5: LKED - the Linkage Editor

The following example, on the other hand, adds three load modules
to an existing load module library. A user-supplied subroutine library
is provided in addition to the system FORTLIB library. Note that the
load module SUBR1 will be given the alias SUBIL.

/FILE UNIT=(DISK,NAME=SUBRLIB),VOL=SYSFIL,DISP=SHR,
/ DSN=UR.XYZ100.SUBLIB
/FILE UNIT=(3,DISK),VOL=SYSFIL,DISP=0LD,
/ DSN=UR.XYZ100.LMLIB
/LOAD LKED
/JOB STATS MAP LIST
/JOB SYSLIB=(SUBRLIB SYS.FORTLIB)
ALIAS SUB1

-

. object
NAME SUBR1

. object

NAME SUBR2

" object

NAME SUBR3

Preparing Load Module Libraries

Work files which contain load modules are divided into two
sections. The first section is the file directory which contains an
entry for each load module and alias in the file. Each entry contains
information specific to that load module - the load module name (or
alias name), location in the file, entry point for the 1load module,
etc. The second section of the file contains the actual load modules.
The location of each 1load module is specified in the associated
directory entry.

Before a load module can be placed into a new work file, the work
file must be formatted. That is, skeleton directory entries must be
built into the first section of the file. This can be accomplished
using the FORMAT and MAXMEM parameters of the linkage editor when
linking the first load module into the file. As described above in
the section “Parameters which may be Specified for LKED”, specifying
FORMAT causes the linkage editor to format the directory building the
number of entries as specified in the MAXMEM parameter. On subsequent
link edits these parameters must not be present since the file
directory will be re-formatted, erasing information already present.

Use.gg REP Cards

The formats of the object deck records accepted by the linkage
editor are documented in Appendix A of this manual. All records are
80 byte card images and are thus referred to as "cards"”.

184 VPS Utilities

Chapter 5: LKED - the Linkage Editor

In addition to the standard object deck cards, the linkage editor
accepts one card which is meant to be typed in by the user and
inserted into the object input as needed. This card is the REP card
which allows the wuser to replace text loaded from previously
encountered TXT cards or to place data into areas of storage assigned
to a control section being loaded for which no TXT cards exist. The
format of the REP card is exactly the same as that accepted by the
loader. The user is referred to page 195 for a complete description
of the REP card.

Executing Load Modules

After a load module has been placed in a user load library it may
be executed using the /LOAD statement (for a full description of the
JLOAD statement the user is referred to the VPS Handbook). ‘The
parameters which must be specified when executing a wuser load module
are shown below.

/LOAD lmname , FILE=unitnumber
name

Imname
specifies the name of the load module (or alias) to be executed.

FILE=
specifies either the unit number of the /FILE statement defining
the user load library or the ddname (NAME parameter) specified on
the /FILE statement defining the user load library.

For example, assume that the load module CHECKERS has been link

edited into the user load library UR.XYZ123.GAMELIB. The following
job will execute the load module.

.

y <{-- (other /FILE statements as needed by CHECKERS)
/file unit=(disk,name=joblib),dsn=ur.xyzl23.gamelib,disp=shr,

/ vol=sysfil

/load (checkers,file=joblib)

Note that in this example VPS will assign a unit number.

The LMLIST Program

The LMLIST program is an interactive program which can be used to
list general or detailed information pertaining to a user load
library.

To execute LMLIST the user must set up a job consisting of a /FILE
statement defining unit 3 as the load library to be inspected followed

Section 2: VPS Utility Load Modules 185

Chapter 5: LKED - the Linkage Editor

by a /INCLUDE statement including the file LMLIST. The file
UR.XYZ123.GAMELIB would be inspected if the following job were
executed.

/file unit=(3,disk),dsn=ur.zxyl23.gamelib,disp=shr,vol=sysfil
/inc lmlist

When LMLIST is executed the user will be prompted to determine the
type of listing desired with the message -

FULL OUTPUT?

If NO is the reply LMLIST will list the number of blocks in the file,
the blocks used, the blocks free, the number of directory slots, and
the directory slots free. If the reply is YES, the user will receive
all of the above information as well as detailed information on all of
the load modules in the file.

Overlaid Modules

Ordinarily, when a load module produced by the linkage editor is
executed, all the control sections (i.e. main program, subprograms,
COMMON areas, etc.) of the module remain in virtual storage throughout
execution. The length of the load module is, therfore, the sum of the
lengths of all of the control sections. When storage space is not at
a premium, this is the most efficient way to execute a program.
However, if a program approaches the limits of the virtual storage
available, the programmer should consider using the overlay facility
of the linkage editor.

In most cases, all that is needed to convert an ordinary program to
an overlay program is the addition of control statements to structure
the module. The programmer chooses the overlayable portions of the
program, and the system arranges to load the required portions when
needed during execution of the program.

When the linkage editor overlay facility is requested, the load
module is structured into segments so that, at execution time, certain
control sections are loaded only when referenced. When a reference is
made from an executing control section to another, the system
determines whether or not the code required is already in virtual
storage. If it is not, the code is loaded dynamically and may overlay
an unneeded part of the module already in storage.

A segment may be a main program, a single subroutine, or a group of
subroutines. There are two types of segments recognized by the
linkage editor, ROOT segments and OVERLAY segments. A root segment is
a segment which must always remain in virtual storage and cannot be
overlaid by another segment. Main programs and blank and named COMMON
must be root segments. An overlay segment is a segment that may
reside on magnetic disk, be loaded into virtual storage for execution
when referenced, and subsequently be overlaid by another overlay
segment.

Overlay segments may be used once or many times in one program

186 VPS Utilities

Chapter 5: LKED - the Linkage Editor

execution. The only requirement for multiple use of an overlay
segment is that the subroutine(s) contained in the segment be serially
reusable. This means that the subroutine(s) must not be written in
such a manner as to leave results or program switch settings in the
subroutine when control returns to the calling program. In order for
a routine to be reusable, all results and switches must be passed back
to .the calling program from the routine via argument lists or COMMON.
In effect, a program cannot “remember” results or switch settings
between calls for it to be reusable.

The most successful overlays are achieved 1in those cases where a
relatively small main program calls many large subroutines. The
customary procedure for planning overlay structures is to draw a
simple tree diagram of the root segment and the various overlay
segments. This diagram will aid in estimating wvirtual storage
requirements and will help avoid obvious errors in overlay structures.
The root segment is drawn as the “trunk” of the tree and each overlay
segment is drawn as the “branch” of the tree. Suppose a load module
consists of a main program (20,000 bytes) a blank COMMON (30,000
bytes), and three subroutines each called from the main program — SUBI
(35,000 bytes), SUB2 (40,000 bytes), and SUB3 (45,000 bytes). The
example below shows a tree diagram for this load module.

o

* * |
Overlay * Overlay * Overlay *

Segment 1 * Segment 2 * Segment 3 * I
(SUBL) * (SUB2) * (SUB3) * |
35,000 = 40,000 * 45,000 * |

* * * | Longest

* P * | path =

- kkkkkk kR kk Rk ko kR ok kR Rk Rk kkhkk Rk Rk kR ko Rk | 95,000

| * | bytes

I * |
Overlay * Root segment |
Node A % (Main + COMMON) I
* 50,000 bytes I
* I
L=

An overlay node is a point at which an overlay segment Jjoins the
root segment (or Jjoins another overlay segment in a more complex
structure). An overlay node is also called a “load point” as it
defines a location in virtual storage where an overlay segment will be
loaded from magnetic disk. The load point is important as it is used
to define overlay structures to the linkage editor. The naming of
overlay nodes allows the user to have more than one node in an overlay
structure, if desired.

Root segments, overlay segments, and load points are defined by the
use of linkage editor control statements defined above. The principal
control statements are INSERT and OVERLAY. The following is an
example of the input sequence needed to produce the overlay structure

Section 2: VPS Utility Load Modules 187

Chapter 5: LKED - the Linkage Editor

defined in the tree diagram above.

insert main
overlay a
insert subl
overlay a
insert sub2
overlay a
insert sub3

; <-- (Object decks for MAIN, SUBl, SUB2, SUB3)

In this example, MAIN is identified as the root segment as it is
named on an INSERT statement that precedes the first OVERLAY
statement. The first OVERLAY statement defines load point A at the
end of the root segment. SUBlL will be loaded at load point A since
the INSERT statement for SUBI directly follows the OVERLAY A
statement. The second OVERLAY statement informs the linkage editor
that whatever follows will also be loaded at load point A. Thus SUBI,
SUB2, and SUB3 are all separate segments having the same load point
and therefore, cannot be in virtual storage concurrently. Note that
the order in which the overlay segments are defined does not imply
that they will be executed in the same order.

In the previous example all three subroutines were called from the
main program. However, it is common practice for a subroutine to call
one or more additional subroutines. Under this type of program
organization, an important rule must be followed when overlay
structures are being defined. If one subroutine calls another, the
overlay structure must be defined in such a manner that both
subroutines can be physically present in virtual storage at the same
time.

Two segments that can be in virtual storage at the same time are
said to be “inclusive”. 1In our previous example, the root segment is
inclusive with each of the overlay segments as it will be in virtual
storage at the same time as each of the subroutines. However, the
called subroutines are “exclusive” with each other as only one of the
subroutines can be in virtual storage concurrently.

Assume that a main program (15,000 bytes) defines a COMMON area
(10,000 bytes). The main program calls SUBA (45,000 bytes). SUBA
calls SUBB (20,000 bytes). The main program also calls SUBC (30,000
bytes) and SUBC calls SUBD (40,000 bytes) and SUBE (38,000 bytes).
Since SUBA calls SUBBE both subroutines must be able to reside in
virtual storage concurrently. One way to accomplish this is to place
both SUBA and SUBB in the same overlay segment. If we assume for the
sake of example that the available virtual storage above the root
segment is 70,000 bytes, it becomes apparent that no other subroutine
can be placed in this overlay segment. Since SUBC calls SUBD, these
subroutines could also be placed in a separate overlay and still
satisfy our mythical storage requirement. But SUBC also calls SUBE
and all three subroutines camnnot fit in the same segment. Therefore,
each subroutine must be placed in a separate segment.

188 VPS Utilities

Chapter 5: LKED - the Linkage Editor

This structure can be defined in the following manner. SUBC is
defined as the second overlay segment in the structure having its
origin at node ONE. Next, a second overlay node (or load point),
called TWO, is defined at the end of SUBC. Now two additional overlay
segments, segment three containing SUBD and segment four containing
SUBE can be defined. These segments will be loaded above SUBC (the
second overlay segment) and will overlay each other. The following is
a tree diagram showing the now complete overlay structure.

* <-
* * |
Overlay * Overlay * Overlay * |
Segment 3 * Segment 4 * Segment 1 * |
(SUBD) * (SUBE) * (SUBA,B) * |
40,000 * 38,000 * 65,500 * |
* * * |
—=> kkkkkkkdokkkkkk ko k kK kk * |
| * * | Longest
| * Overlay * | path =
Overlay * Segment 2 * | 95,000
Node TWO * (SUBC) * | bytes
* 30,000 il
x %* |
—o> kARRERARRRAARAR KRR AAKAARRARRKRARR AR R |
l * [
l * J
Overlay * Root segment |
Node ONE * (Main + COMMON) |
* 25,000 bytes |
* |
* <~

The 1linkage editor control statements required to define this
structure are:

insert main
overlay one
insert suba
insert subb
overlay one
insert subc
overlay two
insert subd
overlay two
insert sube

i {-== (Object decks for Main + subroutines)

Section 2: VPS Utility Load Modules 189

Chapter 6: LOADER

LOADER is a standard relocating loader which reads in object
decks produced by compilers or assemblers, places the object text into
user storage, optionally searches one or more subroutine libraries for
unresolved references, and transfers control to the resulting loaded
program. The program must be one which is designed to run in the
native VPS enviromment (e.g. any Fortran program compiled by Fortran G
(FORTG), any Assembler program using the macros described in the VPS
System Facilities for Assembler Programmers manual). Programs which
require the simulated 0S environment (e.g. PL/I Optimizer (PLIOPT)
programs, Assembler programs which use 0S macros) may not be run using
LOADER.

Parameters are passed to LOADER via the PARM parameter on the
/LOAD statement (see the VPS Handbook for a complete description of
the /LOAD statement). If more than one parameter is to be passed, the
parameters must be separated by either blanks or commas. If a
parameter string is also to be passed to the loaded program, it must
follow the LOADER parameters in the PARM field and must be separated
from them by a slash ("/").

Parameters which may be Specified for LOADER

The following parameters may be specified in the PARM field. If
more than one parameter is specified, the parameters must be separated
by blanks. The default wvalues are underlined.

ALPHLIST | NOALPHLIST
The ALPHLIST parameter causes an alphabetical list of entry
points and csect names to be printed when LOADER has finished
loading the program. The address corresponding to each symbol is
also printed.

CLEAR=hh
The CLEAR parameter allows the wuser to specify the hexadecimal
value to which every byte of available user storage is to be set
before loading is begun. The default is CLEAR=00.

GO | NOGO

GO/NOGO indicates whether the program should be executed after it
has been loaded. If NOGO is specified, execution will not be
attempted, even if no errors occur during loading. In fact, if
NOGO is specified, loading will not occur at all unless MAP or
ALPHLIST has been specified. If GO is specified (the default),
execution will be attempted provided no serious errors have
occurred during loading (see LET, below, for the case of
unresolved external references).

Section 2: VPS Utility Load Modules 191

Chapter 6: LOADER

LET | NOLET
Normally, if a program loads and some external references remain
unresolved (other than weak external references), LOADER will not
attempt to execute the program. If LET 1s specified, and no more
serious error has occurred, execution will be attempted despite
the unresolved references.,

MAP | NOMAP
If MAP is specified, LOADER will print a map giving the lengths
and locations of all csects loaded, the locations of all entry
points, the lengths and locations of all commons allocated, and
the values of all pseudo-registers (external dummy sections).

PRINT | NOPRINT
NOPRINT suppresses the informatory messages printed at the end of
loading which give the total length and entry point of the loaded
program. PRINT is the default on batch, NOPRINT is the default on
terminal.

SEARCH | NOSEARCH
NOSEARCH prevents the loader from attempting to find unresolved
references in the subroutine library (see SYSLIB, below).

SYMTAB | NOSYMTAB

If SYMTAB is specified, LOADER will build a csect called SYMBLS
at the end of the loaded program containing all the csect and
entry point names present in the program. Each entry in the table
is 12 bytes long and consists of the 8 byte symbol followed by
the 4 byte address corresponding to that symbol. The high order
byte of the address word is hexadecimal 00 if the symbol is a
csect name and 03 if it is an entry point. The last entry of the
table is followed by a single byte with hex value Ol.

SYSIN=unit
The SYSIN parameter is used to specify the unit to be read by the
loader. The unit may be specified as either a unit number or a
ddname. The default is SYSIN=5.

SYSIN2=unit
The SYSIN2 unit, if specified, will be read by the loader after
end-of-data has been reached on SYSIN. If SYSIN2 is not
specified, no SYSIN2 input will be read.

SYSLIB=subroutine library | SYSLIB=(list)
The SYSLIB parameter specifies the subroutine library or
libraries to be searched for unresolved references after the
object decks have been read in. A single library or a list of
libraries enclosed in parentheses and separated by blanks may be
specified. Each library may be a unit number, a unit ddname, or
the name of a system library. System library names are of the
form SYS.libname, where libname is the name of an existing system
library, such as FORTLIB or TEKLIB. The 1libraries will be
searched in the same order as they are specified, with the
leftmost being searched first. If SYSLIB is not specified, the
default of SYSLIB=SYS.FORTLIB will be used. Subroutine libraries

192 VPS Utilities

Chapter 6: LOADER

supplied by the user must be created by the linkage editor (see
LINKEDIT, page 175).

TEST
If TEST is specified, the loader will force an invalid operation
interrupt if a serious error occurs during loading, rather than
the normal action of printing an error message. This is not
likely to be of much wuse to anyone who does not have a source
listing of the loader.

ZSECT | NOZSECT

If a map is being printed (see MAP, above), and ZSECT is
specified, LOADER will examine the beginning of each csect for an
identifier of the form produced by the VPS macro ZSECT (this is
of interest only to assembler programmers). If such an identifier
is found, its character string portion will be printed on the
same line of the map as the csect name. If ZSECT is set and no
such identifier is found for a csect, an ellipsis, "...", will be
printed in its place for that csect. The format of this
identifier, in Assembler language, is:

NAME ZSECT
+NAME CSECT
+ DC x°76" INDICATE PRESENCE OF ZSECT
+ DC ALL(Y-X) LENGTH OF CHARACTER STRING
+X DS 0cC START OF CHAR STRING .
+ DC c" -
+ DC CL8"NAME~ CSECT NAME
+ DC g =
+ DC CL5716.41" TIME OF ASSEMBLY
+ DC g
+ DC CL7”28SEP77° DATE OF ASSEMBLY
+ DC er -
+Y DS 0cC END OF STRING

Job Set-up for LOADER

Unless SYSIN has been redefined (see SYSIN parameter, above), the
job set-up which is used with the loader is

/LOAD LOADER,PARM="...~"

i object decks

/DATA

. data (if any) for loaded program

The /DATA statement is used to indicate to the loader that the end of
the object input has been reached. Reading a /DATA statement on SYSIN
or SYSIN2 is considered by LOADER as equivalent to reaching
end-of-data on that unit. Thus, when the loaded program goes into
execution it can continue reading that same unit, starting with the
first record following the /DATA. We give here a couple of examples of

Section 2: VPS Utility Load Modules 193

Chapter 6: LOADER

jobs using LOADER.

This job loads the object decks saved as library file PROGOBJ,
resolves subroutine references from a wuser subroutine library and the
system libraries FORTLIB and TEKLIB, prints a map, and executes the
loaded program. The program reads the data in library file PROGDATA.

/FILE UNIT=(DISK,NAME=SUBLIB),VOL=SER=SYSFIL,

/ DSN=UR.XYZ100.SUBS,DISP=SHR

/LOAD LOADER,

/ PARM="MAP SYSLIB=(SUBLIB SYS.FORTLIB SYS.TEKLIB)~
/INC PROGOBJ

/DATA

/INC PROGDATA

This job loads the stuff in files OBJ1 and OBJ2 and executes the
loaded program, which reads the file DATA6 from unit 5. The loader is
instructed not to search any 1libraries for unresolved external
references and to execute the loaded program even if such references
exist.

/FILE UNIT=(15,LIBIN),DSN=0BJ1

/FILE UNIT=(16,LIBIN),DSN=0BJ2

/LOAD LOADER,PARM="SYSIN=15 SYSIN2=16 LET NOSEARCH”
/INC DATA6

Current System Libraries

The following system libraries are currently available:

CLCMPLIB - subroutines used to produce output for the
Calcomp plotter.

FORTLIB - standard and locally written Fortran subroutines
(see the VPS Guide to Programming Languages for
descriptions of the latter routines).

PLIXLIB - the PL/I Optimizer resident and transient
libraries (probably of 1little use to anyone using
LOADER) .

TEKLIB - subroutines used to drive the Tektronix graphics
terminals (the Tektronix Terminal Control System (TCS)
and Preview packages).

Format of Object Deck Cards Accepted by LOADER

The formats of the standard records accepted by the 1loader are
described in Appendix A of this manual. All records are 80 byte card
images and are thus referred to here as "cards".

In addition to the standard object deck cards, the loader accepts
four cards which are meant to be typed in by the user and inserted
into the object input where needed. These are:

194 VPS Utilities

Chapter 6: LOADER

LDT (Loader Terminate) card:

The LDT card terminates loader input immediately and optionally
specifies the symbol which is to be the entry point of the loaded
program.

col length contents
1 1 X°02°
2 3 “LDT”
5 12 blank
17 8 Entry point symbol or blank.
25 56 Ignored.

REP (Replace) card:

The REP card allows the user to replace text loaded from
previously encountered TXT cards or to place data into areas of
storage assigned to a csect being loaded for which no TXT cards exist.
The REP card cannot store data outside the csect whose ESD ID it bears
and must be placed somewhere between the ESD card containing the SD or
PC entry for that csect and the corresponding END card. If data from a
TXT card 1is being overlayed, the REP card may not precede that TXT
card. If the data being stored is to be relocated, the REP card must
appear before the corresponding RLD card. REP cards which replace
non-relocatable data (the most common case) are usually placed just
before the END card.

REP cards are wusually used to avoid reassembling a program when
only a few bytes need to be changed (non-assembler programmers rarely,
if ever, wuse REP cards). In the interest of users not getting
themselves unnecessarily bunged up, it is recommended that REP cards
be used sparingly, and that final modifications always be made to the
source program. It is not amusing to crack a bug, make the fix via REP
cards without making the corresponding changes in the source, and then
a few months later replace the object deck with a newly created deck
and have the old bug come back to life.

col length contents

X702~

“REP~

blank

Six digit hex address with leading zeroes.
blank

Two digit hex ESD ID of csect being
repped (usually "01").

17 s Data to be stored, in groups of 4 digits
separated by commas. The last group

must be followed by a blank. The rest

of the card may be used for comments.

=
i ik =
B oy W

The following is an example of a REP card which stores the value
X"5A9E6003” at X72C0” in the csect having the ESD ID X“01°. (Note that
the address on a REP card is relative to zero, not relative to the

Section 2: VPS Utility Load Modules 195

Chapter 6: LOADER

address at which the csect is being loaded. That is, the address to be
used is the address which appears in the assembler listing.)

¥REP 0002C0 O015A9E,6003 FIX THE BUG

where the "X" represents the hex 02 which must appear in column 1.
This may be entered with the XIN mode of the editor (see page 90) or
by defining a HEX character for terminal input editing (see /CTL in
the VPS Handbook). If the REP card is really being punched on an
actual card with a keypunch, this column must be multipunched with
12-2-9 (the ampersand is the 12 punch).

SPB (Set Page Boundary) card:
The SPB card aligns the next input csect to a &K page boundary.
SPB cards must be placed between object decks, not within them.

col length contents
1 1 X-02°
2 3 “SPB”
5 76 Ignored.

SLC (Set Location Counter) card:

The SLC card allows the user to set the loader”s location counter
to any value within the storage area available for loading. Both a hex
value and the name of a previously defined SD, LD, or LR may be given
- the address will be computed as the sum of the hex value and the
value of the symbol. If either field is blank, its contribution will
be taken as zero. Like the SPB card, the SLC card is meant to appear
between, not within, object decks.

col length contents

1 1 X027

2 3 “8LG”

5 2 blank

7 6 Six digit hex value or blank.
13 4 blank

17 8 Symbol or blank.
25 56 Ignored.

The ESD Utility Program

The program called ESD in the VPS library is primarily used to
inspect object decks. ESD will print out the contents of ESD records
in the san: format as used by the Assembler to print its External
Symbol Dictionary listing. END cards are also printed out in a special
format, and TXT and RLD cards may be formatted if desired. All other
object deck records and all non-object records are printed verbatim
preceded by their line numbers relative to the beginning of the input
to ESD. ESD may also be asked to copy the records it reads to another
unit, if desired, and the output from any of the classes of records
(ESD, TXT, RLD, END, other) may be produced or suppressed. These
options are controlled by the statements:

196 VPS Utilities

Chapter 6: LOADER

=COPY=n

=LIST= [ESD| | TXT RLD END XXX ALL
LNOESD LNOTXT NORLD NOEND NOXXX NOALL

which may appear anywhere in the data stream. The option chosen by a
statement takes effect with the next record. The =COPY statement
indicates that copying to unit n is to begin (=COPY and =LIST
statements themselves are not copied). The =LIST statement turns the
various classes of listing on and off. The options are (defaults

underlined):

ESD | NOESD
Control the printing of information from ESD records.

TXT | NOTXT
Control the printing of TXT card information.

RLD | NORLD
Control the printing of information from RLD cards.

END | NOEND
Control the printing of information from END cards.

XXX | NOXXX
Control the printing of non-object records.

ALL | NOALL
Turn all the above printing options on or off, respectively.

ESD reads from the input stream (unit 5). Thus, all we need type
(at *GO 1level) to print out the contents of the file OBJFILE, for
example, is

ESD,O0BJFILE

Section 3: VPS Utility Programs 197

Chapter 7: COMPARE - File Comparing

The COMPARE utility program is used to locate record differences
between two files. A record is read from each file specified and the
two records are compared. If a difference is detected the records are
printed and a message is produced indicating the 1line and column
location of the mismatch. This process continues until one or both of
the files 1is exhausted. If the records compared are of different
lengths the shorter record is padded with blanks and then compared
against the longer record.

The COMPARE utility may be used only at the terminal. The format
for invocation of the utility is shown below.

| COMPARE |

Specifying Program Parameters

After the COMPARE utility has been invoked, the program will
request the name of each of the files to be compared with the
following message:

ENTER FILE 1 PARAMETERS:

At this time the user should enter the first file name optionally
followed by one or more blanks and the line number in the file where
comparing is to begin. If no number is specified, line number 1 is
assumed. This may be followed by the starting column in the line where
comparison is to begin and the length of the field to be compared. If
these parameters are specified, the comparison will be done only for
the field specified. Otherwise, the entire line will be compared. A
similar message will then appear requesting the same information for
the second file.

Note that by entering a question mark (?) to the file 1 message,
the parameter format will be displayed.

When the COMPARE utility has finished processing the files a

statistics record will be printed indicating the number of records
read from each file and the number of mismatches.

COMPARE Example

In the following example the files COMTST1 and COMIST2 are
compared. The comparisons will start with the second record of
COMTST1 and the first record of COMTST2 starting at column 3 for a
length of 77.

Section 3: VPS Utility Programs 199

Chapter 7: COMPARE - File Comparing

compare
ENTER FILE 1 PARAMETERS:comtstl 2 3 77
ENTER FILE 2 PARAMETERS:comtst2 1 3 77

LINE 2 AT COLUMN 1l4:
11122234567890

11122234567891

LINE 4 AT COLUMN 3:
5566678896765432

5576678896765432

EOD ON UNIT 1

8 RECORDS READ FROM FILE 1; 7 RECORDS READ FROM FILE 2; 2 MISMATCHES

*GO

200

VPS Utilities

Chapter 8: FILELIST = Listing Files

The FILELIST utility program may be used on the VPS batch to
produce printer-formatted listings of 1library files complete with
header pages, page titles, and a record count.

Input to the program 1is a list of file names (not the files
themselves). Optionally, the user may suppress the header pages by
inserting option cards in the input stream. The format of the option
card is as follows:

NOHeader
Header

where: a dash must appear in column 1 followed by one or more
blanks followed by NOHEADER, indicating that the header
page is to be suppressed, or HEADER, indicating that the
header page is to be printed.

If NOHEADER is specified, only the header (or bamner) pages are
suppressed, the page titles and record counts are still printed. The
specified option will remain in effect until another option card is
encountered. Unless otherwise specified, header pages will be
produced.

Note that the maximum logical record length of files 1listed with
FILELIST is 133 characters.

FILELIST Example

In the following example the job stream shown would cause FILEl to
be listed with headers, FILE2 and FILE3 to be listed without headers,
and FILE4 to be listed with headers.

/id acctnum
Jinc filelist
filel

= noh

file2

file3

- h

filed

The identical job stream sent to the VPS batch using the /BQC
command (see the VPS Handbook) follows:

/bge j filelist, filel”,”= noh”, "file2”, file3”,”- h”, file4”

Note that since FILELIST will search for file names anywhere on a
line the /BQC command could also be typed as follows:

/bgqec j filelist, filel,- noh, file2, file3,- h, file4

Section 3: VPS Utility Programs 201

Chapter 9: OS SORT/MERGE Package

Chapter 3 of this manual describes the /SORT command which can be
used on VPS to sort library files in memory. VPS also supports the 0S
SORT/MERGE package which can be used to sort or merge library files as
well as work files and tape files. Unlike the /SORT command, the
SORT/MERGE package uses intermediate disk work files for sorting so
that sort capacity 1is virtually unlimited. This package has not been
modified to run wunder VPS and is fully documented in the IBM
publication 0S SORT/MERGE Programmer s Guide (SC33-4007).

Note that the 0S SORT/MERGE package may be run as an independent
package or invoked from a PL/I or COBOL program. The VPS Guide to
Programming Languages describes how to call SORT/MERGE from PL/I and
COBOL. This chapter describes how the SORT/MERGE package may be
invoked directly under VPS.

The Library File — SORTMERG

The VPS 1library file SORTMERG contains all the VPS control
statements needed to perform standard sorts. Programmer modifiable
options on these control statements have been coded as symbolic
parameters (see the VPS Handbook) for easy specification using /SET
statements. The symbolic parameters used in the file SORTMERG and
their default values are shown below.

Parameter Description

INFILE = NULLFILE the input file name

INUNIT = LIBIN the input file type

INRFM = F the input file record format

INBLK = 80 the input file BLKSIZE

INLREC = 80 the input LRECL

INVOL = the input volume serial number (for tape
files only)

INLP = NL the input LABEL type (for tape files
only)

INPOS =1 the input file sequence number (for tape
files only)

OUTFILE = *2 the output file name

OUTUNIT = LIBOUT the output file type

OUTIRFM = F the output file record format

Section 3: VPS Utility Programs 203

Chapter 9: 0S SORT/MERGE Package

OUTBLK = 80 the output file BLKSIZE

OUTLREC = 80 the output file LRECL

OUTDISP = NEW the output file disposition

OUTVOL = the output volume serial number (for tape
files only)

QUTLP = NL the output LABEL parameter (for tape
files only)

QUTPOS =1 the output file sequence number (for
tape files only)

PRIM = 10 the allocation for each sort work area

SPTYP = TRK the type of sort work allocation (PRIM)

NSEGS = 4 the number of virtual memory segments
(64K) sort is to use

SORTYP = “/* - this parameter should be used only when

requesting a crisscross sort (see the
Programmer”s Guide) and should be coded
as . "SORTYP="

The file should be included as part of a job stream preceded by
/SET control statements to set pertinent symbolic parameters and
followed by the necessary SORT/MERGE control statements.

Calculating Temporary SORT/MERGE Work Space

In the above parameters the PRIM= parameter is used to specify the
number of tracks to be allocated to each of the three sort work
datasets (note that 1if SPTYP=CYL is coded PRIM= then denotes the
number of cylinders to be allocated). The default allocation of 10
tracks allows for 3600 80 byte records to be sorted. Sorting
efficiency is maximized by correctly calculating the amount of sort
work allocation for each particular sort. The following formula should
be used to calculate sort work space (note that this formula is for
3350 disk drives - currently in use at the Computing Center - the
SORT/MERGE Programmer”s Guide contains a full discussion of sort work
calculations):

nrec * lrecl (round up
PRIM = ——— + 2 to nearest
36000 whole number)
where:
nrec = number of records to be sorted
lrecl = record length

204 VPS Utilities

Chapter 9: 0S SORT/MERGE Package

SORT/MERGE Control Statements

SORT/MERGE control statements are fully documented in the
SORT/MERGE Programmer”s Guide. These control statements provide the
package with information on the fields to be sorted, the sort order,
the size of the input file, etc. Control statements should be placed
directly after the /INC SORTMERG control statement.

Examples

In the following example the library file RANDOM is sorted in
ascending order based on columns 1 through 9 of each record and
placed in the new library file SORTED. RANDOM contains 3158 80 byte
records.

/SET INFILE=RANDOM,OUTFILE=SORTED
/INC SORTMERG
SORT FIELDS=(1,9,CH,A),FILSZ=3158

In the next example a tape file containing approximately 9600 100
byte records is sorted into the existing work file
UR.UTL100.SORTED.DATA.

/SET INFILE=DATA,INVOL=DATA76,INUNIT=TAPE,INBLK=8000,INLREC=100
/SET INRFM=FB
/SET OUTFILE="UR.UTL100.SORTED.DATA”,OUTUNIT=DISK,OUTDISP=0LD
/SET PRIM=29
/INC SORTMERG

SORT FIELDS=(3,13,CH,A,50,2,CH,A),FILSZ=E9600

File Merging

SORT/MERGE can also merge sorted files into a single file. The
procedure and control statements for merging are fully described in
the SORT/MERGE Programmer”s Guide. Unlike sorting, the majority of the
VPS control statements needed for merging must be specified by the
programmer; therefore, no VPS 1library file exists containing the
general statements.

The programmer must provide a /FILE statement for each file to be
merged. Each /FILE statement must have NAME=SORTINOn (where n is 1 for
the first file to be merged, 2 for the second, etc.) in the UNIT=
parameter. Due to the nature of VPS, when library files are being
merged, the record format (RECFM=) should be set to F and block size
(BLKSIZE=) set to the LRECL on the /FILE statement for the first input
file. A /FILE statement must also be specified for the merged output
file having NAME=SORTOUT coded in the UNIT= parameter. These control
statements must be followed by the rest of the necessary VPS control
statements needed to invoke the package. The job stream is defined as
follows:

Section 3: VPS Utility Programs 205

Chapter 9: 0S SORT/MERGE Package

/FILE UNIT=(utype,NAME=SORTINO1),...
/FILE UNIT=(utype,NAME=SORTINO2),...

/FILE UNIT=(utype,NAME=SORTOUT), ...
/FILE UNIT=(DISK,NAME=SORTLIB),DSN=UR.CCMM.SORTLIB,DISP=SHR
/FILE UNIT=(TERMOUT,NAME=SYSOUT)
/LOAD OSLOAD,PARM="MEMBER=SORT”,NSEGS=4
/JOB JOBLIB=(SORTLIB)
/PARM LIST
merge control statements

Merge Example

In the following example three library files are merged into a new
work file. Each library file has a record length of 80 bytes. The
output work file 1is blocked at 118 records per block, an optimum
blocking factor for 3350 disk drives.

/FILE UNIT=(LIBIN,NAME=SORTINO1),DSN=BUMPERS,DISP=SHR,RECFM=F
/ BLKSIZE=80
/FILE UNIT=(LIBIN,NAME=SORTINO2),DSN=JACKS,DISP=SHR
/FILE UNIT=(LIBIN,NAME=SORTINO3),DSN= SKATES DISP=SHR
/FILE UNIT=(DISK,NAME=SORTOUT),DSN=UR.UTL100.SMALL.PERSON.ITEMS,
/ DISP=(NEW,CATLG),SPACE=(TRK, (5)),RECFM=FB,LRECL=80,BLKSIZE= 9440
/FILE UNIT—(DISK NAME=SORTLIB),DSN=UR.CCMM. SMOI DISP=SHR
/FILE UNIT=(TERMOUT,NAME=SYSOUT)
/LOAD DSLGAD,PARM=‘HEMBER=SORT‘,NSEGS=4
/JOB JOBLIB=(SORTLIB)
/PARM LIST
MERGE FIELDS=(1,6,A,20,10,D),FORMAT=CH,FILSZ=E8000

206 VPS Utilities

Chapter 10: TRCASE = Upper/Lower Case File Conversion

The TRCASE utility program is used to change the case of alphabetic
characters within a VPS library file. TRCASE may be used only at the
terminal and is invoked using the format shown below.

| I
| TRCASE |
|

Specifying Program Parameters

After the TRCASE utility program has been invoked, the program will
request the name of the file to be converted and the type of
translation desired with the following message:

ENTER FILE NAME AND TRANSLATION TYPE:

At this time the wuser should enter the file name optionally
followed by one or more blanks and one of the following options:

Flip
Lower
Upper

where: FLIP is the default and indicates that all upper case
characters are to be translated to lower case and all
lower case characters are to be translated to upper case.
LOWER indicates that all alphabetic characters should be
translated to lower case. UPPER indicates that all
characters should be tramslated to upper case. Note that
FLIP, LOWER, and UPPER may be abbreviated.

After TRCASE processing has completed, the *2 file (unit 10) will
contain the translated version of the file. The *#2 file may be saved
or replace an existing file using the /SAVE or /RSAVE commands (see
the VPS Handbook).

Upper and Lower Case

At this point a short discussion to clarify the terms "upper case”
and "lower case" is in order. Under normal operation (full text mode
- see the /TEXT command in the VPS Handbook) input entered from a
terminal in lower case is translated to upper case EBCDIC before
processing and input entered in upper case is translated to lower
case. Conversely on output, upper case output is translated to lower
case before it is sent to the terminal and lower case output is
translated to upper case. Therefore, if a user creates a file using
/EDIT (see Chapter 1) all lower case characters entered exist in the
file in upper case. Of course, characters entered in upper case exist

Section 3: VPS Utility Programs 207

Chapter 10: TRCASE - Upper/Lower Case File Conversion

in the file in lower case. TRCASE translation operates only on the
file specified and is independent of terminal translation.
Consequently, if a file is translated with TRCASE and the option UPPER
is specified, the translated file will be in all upper case characters
even though listing the file at a terminal in full text mode will show
all Ilower case characters (FLIPped files will appear reversed and
LOWER files will appear in upper case). Note that the FLIP option is
useful for script files received from other institutions or to be sent
to another computing facility.

TRCASE Example

In the following example the file NODICE is translated to all upper
case and is replaced by the translated version.

trcase

ENTER FILE NAME AND TRANSLATION TYPE:nodice u
*GO

/rsav nodice

208 VPS Utilities

Appendix A: Object Deck Card Formats

The formats

of the

records accepted by the

loader and

the

linkage editor are shown below. All records are 80 byte card images

and are thus referred to here as

ESD (external Symbol Dictionary) card:

col 1length
1 i1
2 3
5 6
11 2
13 2
15 2
17

73

Each ESD item:

8

col length
1 8
9 1
10 3
13 1
14 3

contents

X 02-
“ESD”
blank
Number of bytes of ESD data
(= number of entries X 16).
blank
ESD ID of first non-LD item,
blank if no such item.
16-48 1, 2, or 3 items.
Sequence field.

contents

Symbol
Type:

00
01
02
04
05
06
0A

Address

SD
LD
ER
PC
CM
PR
WX

(blank if PC or blank CM).

control section definition
(

“"cards".

label definition
external reference
private code (unnamed csect)

common

pseudo-register (external dummy section)

weak external reference

if SD, PC, LD,

blank otherwise.

Alignment factor if PR:

00 byte

01 halfword

03 fullword

07 doubleword
blank otherwise.
Length if SD, PC, CM, or PR
(zero if SD or PC and length on END card),

ID of SD containing name if LD,

blank otherwise.

Appendix A: Object Deck Card Formats

or LR,

209

Appendix A: Object Deck Card Formats

TXT (Text) card:

col length
1 1
2 3
5 1
6 3
9 2
11 2
13 2
15 2
17 1-56
73 8

contents

Xx°02-

~TXT”

blank

Address of first text byte.
blank

Number of text bytes.

blank

ESD ID for text.

Text data.

Sequence field.

RLD (Relocation Dictionary) card:

col length
1 1
2 3
5 6
11 2
13 4
17 8-56
73 8
RLD item:
col length
1 2
3 2
5(1) 1
6(2) 3

210

contents

X 02"

“RLD~

blank

Number of bytes of RLD data.
blank

RLD items.

Sequence field.

contents

Relocation pointer

(ESD ID of symbol referenced).
Position pointer

(ESD ID of control section containing
address constant).

Flags:

0000. .. . Nonm-branch (A-con).

0001. .. . Branch (V-con).

0010. .. . PR displacement value (Q-con).
0011. ... PR cumulative length (CXD).

« s« s« 01 . . 2 bytes to relocate.

« « ¢« « 1 0. . 3 bytes.

g gt 1, 1 . 4 bytes.

«+ « « o« 2+ +« 0. Positive relocation.
1 . Negative relocation.
« « = « » + o« 0 Relocation and position pointers
present in next item.
«» + + 2« + « 1 Relocation and position pointers
absent in next item - use
same pointers as this item.
Address of address constant being relocated.

VPS Utilities

Appendix A: Object Deck Card Formats

END card, format 1:

col length
1 1
2 3
5 1
6 3
9 6
15 2
17 12
29 4
33 40
73 8

END card, format

col 1length
1 1

2 3

5 12

-~ 17 8
25 4
29 4
33 40
73 8

contents

X°02°

~END”

blank

Entry point address or blank.

blank

ESD ID of csect containing entry point.
blank

Length of SD or PC which had zero length
on ESD card.

Ignored — usually identifies compiler or
assembler which created deck and date
and time of creation.

Sequence field.

23
contents

X"02-

“END”

blank

Symbolic entry point name.

blank

Length of SD or PC which had zero length
on ESD card.

Ignored — usually identifies compiler or
assembler which created deck and date
and time of creation.

Sequence field.

Appendix A: Object Deck Card Formats

211

SASMCOM edit command 21
SASMFIX edit command 22

$SEQ edit command 24

/EDIT
Translation modes
block editing 11
brief mode 8
command' format 3
command suffixes 8
command syntax 6
commands 16
edit mode 5
editor programs 12
example formats 17
general description
hexadecimal editing
input mode 5
logical expressions

strange habits of TOP 7

the Zone 9

verify mode 8
/SCRIPT

command 93

example 165

4
13

10

invoking from terminals

invoking in the batch 94

text formatting 95
/SCRIPT control words

AP
AR
«BL
«BM
-BR
.BS
.CE
.CM
«CN
.CO
.CP
.DC
D&
.EM
.FD
+FE
. FM
.FN
-.FO
.FV
.HD
.HE
-HM
.HV
IF
.IM

Index

100
101
102
103
104
105
106
107
108
110
111
112
113
114
115
116
117
118
120
121
122
123
125
126
127
128

94

.IN
-JU
.LL
.LS
.NC
.NF
-NJ
.OF
.PA
-PD
.PL
.PN
.PR
PV
-RA
-RC
-RD
-RM
-RO
.SP
.SR
.55
-TB
.TC
-TM
.TR
.TS
UL
.UN

130
131
132
133
134
135
136
137
139
140
141
142
143
144
145
146
147
148
150
151
152
155
156
157
158
159
161
162
163

.UR 164
/SNORT command format
/SORT
example 168
saving sorted output
sort keys 167
/XEDIT editing large fi
15

= edit command 25

ADD edit command 26
AIN edit command 28

In

167

168

les

dex

ALTAS linkage editor statment

176
ALPH edit command 29
ALPHLIST loader paramet
191

BLANK edit command 30
BOTH edit command 32

BOTTOM edit command 33
BRIEF edit command 34

CC COPY parameter 170
CHANGE

er

213

edit command 35
linkage editor statement
178
CLEAR
COPY parameter 170
loader Parameter 191
COMPARE
example 199
invoking 199
specifying parameters 199
COPY
CC parameter 170
CLEAR parameter 170
DEFINE parameter 170
EOF parameter 170
IN parameter 169
INBLK parameter 171
INFILNO parameter 171
INLRECL parameter 171
INRECFM parameter 171
LRECL parameter 170
OUT parameter 169
OUTBLK parameter 171
OUTFILNO parameter 171
OUTLRECL parameter 171
OUTRECFM parameter 171
PAGE parameter 170
QUIT parameter 169
REPL parameter 170
RSAV parameter 170
SAVE parameter 170
description 169
edit command 38
examples 172
parameters 169

DEFINE COPY parameter 170
DELETE edit command 40
DUP edit command 42

EJMP edit command 43
END card format 211
ENOP edit command 44
ENTRY linkage editor
statement 177
EQOF COPY parameter 170
ESD utility program for
object decks 196
ESD card format 209
EXEC edit command 45

FILE edit command &6
FILELIST
description 201
example 201

214

FIND edit command 48
FLIP
TRCASE parameter 207
edit command 50
FORMAT
linkage editor parm 181,
184
File
comparing 199
editing 3
editing big ones 15
listing 201
merging 205
sorting 167,203
translating 207
work file editing 15

GET edit command 51
GO loader parameter 191
GYRATE edit command 52

HEADER FILELIST parameter
201
HEX edit command 53

IN COPY parameter 169
INBLK COPY parameter 171
INCLUDE linkage editor
statement 177
INFILNO COPY parameter 171
INLRECL COPY parameter 171
INPUT edit command 54
INRECFM COPY parameter 171
INSERT
edit command 55
linkage editor statement
180

JOIN edit command 56

LDT card format 195
LET loader parameter 192
LIST
edit command 57
linkage editor parm 181
LKED
(also see Linkage editor)
program 183
LMLIST program description
185
LOADER
ALPHLIST parameter 191
GO parameter 191
LET parameter 192
MAP parameter 192

VPS Utilities

PRINT parameter 192
SEARCH parameter 192
SYMTAB parameter 192
SYSIN parameter 192
SYSIN2 parameter 192
SYSLIB parameter 192
TEST parameter 193
ZSECT parameter 193
LOCATE edit command 58
LOWER TRCASE parameter 207
LRECL COPY parameter 170
Linkage editor
ALIAS statement 176
CHANGE statement 178
ENTRY statement 177
FORMAT parameter 181,184
INCLUDE statement 177
INSERT statment 180
LIST parameter 181
LMLIST program 185
MAP parameter 181
MAXMEM parameter 182,184
NAME statement 176
OVERLAY statement 179
PRINT parameter 181
REEDIT parameter 182
REP cards 184
REPLACE parameter 183
REPLACE statement 178
SEARCH parameter 181
STATS parameter 181
SYSLIB parameter 182
SYSLMOD paramwter 182
SYSUT parameter 182
control statements 175
executing load modules 185
general description 175
job setup 183
overlaid modules 186
overlay programs 186
parameters 180
preparing libraries 184
Load module creation 175
Loader
inspecting object decks
196
job set-up 193
object deck formats 194
parameters 191

MAP
linkage editor parm 181
loader parameter 192
MAXMEM
linkage editor parm 182,

Index

184
MOVE edit command 60
Merging files 205

NAME linkage editor statement
176
NEXT edit command 62
NOHEADER FILELIST parameter
201
NOTRAN edit command 63

OUT COPY parameter 169
OUTBLK COPY parameter 171
OUTFILNO COPY parameter 171
OUTLRECL COPY parameter 171
OUTRECFM COPY parameter 171
OVERLAY
edit command 64
linkage editor statement
179
Object deck
card formats 209
card formats for loader
195
Overlaid modules linkage
editor processing 186

PAGE COPY parameter 170
PRINT
edit command 65
linkage editor parm 181
loader parameter 192

QUIT
COPY parameter 169
edit command 66

REEDIT linkage editor parm
182
REP card format 195
REPEAT edit command 67
REPL COPY parameter 170
REPLACE
edit command 68
linkage editor parm 183
linkage editor statement
178
RFILE edit command 69
RLD card format 210
RSAV COPY parameter 170
RSAVE edit command 71

SAVE

COPY parameter 170
edit command 73

215

SEARCH
edit command 75
linkage editor parm 181
loader parameter 192
SIZE edit command 77
SLC card format 196
SORT /MERGE
control statements 205
examples 205
invoking 203
work space calc 204
SPB card format 196
SPLIT edit command 78
STATS linkage editor parm
181
SWITCH edit command 80
SYMTAB loader parameter 192
SYSIN loader parameter 192
SYSIN2 loader parameter 192
SYSLIB
linkage editor parm 182
loader parameter 192
SYSLMOD linkage editor parm
182
SYSUT linkage editor parm
182
Sorting
large files 203
library files 167
using /SORT 167
using SORT/MERGE 203
System libraries 194

TEST loader parameter 193
TOP edit command 81
TRAN edit command 82
TRCASE

example 208

parameters 207

upper and lower case 207
TXT card format 210

UNCHANGE edit command 83
UP edit command 84

UPFIND edit command 85
UPLOCATE edit command 87
UPPER TRCASE parameter 207
VERIFY edit command 89

WEDT editing work files 15
Work files editing 15

XIN edit command 90

216

ZONE edit command 91
ZSECT loader parameter 193

VPS Utilities

