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Computer technology has brought many innovations to the Psychology Fields in recent
vears. Psychologists involved in many diversified applications, such as studying social
behavior in primates, determining the effects of drugs on behavior, or numerous other
areas, have found that a general purpose computer can be implemented to suit their
parficular needs.

A computer can aid the Psychologist in many ways. It can interact closely with the ex-
perimental subject, providing the Psychologist with a greater degree of control over his
experiment. The flexibility to change parameters easily and quickly during an experiment
is possible through programming software. The computer can collect, analyze and store
the resulting data for future reference. And this can be done with greater speed than pre- |
viously thought possible, while maintaining precise accuracy as well. ;
|

The papers presented here were selected to introduce the reader to some of the specific
application areas where computers are now being widely used. As additional papers on

Our many thanks are extended to the authors for their time and effort in preparing these
papers, and for sharing their progress with us.

If you would like further information on computer applications in Psychology, please
contact us. We will be glad to help you.

Biomedical Marketing
Digital Equipment Corporation
Maynard, Massachusetts

L)




o o

DIGITAL COMPUTERS IN THE BEHAVIOR LABORATORY'

Bernard Weiss
Department of Radiation Biology and Biophysics
University of Rochester School of Medicine and Dentistry
Rochester, New York

ABSTRACT

Computer technology will have a two-fold impact on behavior research. First, it makes
possible, because of the ability of the computer to acquire and store data, a microanalysis
of behavior. Even conventional reinforcement schedules demonstrate new features when
such analyses are possible. Second, it enables the experimenter to exert direct control
over elements of behavior that could be controlled only indirectly earlier. The latter con-
tribution of computer technology to the behavior laboratory will surely be its most re-

volutionary one.

Experimental psychologists have always been prone to
develop methods for automating their research. Their rea-
sons, I think, are fairly obvious. Research on the mecha-
nisms of behavior, because of all the possible sources of
bias and distortion to which it is subject, requires, even
more than other areas of research, the utmost precision
and reliability, and the greatest freedom from adventitious
variables. These are among the reascons that psychologists,
very early in the development of computer technology,
become frequent users of the bulk processing machines that
formerly were the only computers available. They have
even more reason now to turn to computer technology.
Now they have available machines not only to help pro-
cess their data but to help them conduct experiments.
This is why, of course, our discipline is so well represented
here today, and was so well represented in the original
LINC Evaluation Program. The LINC, most recently de-
scribed by Clark and Molnar”, grew out of the view that

a laboratory computer was much closer to the biomedical
scientist’s needs than the facilities provided by conven-
tional computer centers. A dozen of us had the good for-
tune, in 1963, to be selected as subjects for an experiment:
an experiment to determine whether or not physiologists,
psychologists, etc., could learn to program and maintain
such a computer and integrate it into the programs of their
laboratories, The success of that experiment, described in
detail in the final report of the LINC Evaluation Program®,
is a major reason that we can hold this kind of meeting
today.

Since computer technology in the behavior laboratory is
still a recent innovation, and since so little has been pub-
lished up to now, I will aim not at a detailed review of any
single aspect of the use of computers in our laboratory,
but, instead, at a survey of applications. By no means do
these exhaust the number of uses to which we have put
computers in our laboratory, as some of you already know.

1 This paper is based on work supported, in part, by grant MH-11752, from
the National Institute of Mental Health, and performed under contract with
the U. 8, Atomic Energy Commission at the University of Rochester Atomic
Energy Project and has been assigned Report No, UR-49-791.

One of the uses to which we have put computer technology
is the analysis of behavior that has been studied in conven-
tional ways. One way in which we study learned behavior,.
that is, behavior under the control of its consequences, is fo
arrange contingencies between occurrences of behavior and
occurrences of reinforcement (rewards) which are able to
maintain rather distinctive patterns of behavioral events in
time.

One such reinforcement schedule has been designated by
the letters DRL, which stand for Differential Reinforcement
of Low Rate. If an experimental animal, such as a monkey,
is given access to a response device, such as a lever, one can
arrange a set of contingencies as follows: on each occasion
that 20 seconds or more passes from the preceding response
on the lever to the next response, the second response is
followed by the delivery of a reinforcer, such as food. An
animal exposed to such a set of demands eventually emits a
distribution of interresponse time (IRT) intervals of which
a large proportion fall beyond the minimum pause required
for reinforcement. If one examines the resulting behavior,
however, in a much more detailed fashion than simply the
first order interval histogram or the cumulative record,
more subtle features of the behavior become discernible.
For example, various investigators have observed that rein-
forcements tend to occur in clumps. There will be a train

of interresponse times long enough to secure reinforcements,

then a train of interresponse times that are too short, The
first figure is a photograph from the LINC scope, showing
successive interresponse times from a monkey (M. neme-
strina) held in a primate restraining chair to which is attach-
ed a lever and a solenoid valve that, when actuated, releases
a small quantity of fruit drink as a reinforcer. The upper
portion of the figure shows a portion of untransformed
IRT’s from Session &, the lower portion of the figure shows
the same distribution after having been smoothed by a 3-
term moving average to make the grosser details more vis-
ible. The drifting up and down around the minimum IRT
required for reinforcement (in this case, 20 seconds) is
easily seen and, on a cumulative record, is expressed as a
clumping of reinforced and unreinforced responses.'!




With practice, this particular monkey E‘.ventua}iy beca‘me
so adept that only on rare occasions did he fail ta. w‘ai’t
long enough to produce a reinforcement. F;gurcl 2is 48
picture, again from the LINC oscilloscope, showing 12
successive interresponse times from Session 3(_). Note that
only on rare occasions did the interresponse time fall below
20 seconds. Because of the serial effects that \_.ve .saw ear-
lier, we wanted to know whether or notin a d{stflbuti?n
seemingly so stable serial dependencics_ also existed. Fmi .
that purpose we first turned to the serfal <_:orrelogram. wit
the results shown in Figure 3. The solid Imfa represents
the correlogram that would have been obtame:d had th?
interresponse time dependencies been a function of a sim-
ple Markov process. All that one can deduce from t!ns_
plot is the possible presence of along wavele‘,ngth drift 11'1
the behavior. The autocorrelogram (and serial correlogram)
are notorious, however, for their ability to mask phenom-
ena of relatively low amplitude. For tha't reason, we tume“-d
to the power (or variance) spectrum, whlch‘ plots frequency
not time, against amplitude. Spectral density plgts for
four successive sessions, correspcm@ing to the sex‘wl corfelv
ograms in Figure 3, are shown in Figure 4. Despite taking
the precaution of removing linear trends befo.rehand. long
wavelength phenomena did appear, as shgwn in the large
amount of variance at very low frequenc:les.‘ Hoyvever,
there is a clearcut patterning in all four sessions in the
higher frequency phenomena. Notice the pcak‘s near _0.5
and 0,2. These frequencies are interpreted as follows: A
frequency of 0.5 means a tendency to alternate; succe.ssw::
interresponse times bounce up and down. A frequency 9h
0.25 indicates a tendency for cyclical et_‘fects to oceur _w;t
a period of four interresponse times. Figure 5, ta'k.era h'zzim
Session 30, on which one of thesc power spectra is based,
shows empirically what the variance spectrum shows ‘
mathematically. The open circles are the actual IRT val-
ues. The heavy line is a 3-term moving average. ()bsc;rve
how the interresponse times alternate about thle mov‘mg
average. They are, from this stundpgxnt,‘ r.legahve.ly cor-
related, which is one reason for our inability to discern
effects in the serial correlogram.

An examination of the variance spectrum is zlllso useful in
the case of drugs, a feature that engages our’ mtercstlbe-
cause our laboratory is devoted to research ml bf.;};avmrai
pharmacology. Figure 6, from Weiss and L_ahes , pre-
sents two variance specira, one obtained after a ‘COI‘I.:F].'O} i
solution (saline), the other ob tained afte? the injection of
0.2 mg/kg of amphetamine sulfate. Notice that t‘i‘le sflg:'t
wavelength phenomena have been decreased considerably

in amplitude.

The DRL reinforcement schedule is a deterministic sched-
ule. By that I mean that it contains no grogrammed ran-
dom components. The probability of reinfi or_ccment
jumps immediately from zero to 1 when the mte:trespanse
time exceeds the specified minimum. A slochastlfz. or
probabilistic, analog of the DRL schedule can easily be
programmed by a computer. Figure 7 depicts such a

function. This is a schedule we call Stochastic‘ Reinforce-
ment of Waiting (SRW)? which possesses the feature that
the probability of reinforcement is directly related t.o the
duration of the interresponse time. The longer the inter-
response time, the greater the probability of reinforce-
ment. The behavior established by such a sc}?eduie.: of re-
inforcement, which is closely related to a variable interval
reinforcement schedule, is characterize_.d by a preponder-
ance of responding at a fairly substanya] zjatﬁ:, thcrcby‘
producing an interresponse time distrlt‘:u'uon W‘lth a pt:ak
at, say, one or two seconds. With our interest in spaccdd
responding schedules, such as the DRLI, we began to stl{ y
performance on a different SRW function, one res‘cmblmg
2 Gaussian distribution and which is depicted in Flg,ure 8.
With such a distribution, very short interresponse times
are never reinforced.

Given the data acquisition and analytical cagamty ofa
computer, it is possible to follow microscopically thc.
development of the behavior in response to tl:ne new con-
tingency. [ will not pursue this in any intensive way but
simply offer some illustrations of this devel-.::pmcnt‘ In
Figure 9 I have plotted, for the first 23 sessions on the
Gaussian distribution, the mean interresponse time for
each block of 100 interresponse times. Fo_r, say, the
first 4,000 interresponse times, the mean lies close_to 8
seconds (left half of Figure 9). The right half of Figure
9 contains the mean reinforced IRT for cacl.l block of
100 IRT’s. For these approximately 4,00(} mtc.:rres?onse
times, the mean reinforced interresponse ?mm is quite
high. One can infer from such a distribution tha_t the
behavior is characterized by trains of very short inter- ‘
response times alternating with long pauses. The pauses,
when terminated by a response, produce rein fcrcenlmnt.
During the first 4,000 responses nearly :_111 of the rein- i
forced interresponse times come about in this way. The.ru
appears to be a rather dramatic change after th:at poEnt—
a quickly rising mean interresponse ti I‘E’!f‘.‘lﬂlﬁt Sllmi.iltd-
neously produces a fall in the mean reinforced mtcrre-
sponse time, bringing it close to 40 geccnds, \.vhwh, as
can be seen from Figure 8, is the point at which the
probability of reinforcement equals 1.0.

Figure 10 shows, for Monkey 14, interval histograms for
three sessions. The top histogram refers tt:f performance
on the linear function immediately preceding thelchangc
to the Gaussian function. The middle hjstogram isa
distribution of interresponse times during the first session
on the Gaussian function, The bottom histogram Fefcrs
to the fifth session on the Gaussian 1’unctlion. _thice.
that during the first session on the Gaussian distribution
there is a shift of interresponse times tp the 1eft, brolught
about in part by the phenomena agsociated with ext'mc‘- ¥
tion, namely, bursting. By Session 5 we see the bcgmma:bs
of a bimodal distribution, one peak remaining at. about 2
seconds, another peak developing between, say, 20 and
36 seconds. The characteristics of his behgvior can per-
haps be seen more readily in Figure 11. Figure 11 isan

expectation density plot of the same sessions shown in
Figure 10. The expectation density is analogous to the
autocorrelation function. During the linear function pre-
ceding the shift to the Gaussian distribution and during
the first session on the Gaussian distribution there appears
to be no inherent patterning in the performance. The num-
ber of occurrences per second remains fairly constant. By
Session 5, however, the bimodality of the behavior is
quite apparent. Following a response at t = 0, there is an
increased probability of response a second or so later. It
gradually falls, then begins to rise once more, becoming
steady at about 30 seconds. With further practice, the
early peak is eliminated and most responses are reinforced,

Of course, we anticipate that in the future the most revo-
lutionary applications of computer technology will come
not simply from data analysis but from the ability to con-
trol on-going experiments. The next reinforcement sched-
ule I wish to discuss comprises just such an application.
The DRL schedule is an attempt, from certain aspects, to
modify the variability or uniformity of rate. By placing a
lower boundary and, in some cases, an upper boundary on
reinforced interresponse times, one is able to generate a
relatively narrow distribution. This is simply a by-product
of the contingencies. With access to an on-line computer,
one can specify directly the variability or uniformity re-
quired for reinforcement. With monkeys, again, we have
studied a reinforcement schedule I call the Autoregressive
Reinforcement Schedule (ARG).'® [t takes its name from
a species of time series generated by a Markov process, in
which succeeding events depend on the just prior states of
the system. .
The ARG schedule specifies the probability of reinforce-
ment as a function of the serial correlation of interre-
sponse times. The function which controls probability is
given in Figure 12, Given an IRT, [j, the probability of
reinforcement depends on how similar Ij+1 is to Ij. In the
computer program, the ratio of the larger over the smaller
is computed and then a number taken from a table stored
in the memory. This number is equivalent to a particular
probability with respect to the distribution of numbers
generated by a random number generator. When each
occasion scheduled for reinforcement produces reinforce-
ment, a situation we call Fixed Ratio 1 (FR1) is in effect;
the kind of distribution evoked is shown at the top of
Figure 13, The peak is rather sharp and the distribution
quite narrow, especially considering that the time scale
gives us a resolution of 10 msec. Suppose that, instead of
reinforcing on each occasion when reinforcement is due,
we only reinforced every fourth such occasion (FR4).
Such a change produces a distribution (Figure 13, middle)
with even less variability, There is a further narrowing
when we make the requirement FRS8, as shown at the
bottom of Figure 13.

It is apparent, from this figure and from the next, Figure
14, which shows the corresponding expectation densities,

that the monkeys meet the requirement of serial depen-
dency not so much by producing serial dependencies but
by acting as an oscillator, Naturally, a purely periodic
emission of responses will result in reinforcement on each
occasion, There is, however, a significant though small
component of sequential dependency in the data.!® Thus,
the monkeys are meeting the contingencies of reinforce-
ment with a 2-component process, as it were.

One of the most effective ways of controlling behavior,
from the standpoint of obtaining a maximum amount of
information with a minimal output of time, is to employ
what have been called ‘adjusting,’ ‘adaptive,’ and ‘titra-
tion’ schedules of reinforcement. One of the simplest
examples is the technique devised by Bekesy® for mea-
suring auditory thresholds. A subject is given a hand
switch connected to a specially-designed audiometer
which sweeps slowly through the range of audible fre-
quencies. While it is doing so, the intensity of the stimulus
continually decreases. The subject presses the switch when
the signal is no longer detectable and holds it long enough
for the sound to be detected again, When he releases the
switch it moves in the opposite direction once more. In
this way it is possible, within a relatively short time, to
trace an audiogram. Blough? devised a somewhat more
complex system, employing pigeons, in order to measure
visual thresholds, and we have used a system quite similar
to Bekesy’s for measuring pain thresholds.” More recent-
ly, using the LINC, we have employed a titration sched-
ule which uses response duration as its primary parameter.

Our interest in response duration stems from earlier work
with dogs on drug combinations.® Figure 15 is a flow
chart of a program which attempts to adjust the criterion
of response duration so as to force the dog to give longer
and longer responses. The dog presses against the panel
with its nose. If the duration of the response exceeds an
initial criterion, deliberately set low, the criterion is in-
creased. In order not to make too large a jump, it is in-
creased by 25 per cent of the difference between the
former criterion and the response duration which exceed-
ed it. We found that taking too large a jump often ex-
tinguished the behavior. If the dog fails to meet the cri-
terion, the criterion may be decreased. The rate at which
it falls depends on how close the dog is to meeting the
criterion. If the last few responses have been close to

the criterion, the requirement falls more quickly than if
the dog has been emitting a long train of short-duration
responses. In this way, we do not reinforce sequences

of very short response durations by precipitously de-
creasing the criterion. The reader familiar with the
vocabulary of behavior will see that basically we are
shaping long-duration responding in much the same way
that an experimenter demonstrating shaping in the class-
room trains a pigeon fo turn a circle or to perform even
more exotic gymnastics,




During an experiment, the LINC scope face gives a running
account of the trend of the behavior. In Figure 16 the
series of points at the left represents successive response
durations., The smoother function on the right shows the
criterion as it moves upward or downward, as the case may
be. The numbers to the right represent, from top to bot-
tom, the number of reinforcements still available before
the session ends, the most recent response duration, and
the current criterion. Figure 17 shows a Calcomp plot of
one session for a dog that has been well trained. Notice
how the criterion climbs upward as the dog gives longer
and longer responses.

Drugs such as amphetamine produce a larger output of
short-duration responding and keep the criterion lower
than under control conditions.

These are just a few examples of the way in which we have
used the LINC in the laboratory. There are many other
applications. Experiments on Stochastic Reinforcement
Schedules are still continuing. In collaboration with Karl
Lowy I have used the LINC to study methods for quanti-
fying evoked potentials.® Louis Siegel® has developed a
device for digitizing graphic records and a device for auto-
matic control of a stereotaxic instrument. C.T. Gott is
employing the LINC to study chemical influences on be-
havioral transition states in pigeons. Experiments on the
relationship between brain electrical stimulation and be-
havior and on hallucinogenic drugs are also underway.
The LINC is also used in a course on computer technology
oriented toward on-line use (Figure 18).

Each new application opens up further vistas. Each new
application generates further ideas about the application
of computer technology to the problems of the behavior
laboratory. I have found, in contrast to predictions made
by pessimistic friends, that computer technology, rather
than capturing the behavior of the experimenter, gives it
much wider scope and frees his imagination and energy
for questions and projects that, in the past, he never
would have pursued.
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Figure 1 256 successive interresponse times, Session 8, Monkey M1 1
I)Rl: 20. Duration is given by height. The upper part of ,
the figure shows the raw data, the lower part shows the

data after smoothing by a 3-term moving average (from Weiss
et al, 1956).
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Figure 2 128 successive IRT’s for Monkey M11, DRL 20, Session 30
Height is equivalent to duration. The dotted line is equiva-
lent to an interval of 20 seconds (from Weiss et al, 1956).
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Figure 3 Autocorrelogram for Monkey M11, DRL‘ 20, Sessions 28', 29, 30
and 31. The solid lines depict the empirical autoconelathns.
The dashed line is the function that would have been obtained 0
with a Markov process (from Weiss et al, 1956).

Figure 5 Successive interresponse times (open circles) compared to a
3-term moving average (solid, heavy line). This is a portion
of the data from Session 30, Monkey M11, DRL 20. Note
the strong tendency toward alternation in the duration of
the interresponse time.
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Figure 4 Power spectra corresponding to the autocorrelation plots of
Figure 3 (from Weiss et al, 1966). Figure 6 Power spectra comparing performance on DRL 20, Monkey M11,
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Weiss and Laties, 1967).
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Figure 15  Flow chart ot the reinforcement schedule which differentially
reinforces long interresponse times in dogs.
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Figure 16 ~ LINC oscilloscope display during an experimental session
with the dog shaping program. The cluster of dots at the
left hand side of the display shows successive response
durations. The cluster at the right shows the rising criterion.
The numbers, from top to bottom, refer to the number of
reinforcements still available, the last response duration, and,
at the bottom, the current criterion.
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Figure 17  Plot showing the rise in response duration through a session
for Dog No. 6. The bars refer to successive response
durations, the line through them refers to the criterion.

Figure 18 The LINC in use as a tool for teaching computer technology.

13




APPLICATION OF THE LINC COMPUTER
TO OPERANT CONDITIONING

C. Alan Boneau
Duke University
Temporarily Studying at Stanford University
Stanford, California

ABSTRACT

Operant conditioning is a procedure in which selected behavior of individual organisms

is controlled by a judicious choice of reward contingencies. This paper describes some of
the work of the three psychologists in the LINC Evaluation Program and how they adapted
LINC to their operant conditioning projects. The use of the computer in dealing with

temporal response variables is highlighted.

Since LINC is relatively new and unfamiliar, I will begin
by giving a brief description of LINC and an account of
its history.

LINC is an acronym for Laboratory Instrument Computer,
a fact which should imply a good bit about the design
philosophy underlying it. LINC is a small computer with
a memory of 2,048 12-bit words and an 8—usec cycle
time. It has various features which make it particularly
appropriate for use in a laboratory.

The LINC concept evolved from the experience of several
years interaction between members of the Digital Com-
puter Group of MIT Lincoln Labogatory and the Commu-
nication Biophysics Group of MIT’s Laboratory of Elec-
tronics. Some of these people were computer designers
and engineers; others were essentially biologists, It was
apparent to all that the existing general-purpose computers
had deficiencies when used in the context of a biological
or medical research program. In such programs problems
arise when handling large quantities of data from various
sources, particularly when one is in the process of explor-
ing various ways of dealing with the data. There are pro-
blems of flexibility caused by interfacing with a variety
of inputs and outputs for controlling apparatus and taking
records. Existing machines were too large and empha-
sized those design features which exploited their ability
to handle well-defined problems with circumscribed input
and output modes. LINC was designed to overcome
these deficiencies. LINC was also designed with the hope
that access to a computer would stimulate development
of new approaches for the biologists, approaches which
previously had been in the real sense unthinkable.

The concept of LINC thus was of a small, low-cost com-
puter which would be a permanent but mobile fixture in
a biomedical laboratory. It would have a variety of input
and output possibilities and be sophisticated enough to
deal with the complexities of experiment control and to
process data and make routine calculations. It should be

convenient, flexible, and reliable enough so that it would
not require constant maintenance. It should be simple
enough so that routine maintenance could be performed
by the investigator himself, or at least by someone in his
laboratory.

The realized LINC consists of a mobile main frame which
plugs into an ordinary 110-volt socket. The console is
four separate units connected to the main frame individ-
ually by a set of 30-ft cables. One of the units is the
usual control console. Another unit contains an oscil-
loscope with programmable display; a third is the LINC-
tape unit, a two -unit addressable magnetic tape device,
very similar to the DECtape units. The fourth unit is
called the data terminal box. This is the main channel
for tying external equipment to LINC. It contains two
large plug-in units into which can be wired appropriate
logic and buffers and interfacing using commercial plug-
in units. A variety of timing pulses and registers from
the main frame are delivered to the data terminal box
through cables so that supplementary functions and con-
nections are relatively easy, and in fact are encouraged.
The data terminal box is also the input terminal for 8 of
16 analog input channels, the LINC being designed to
act as an A-D converter with a sampling speed as small
at 32 usec between samples. Also in the data terminal
box are six relays which display the contents of a pro-
grammable register in the main frame. Another feature
of the data terminal box is a set of 16 sense lines con-
nectable to external switches. These can be examined
on a command. A Teletype keyboard and printer pro-
vides routine communication with LINC. LINC was
designed by members of the MIT group consisting of
among others,Wesley Clark, Charles Molnar, Mary Allen
Wilkes, and William Simon. A prototype was completed
by the group in 1962, and, on the basis of its perfor-
mance, funds were sought from the Public Health Ser-
vice for a program which would evaluate the computer
and provide a little cloud-seeding by getting computers
into the hands of a small group of investigators. Funds




were provided, and the Center Development Office for
Computer Applications in the Biomedical Sciences was
established at MIT to administer the project. The first
twenty LINCs were subcontracted by CDO.

Early in 1963, an announcement was circulated request-
ing proposals from investigators in biomedical fields for .
the use of a small-scale digital computer to be used in their
laboratories. On the basis of the submitted proposals, the
Evaluation Board selected twelve investigators to partici-
pate in the LINC Evaluation Program. At issue was the
validity of the philosophy underlying the design: W(?uld
the computer be useful in a biomedical research setting;
and could it function in the way which was intended? The
investigators were largely from physiological fields opera-
ting within a medical center and interested in such prob-
lems as cardiovascular functioning and neurophysiology,
but there were a few others including three psychologists,
myself included. We three were working in the general
area of operant conditioning, which can be loosely defined
as the use of judicious patterns of rewards and punishments
to control otherwise spontaneous behavior. Later I will
briefly discuss some of the things done by the three of us
using LINC.

Each participant in the evaluation program was required
to attend a four-week-long training period at Cambridge
in late summer of 1963, during which he completed the
assembly of his machine. In addition, this period was
devoted to learning programming and operation of LINC
as well as to a detailed analysis of design. The purpose was
to provide an adequate enough background so that the in-
vestigator could perform routine maintenance tasks and,
most importantly for the evaluation program, so that he
could understand the computer well enough to make the
necessary interlinkage with other laboratory equipment.

As one of the participants, I must give a personal reaction
to this phase of the program. I never realized that so
much could be crammed into 100 hours a week. Like
the other two psychologists, I spent the four weeks at
Cambridge by myself. All the other participants had
brought with them a technical person from their staff.
This fact is not so much a statement about the work and
social habits of psycholigists as it is about the size of
their budgets and the relative magnitude of their projects.
We simply had no one to bring with us. This meant, of
course, that the dirty work involved in adapting the ma-
chine to our own use had to be done, in the face of aca-
demic schedules and commitments with no technical as-
sistance. [ feel it is a testimony to the elegance of the
LINC concept and design and to the excellence of the .
training we received that all three of us within a year _(Jt
receiving the machine had managed to incorporate it into
our research in a major way, in spite of the handicaps and
lack of background we shared. Most early utilizations we
made of LINC occurred in the context of things we were
already doing, but there emerged some difference in our
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plan of attack as a result of LINC. We did things that
never would have occurred to us had LINC not been
available, and we are now beginning to do things that
could be done in no other way but by on-line computer
control. With a little more time to relax with the ma-
chine, I'm sure we will do more.

At the time of my initial acquaintance with LINC, my
students and I were engaged in a project of teaching
pigeons to discriminate colors so that we might observe
the effect of various factors on their decision to peck or
not to peck. In the course of the training, a pigeon was
placed in a small dark box with a hole on one 91(1@ through
which he could peck a sheet of translucent plastic. The
plastic was lighted from behind by means of a mono-
chromator. On a sequence of trials the pigeon was re-
warded for pecking to some wavelengths and not to
others. While initially not very good at this task, thF_:
pigeon was ultimately coaxed into making a sharp t_ils—
crimination between wavelengths as close as one mil-
limicron. 1 say ultimately because such training typically
required several hundred hours.

We had originally worked on this problem in a rather re-
laxed way, exposing each color for 30 seconds and count-
ing the number of pecks which occurred during the per-
iod. Some of the wavelengths were never rewarded, while
the others were rewarded on what is called a variable
interval schedule. In this schedule, the apparatus is set

to deliver a reward for the first peck after a variable in-
terval of time, averaging perhaps every 20 seconds. On
this regimen, a bird will respond to rewarded colors at a
relatively high rate, and will respond to unrewarded
colors at a very low rate (or never) except when the dis-
crimination is difficult, in which case, the rate is some
intermediate value.

There are some disadvantages to a rate measure for our
purposes, and I will return to this problem later. Our
main theoretical concern, however, was the probability
of occurrence of a response; so we decided to utilize
rapid sequences of short presentations of the colors, for
example, 2 seconds in duration. Then we could measure
directly the probability of occurrence of a peck. To do
this we made use of a servo-system to drive the mono-
chromator fed by a signal which appeared as the output
of a relay-tree decoder. After being provided with a
supplementary set of 24 relays, LINC was hooked into
the apparatus to furnish signals for the relay tree, fo
open and close shutters, provide rewards, perform Fl"
the timing functions and record the occurrences of
pecks, as well as randomly scramble and rescramble the
sequence of colors and decide which were to be reward-
ed. To keep the pigeons honest, LINC rewarded ran-
domly about 1 peck in 20, but only to a predetermined
set of wavelengths.

To get around the problem of the long training which
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our birds required, we decided to run the experiments
overnight. The control system had developed to the point
that we felt free to leave LINC in charge without monitor-
ing. Surprisingly enough this worked very well. LINC
proved to be remarkably reliable. We have no solid evi-
dence that LINC made a single machine error in the first
6,000 hours of operation. After that, of course, followed
the complicated aftermath of an attempt to clean all the
accumulated pigeon dust out of memory.

At any rate LINC was running 24 hours a day for several
months, during the night acting as experimenter and dur-
ing the day helping us clarify the gathering data. Since
LINC had the necessary capability, we decided to record
all the pertinent information on every trial for each bird,
a major change in procedure possible because of LINC.
This information included the wavelength, the availability
of a reward, and the length of time between the onset of
a trial and the occurrence of a response if there was one.
In a period of a few weeks, we had generated a sizable
amount of data on four birds, several million chunks of
information which would not have been recorded or ana-
lyzed without LINC: it would not have occurred to us to
do so.

In the course of the experiment, several effects appeared
which smeared the results we were looking for. One such
effect was the consequence of a rewarded trial. Our sus-
picions were confirmed when we had LINC skip through
the mass of data, selectively picking out critical trials. We
decided to assess the effect of a reward by comparing per-
formance on trials preceding rewards with that on trials
following a reward, Consequently LINC selected trials on
which a reward was available and obtained, amounting to
two or three trials per hundred. LINC then extracted in-
formation from the trials immediately preceding and fol-
lowing that one, and formed a trabulation giving the num-
ber of occurrences of each of the colors before and after
a reward as well as the number of pecks to each.

For example, consider a set of data obtained from one
bird. The bird received sequences of presentations of the
ten wavelengths from 530 to 539 millimicrons spaced at
one-millimicron intervals, all presented equally often.
The five values at the left, 530 through 534 millimicrons,
were never rewarded. The values 535 through 539 were
occasionally rewarded.

Before occurrence of a reward the pigeon discriminated
remarkably well, responding consistently to these stimuli
for which a reward is sometimes forthcoming. The region
of transition between responding and non-responding
seems to be in the neighborhood of three millimicrons,
On the trial immediately following the reward, the whole
curve shifted to the left about one millimicron. Since the
resulting curve is almost the same shape, [ could not char-
acterize this as a breakdown of discrimination, although
the effect is clearly an increase in responding to non-
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rewarded stimuli. Since I am discussing applications of
the LINC, I do not intend at this time to get involved in
a discussion of what this phenomenon might mean, ex-
cept to remark that it is consistent with the notion that
the pigeon is wired to act as a statistical decision maker.

Unfortunately, although this procedure results in a nec-
essary condition for random emission, it is not sufficient.
The pigeon tended to track the reward timing and to give
a majority of responses around that inter-response time
which currently was being rewarded. This of course pro-
duced problems.

This procedure is an example of LINC’s ability to pro-
duce a very complex reward schedule which is contingent
upon the behavior of the bird and which necessarily has
to be handled in real time. Let me discuss another such
example this time by the third of the LINC psychologists,
Dr. Bernard Weiss, now at the University of Rochester
School of Medicine.

I mentioned earlier that rate of responding to an extended
presentation of the stimulus might be an alternative to
probability of response as a measure of what is going on
in experiments of this type. This rate measure has been
analyzed by Don Blough of Brown University, another
of the psychologists of the LINC Evaluation Program. In
a situation somewhat 'similar to that which I have just
discussed, he had LINC look at the interval of time be-
tween successive responses, the inter-response time or
IRT. These were tabulated by wavelengths for different
IRT’s. Dr. Blough found that shorter IRT’s were less
dependent upon the stimulus than were the longer, It
seemed to be the case that once the pigeon started peck-
ing, the probability of his making another response quick-
ly was more a function of whether he had just made a
response than it was of which stimulus was present. These
sequential dependencies turned out to be a function of
motivation and the time since the last reward, among
other things. This tended to confound any underlying
relationships.

The way out of these difficulties would seem to be a
training regimen which would tend to do away with the
sequential dependencies and make the pigeon approximate
an ideal random emitter. One of the characteristics of
such an emitter would be that the distribution of inter-
response times for each stimulus would be exponential.
Dr. Blough attempted to produce such a distribution by

a selective reward. He divided inter-response time into
bins so that if the same number of pecks were in each

bin, the resulting distribution of pecks would be expo-
nential in form. LINC was programmed to monitor IRT"s
on-line, categorizing pecks into the appropriate IRT bins.
On each peck it looked at all IRT bins and rewarded the
pigeon if the IRT for that peck occurred in that bin with
the smallest number of pecks. Since the pigeon is sen-
sitive to all sorts of manipulations of reward contingencies,




the tendency to respond to the least frequent inter-response
time should be increased.

This procedure is an example of LINC’s ability to produce
a very complex reward schedule which is contingent upon
the behavior of the bird and which necessarily has to be
handled in real time. Let me discuss another such example
this time by the third of the LINC psychologists, Dr. Ber-
nard Weiss, now at the University of Rochester School of
Medicine.

Among other things, Dr. Weiss has been interested in the
effect of drugs on timing functions in monkeys. One of
his projects was to devise a reward schedule which would
take as much variability as possible out of the inter-response
time by differentially rewarding low variability. His ap-
proach is what he called an ‘autoregressive’ schedule. Oper-
ating on-line, LINC was programmed to take the quotient
of the last two inter-response times and then reinforce the
monkey according to a schedule. If the quotient is close
to one, indicating that the last two IRT’s are nearly iden-
tical, the probability of a reward is high. The greater the
difference between the last two IRT’s, the more the quo-
tient deviates from unity and the smaller the probability
of reward. The actual decision to reward or not was based
upon the value of a random number which was generated
by LINC at this time.

In another kind of analysis of the data, Dr. Weiss has had
LINC plot successive inter-response times in the form of

an expectation density plot. This plot is formed by letting .
successive instances of an event, a peck, take the value Tq. ‘ o
Succeeding events are plotted as deviations in time from

this moving reference.

SUMMARY

This paper presents specific applications of LINC to a cir-
cumscribed area of psychology. These applications all in-
volve control of an experiment in which LINC is an integral
part of the process, operating various pieces of equipment,
sensing external events, making decisions in real time accord-
ing to a schedule of contingencies, and recording data.

LINC has made it possible to record raw data extensively

to be analyzed as the inspiration leads rather than merely
record preselected synopses of the behavior. From my

own experience this has meant that the data which formerly
had to be extracted from a new experiment was often al-
ready available. Thus, LINC has furnished the opportunity
to explore the possibilities of data analysis in depth.

LINC has also made it possible to program complicated
interactions of the organism with its environment. This
means that we need no longer conceive of the environment
as something passive to be acted upon by the organism; it
can be programmed to fight back. Possibilities implied by

this are yet to be realized. ‘ q .

A REAL-TIME SYSTEM FOR OPERANT CONDITIONING USING THE PDP-§

Robert H. Tedford
Union Carbide Corporation
White Plains, New York

ABSTRACT

This program controls the operations of ten standard environmental chambers using
three basic experimental systems; Punishment Discrimination (PD), Non-Discrimina-
tion Avoidance (NDA) and Food Reinforcement (FR/FI). Besides controlling the

experiments, certain statistics are accumulated during the experiments for print-out

at the end of each test run.

Introduction

This paper describes a real-time program for controlling
behavioral experiments utilizing a Digital Equipment Cor-
poration PDP-8 Computer. Besides the 4096, 12-bit, fixed-
word length computer, our system (see Figure 1) is com-
posed of ten standard sound insulated environmental
chambers. Each box contains one lever, a food receptacle
and a grid floor through which brief electric shocks may
be delivered. A grid scrambler prevents positional avoid-
ance behavior. Solid state cumulative recorders are used
to provide continuous visual representation of the animal’s
performance. An interface connects the environmental
chambers, recording equipment and computer. In this
system, the computer is capable of recording lever presses,
delivering shocks and/or food reinforcements, and con-
trolling houselights, speakers and stimulus lamps in accord-
ance with a particular pre-programmed schedule. The
original program was written for three basic experimental
systems; Punishment Discrimination (PD), Non-Diseri-
mination Avoidance (NDA), and Food Reinforcement
(FR/FI).

Procedure

The program actually operates through a series of inter-
rupts. These interrupts are initiated by the interface
(clock), the animals (lever), the operator (keyboard), and
the program (print). The clock in the interface circuitry
may be adjusted to any desired setting. We have ours set
to interrupt the main program every tenth of a second.
A lever interrupt oceurs when the animal has made a
complete response. A press and release of the lever con-
stitutes one response. The interrupts are serviced in
order of priority; clock, lever, keyboard, and print. The
clock and lever interrupts can occur during teletype oper-
ations, but they cannot interrupt each other.

When an interrupt occurs, the program tests the interrupt
flags to determine which type has occurred. The program
must then identify which box or boxes require servicing

at this time. For this purpose, the clock, lever and print
interrupts have each been assigned a 12-bit word. Each

environmental box is identified with one bit in each word.

Boxes will have their bits turned on (set to a one) when
they require servicing. The lever interrupt bits are set by
the interface hardware circuitry in the lever buffer re-
gister. When a lever interrupt occurs, the contents of the
lever buffer register are read into the computer, The re-
gister is cleared to zeros by the read operation. For clock
interrupts, the bits are set by the program after the first
lever press is made. These bits are turned off when the
test duration has elapsed. When a test is terminated in
any of the boxes, its bit is set in the print service word.
This bit is reset after the print-out is complete. The
method of identifying which box or boxes are to be ser-
viced for a given interrupt makes use of the link register.
This one-bit register may be rotated right or left with the
12-bit accumulator, Under program control, the link is
reset to zero and the accumulator is loaded with the in-
terrupt service word. Then by successive shifting of the
accumulator word into the link and testing the link for

a one-bit, the boxes to be serviced are identified. If the
link contains a zero after shifting, the box is bypassed.
This process continues until all boxes requiring service
have been identified and serviced.

Keyboard interrupts are handled by a different routine.
Each box has been assigned a letter from A to J. When

a key is struck by the operator, the octal code for that
key is loaded into the accumulator. Through a series of
subtractions, the program is able to determine which
letter has been struck and thereby which box is being
addressed by the operator. Letters were used to identify
the boxes instead of numbers, so that only one character
had to be struck for each box. This principle would hold
true even if the system were expanded to include twelve
or even twenty-four boxes. After the box letter has been
keyed in to the computer, one to four additional char-
acters are needed to identify the particular schedule de-
sired for that box. The specific calling procedures are
shown in Figure 2.




Schedules

Under the PD system, we have the capability of calling any
of the following schedules; FR1, VI2, a combination of
V12 and FR1 with tone, and the last mentioned with shock
and tone during the FR1 phase. The first two schedules

have a one hour duration and the latter two have 90-minute

durations. The schedules represent three training phases
which lead up to the criterion phase of the punishment
discrimination system.

In the NDA system, we have the flexibility of varying the
response to shock time (RS), the shock to shock time (S5),
and the test duration. The RS and SS times can be varied
from 1 to 99 seconds. The initial test duration is 3-1/2
hours. This may be extended in blocks of sixty minutes,
if desired, using the same times as for the initial period.

The FR/FI system has the capability of calling for either
a schedule with a Fixed Ratio (FR) of 1 to 99 or a sched-
ule which has alternately a time-in (varied from 1 to 9
minutes) and a time-out (varied from 0 to 9 minutes).
During the time-in, the animal is reinforced in the same
manner as a straight FR schedule. He is not fed during
the time-out period. However, he may receive a reinforce-
ment after the time-out period if he has responded in the
last 10 seconds. The stimulus lamp is on during the time-
in period and a constant tone is on during the time-out
period. Both of these schedules have one-hour durations.

Each box may be assigned one of two systems. The PD
system is available to boxes A, B and C. The FR/FI sys-
tem has been written for the remaining boxes, D through
J. The NDA system which requires only the shock equip-
ment, can be utilized by all the boxes.

Sequence of Events

The operator enters the box call via the keyboard. The
box call establishes the schedule to be used in this experi-
ment. The keyboard service routine performs these addi-
tional functions; the box is activated to lever interrupts,
the statistics gathering area is prepared for a new experi-
ment, and the duration timers are set to their proper
values.

The cumulative recorder is reset and labeled with the pro-
per identification for this experiment. The animal is
placed in the called box and the box is closed. Using the
external button, the operator may make the first lever
press. This button can also be used when shaping a new
animal.

The first lever press service routine is handled differently
from succeeding lever interrupts. This special routine sets
the clock bit for this box in the clock service word, and
causes the house light and any stimuli to be turned on.
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Indirectly, since the recorders are wired into the house
light bits, the cumulative recorder is turned on.

For the duration of the experiment, clock and lever in-
terrupts are serviced according to the particular schedule.
Individual box parameters are made available to the gen-
eral routines for servicing these interrupts. The routines
provide for incrementing statistical counters and duration
times. Additional calculations are performed at predeter-
mined intervals. Decisions are made as to when an animal
should be reinforced or punished and causes them to be
delivered to the box. Changes in stimuli may be effected
under program control to denote a marked change in the
schedule.

When the experiment duration time has elapsed, the fol-
lowing events take place as part of the clock service rou-
tine. The clock bit is reset to zero and the print bit is
turned on in their respective service words. The box is
inactivated to lever interrupts. The house light and all
stimuli in the box are turned off. Simultaneously, the
cumulative recorder is stopped. Finally, the print inter-
rupt is initiated by the program.

When an interrupt occurs, the interrupt circuitry of the
computer is automatically disengaged. It remains dis-
engaged until a programmed instruction reactivates the
circuitry. For clock and lever interrupts, this takes place
at the conclusion of servicing the particular interrupt.
When a print interrupt occurs, the data to be printed is
first dumped into a reserve area and then the interrupt
system is engaged. The print-out proceeds with inter-
ruptions by clock and levers from other boxes taking
priority over the print-out. When the print-out is com-
plete, the print bit is reset and the box is ready for a
new experiment.

Print-Out Nomenclature (see Figures 3, 4 and 5)

SG - Segment Number; in the PD and FR/FI systems
each segment is 15 minutes long, while in the NDA sys-
tem they are 30 minutes long.

RT - Number of Responses made during each segment.

SR - Number of Rewards received during each segment;
for the NDA system, this would be a negative reward.

FREQ - Frequency in responses per minute.

DSQ - This is a statistic used in comparing an animal’s
performance from day to day. Numerically it is calcu-
lated by the following equation:

DSQ = EX2-(EX)(FREQ)

where X = number of responses made in each minute.

)
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S8Q - Variance associated with the frequency or the stand-
u{d.deviation squared. Numerically it is equal to ‘DSQ’
divided by the number of observations - 1.

FREQ, DSQ, and SSQ is calculated hourly in NDA system,

for every hour after the first 30-minute segment. Half-hour
calculations are made in the FR/FI system.

Summary

This program, as described, takes up all but about 250
locations of the available core storage. We were able to

provide most of the versatility that was spelled out in the
original goals for the system. There were a few compro-
mises made in the area of statistics in the interest of time
and space. While this system was written for ten behav-
ioral boxes, it is conceivable that two more boxes could
be added without sacrificing the present versatility. Be-
yond that point, some of the flexibility of this system
would have to be removed before additional boxes could
be put on-line.

ENVIRONMENTAL CHAMBERS

s
[= )
o ———]
(7]

w

E D : : “ Z:__B Z:::2
REWARDS
RESPONSES
B E H
L
REWARDS | INTERFACE CUMULATIVE
T " RECORDERS
cLocK
PDP_8
LEVER
SOMRUTER INTERRUPTS SHOCKS
SHOCK CALLS

PRINT-DUTS

BEEI&
LR

HHE

SHOCK
SCRAMBLERS

APaliE1

Figure 1 System Diagram
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PD SYSTEM
Schedule Call* Duration Variables
FR1 / 1 hour Nene
Vi2 1] 1 hour None
V12 4 FR1 w/T 1 1% hours None
vi2 + FR1w/T + 5§ 2 1% hours None
NDA SYSTEM
Schedule Call* Duration Variables
RS 40/ S5 20 4020 3% hours RS & SS Times
Extention X 1 hour None
FR/F1 SYSTEM
Schedule Call* Duration Variables
FR15 15 1 hour Fixed Ratio
FR15/F121 1521 1 hour Fixed Ratio,

Time—in Interval,
Time Out Interval

*All calls shown would be preceded by the Box Letter.
Apoli6-2

Figure 2 Box Schedule Summary
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Call: A/

FR1, BOX A

SG 1 2 3 4
RT 125 132 47 23
SR 125 132 47 23
Call: Af

Vi2, BOX A

SG 1 2 3 4
RT 253 264 219 188
SR 7 8 7 7
Call: Al

VI24FR1 4T BOX A

SG 1 2 3 4
VI/RT 165 156 172 147
Y1/5R 6 5 7 6
FR/RT 23 25 9 15
Call: A2

Vi2<4+FR1 4T ,SBOX A

SG 1 2 3 4
VI/RT 149 126 135 142
VI/SR 6 5 6 7
FR/RT 4 2 1 3

Figure 3 PD System Sample Print-Outs

5 6
5 6
5 6
161 152 @& f
7 5 ‘ @
11 8
5 6
156 175
5 6
2 2
AP2LE-3

Call: D4g29
NDA 4g / 28 BOXD

SG 1 2 3 4 5
RT 38 49 40 40 40

SR 75 75 75 76 76
CUM DATA FREQ D sQ
030090 1.333 393.339
999150 1.333 393.339
150-219 1.899 851.410
Call: E4020

NDA 40 / 20 BOXE

SG 1 2 3 4 S

RT 30 40 40 48 40

SR 76 75 75 76 76
CUM DATA FREQ D sQ
#30-090 1.333 393.339
290150 1.333 337,339
156-21@ 1.516 466.988
Ceall: DD

NDA 46 / 20 BOXD

SG 1 2 3 4 5
RT

SR

CUM DATA FREQ Q sQ
930098 B0g .000
090-15¢ .00p -peg
158-219 1.333 693.339
Coll: EE

NDA 48 / 20 BOXE

SG 1 2 3 4 5
RT

SR

CUM DATA FREQ D sQ
0300690 ft) Geg
299150 .gog -6ea
159-21¢ 1.333 693.339

Figure 4 NDA System Sample Print-Outs

6 7
4 74
76 68

55Q
6.660
6.668

14.423

6 7
40 51
75 76

55Q
6.660
5711
7.897
6 7
49 49
78 78
$5Q
000
000
11.745
6 7
49 49
78 78
$5Q
090
.0eg
11.745
AP2LG-L
23

Call: H15
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ABSTRACT

A computer program for on-line control of psychological experiments is discussed.
Specific scheduling and recording requirements of a particular behavioral experi-
ment are described in a series of state diagrams, and then entered as a constant

table into the computer. Ten such constant tables for programmed experiments
may be entered, and run simultaneously. A single supervisory program operates on
the 10 independent constant tables and controls events in 10 experimental chambers
via three input and several output words, Data is stored in memory or dumped using

a high-speed punch.

The system described in this report was designed to pro-
vide both on-line control of, and data acquisition from,
10 simultaneous operant experiments. The main features
of the system are:

(1) anotational language for describing any behavioral
procedure, employing units called “states™,

(2) a compiler for use with the PDP-8, designed to trans-
late the notated procedure into a binary constant
table,

(3) an operating program that uses the binary constant
table to generate the desired experimental contin-
gencies between stimuli and responses, as well as to
record data generated in the experiment.

Figure | shows the steps necessary to program the PDP-8
for an experiment, using the present system. Once the
experimental question is formulated, the desired relation-
ships between stimuli and responses can be expressed in
terms of a state diagram, the notation system used here.
The state diagram is then entered into the PDP-8 compiler
program on the ASR33 teletypewriter. (If desired, the
typed input can be saved for future compilations in paper
tape format.) The compiler we have written then gener-
ates a binary tape of the constant table representing the
state diagram that has been entered. Once the binary
tape has been obtained, it is entered into the computer
under the control of the operating program, SKED. The
latter program utilizes the binary constant table to accept
and record the responses of the experimental subject and
to deliver particular stimuli to the subject in the experi-
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mental environment, through our interface and associated
stimulus generators.

Data, including the number of responses, temporal distribu-
tions of responses, etc., are also obtained during the experi-
mental session and can be printed out at any time.

The notation system used in our laboratory is based upon
the mathematical theory of sequential switching circuits
(reference 1, 2,). In particular, we are using the merged
model proposed by McCluskey (reference 3). We have
chosen this notational language for three primary reasons:

(1) it is precise enough for designing electronic switching
circuits,

(2) it is simple enough to be easily learned, and

(3) itisalready used by engineers and scientists to de-
scribe a wide variety of sequential devices and pro-
cedures.

Other notational languages already used in psychology
(reference 4, 5) might be used in a similar fashion if they
were revised to eliminate any ambiguities.

To explain the state notation system, an example of a
typical reinforcement schedule (DRL) is shown in Figure
2. In this diagram there are two separate state sets. The
upper portion describes the reinforcement schedule proper.

* Supported in part by NIMH Grant MH 13049, awarded to Prof, W, N.
Schoenfeld, Queens College, CUNY.




The lower diagram represents an associated recording
state set designed to obtain distributions of time elapsing
between responses.

An important property of states as used here, demands that
only one state within a state set be in effect at any one
time. To allow several different reinforcement or record-
ing states to be in effect at the same time, it is necessary

to factor these concurrent contingencies into single states
of several different but concurrent state sets. A second
property is that each state set includes a finite number of
states. Most behavioral procedures in current use possess
this property.

Inputs of this system are responses of the subject (i.e., R)
and time values. Outputs are of three types:

(1) Relay outputs that generate stimuli (i.e., SR ON that
refers to the onset of the reinforcement stimulus)

(2) Counter pulses (i.e., C1) that refer to a stored count
of the number of particular inputs that occur during
a state or on transition between states

(3) Z outputs from one state set that serve as inputs to
other state sets to provide inter-communication be-
tween state sets.

Each state may have associated with it a set of counters
used to count up to a predetermined number of inputs
before state transition occurs. In Figure 2, there is such

a counter associated with the 10” time interval that causes
S1 to change to $2. Since we use a basic timing pulse of
10 msecs, a count of 1000 such pulses must occur to
cause the transition between states. Any state transition
resets all pre-set counter accumulations to zero so that
upon re-entry to the state, a full count is again required to
change states. Figure 2 shows that a response in S1 of the
upper state set, resets the 10" interval associated with that
state, by zeroing the count of the 10 msec pulses.

When a state has two transitions leading to different next
states, the first input to occur takes precedence. For ex-
ample, in Figure 2 if the response in S1 occurs first, then
the state is re-entered and the 10" time counter is reset.
Alternatively, if 10" elapses without a response, transition
to §2 occurs. Another rule of the state system is that
only one transition can occur at a time, so that indeter-
minacy of path or critical races cannot take place. The
interrupt and the interface system we use guarantee this
feature.

A brief description of the reinforcement schedule notated
in the upper portion of Figure 2 can help to clarify fea-
tures of the system. The schedule, known as DRL, re-
quires the subject to wait at least as long as a specified
time (in this case 10”) before a response will obtain a
reinforcing stimulus (in this case 4™ access to food). 1f
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responses occur more closely spaced in time than the 10”
period, the subject must again wait for 10 before reinforce-

ment is available. S1 is the timing state. If a response occurs

within it, 10" must elapse for transition to 2, i.e., a re-
sponse in S1 re-initializes S1. If 107 elapses after state entry
without an R, there is a transition to $2. In this second
state, responses turn on the reinforcement and enter S3.
The duration of this latter state determines the length of
the reinforcing stimulus (in this case 47), since the timing
out of the reinforcement duration causes the end of rein-
forcement and return to the first state. Responses in 51
are recorded in a data counter (C1), and reinforcements, or
response-produced entry into S3, are recorded in data
counter 2. This recording of data corresponds then to the
number of unreinforced and reinforced responses. A “Z”
output is also generated at the beginning of the reinforce-
ment for use in synchronizing the second state set with the
first state set.

The lower state diagram depicts the program for recording
IRT’s or interresponse-time distributions. This commonly
used measure is a distribution of the number of responses
that occur in each of several intervals of time starting from
the preceding response. State 0 is a dead state, entered at
the beginning of the experiment and at the beginning of
reinforcements, so that the IRT’s will be obtained only for
responses following unreinforced responses. A separate
distribution could be obtained for responses following re-
inforcements (the post-reinforcement pause). The first
response following the start of the experiment or reinforce-
ment will cause entry into S1. If reinforcement does not
oceur for this response (which would cause re-entry to S0
on the Z pulse) a 27 timer begins. If the next response
occurs in S1, before the 2 elapses, then it is recorded in
data location €3, and S1 is re-entered for the next response.
If on the other hand, the 2 interval elapses before a re-
sponse occurs, then S2 is entered. Again a 2” period be-
gins during which a response will be recorded in the next
recording bin. The diagram continues in this fashion up
to the final bin at which point all responses occurring after
an interval greater than 10 are recorded.

The preceding state diagram was constructed by specifying
the sequence of events desired for the DRL schedule and
associated recording of inter-response times. The basic
rule to follow when constructing a state diagram is to list
the desired events (stimuli, stimulus-response contingencies,
recording, etc.) in the sequence in which they are to occur.
It is useful to begin by imagining putting the subject into
the experimental environment at the beginning of the
session and to call the stimulus complex at this point State
1. The next step is to ask at this point, what is the effect
of a response. Do I wish to record it? Do I wish the re-
sponse to change the stimulus situation? Do I wish the
response to change the stimulus consequences of succeed-
ing responses? A similar set of questions can then be asked
concerning the effects of the passage of time without re-

sponses. When states are found to change on the occurrence
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of one of the inputs, then a similar set of questions applies
to the consequences of inputs in the next state.

Once a correct state diagram is constructed, then the input
to our compiler can be determined. Except for a series of
necessary housekeeping information to the compiler, the
format is similar to the state diagram, transformed into a
state listing. Figure 3 contains an actual teletype sheet of
the information that was entered into the compiler to pro-
duce the constant table for the state diagram of Figure 2.

When the compiler is started it prints out the phrase “BOX
#" and the experimenter enters in the appropriate box
number. If the same program is to be used for more than
one experimental environment (up to 10 may be run by
the operating program at one time), than a non-printing
character is struck on the teletype before and after the
box number and/or any other parameter that differs be-
tween compilations. The compiler will punch the char-
acter on the ASCII tape that reflects the dialogue with
the compiler. In this way, similar programs may be
entered on ASCII tape with modifications of parameters
permitted by the non-printing character. In similar fash-
ion the starting address (SA), the number of state sets,
the address of the first recording counter, the [OT for a
set of relays, and any relay symbolic definitions may be
entered.

The compiler at this point will print out the number of
the first state set, and will await typed entry of the first
transition desired, in symbolic language. In the present
case the desired input causing transition is 10 seconds.
The compiler will then permit the aumber of the present
and the next state to be entered, while it provides the
desired format. If a recording output (as in the second
state transition) is desired, it is entered by the experiment-
er. Relay outputs (as in the third transition) may be
entered as numbers or as symbols defined previously.
When the state set is completed, another non-printing
character is struck, and the compiler will punch a binary
constant table on the high speed punch. When the entire
state diagram has been typed in, the compiler will punch
a checksum on the end of the binary tape to be read
either by the DEC Binary Loader, or by the operating
program. Channel 8 trailer will also be punched. The
constant table produced in binary format may now be
read into the computer along with the operating program
(SKED), at which point the schedule of reinforcement
and associated recording will be in effect.

Figure 4 provides an overall flow diagram of the operation
of the operating program, SKED, starting from the occur-
rence of an interrupt to the final resetting of the interrupt
flop following the complete processing of the input. Each
experimental environment or box has associated with it
four inputs to the computer, three of which may repre-
sent different responses, and the 4th a free-running clock
with a 10 millisecond period. When one of these inputs
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occurs, the interrupt flag is operated, and the computer
tests for and assigns the box number and input number
causing the interrupt. Once this has been accomplished,
the program can determine the address of the appropriate
constant table for the current state in this box. A series of
questions and associated operations can then begin, The
first question is whether the present input is recorded. If
it is, then the appropriate counter is incremented by one.
If it is not, or after recording, if there is any, the constant
table is asked whether the input is used to change states
(cause a transition). If not, the question is asked whether
there are any more state sets for this box and, if there are,
anew constant table is obtained. If the input is used to
change states, then questions are asked for the constant
table concerning whether there is a preset count required
of the input for state change. If there is a count required,
the question of whether the count requirement is met is
asked. If not, the program proceeds to the question of
more state sets. If the input is not counted or if the count-
er is full, relay outputs and/or Z outputs are executed and
the current state is changed to the next state. When all
state sets have been treated in similar fashion, the interrupt
is turned on to await new inputs.

The format of the constant table is such that only the in-
formation required for any particular state is entered into
it. This results in a variable length constant table for each
state that can vary from 2 to 77 words in length. In our
experience, 5 or 6 words appears to be typical for most
states. The amount of time necessary for an input to be
handled by any one state is also variable, depending upon
the number of operations required for the input.

The format of the constant table is shown in Figure 5. The
constant table begins with one memory location for each
input that is to be recorded in the current state. These
locations contain the address of the memory location that
is used to record the input, but if the input is not recorded
the record location word will not exist. Secondly, there is
a variable set of words that range from one to five for each
state. These words contain the information concerning the
existence and address of the functions required for each
state. These functions are (1) recording, (2) counting, (3)
transition, (4) relay output, (5) Z output for each of the

16 possible inputs. These inputs (as referred to in Figure
5) are the free running clock (K), three response inputs from
the experimental subject (referred to as R, E, and T), and 12
Z’s per box, for use in communicating between and syn-
chronizing state sets. The outputs for each box, in addi-
tion to the “one-shot outputs” which are used to fire re-
lays, are “C’s”, which are used to indicate the record
counters that must be incremented on each input, and Z's
which will be used as inputs to other state sets. Following
the code words are the counter and the preset counter
values necessary to change states. If the clock is used to
change states, its pulses are always counted.

The clock routine has associated multipliers, since one




memory location will overflow when a count of 4096 10-

millisecond pulses oceurs. The multiplier routine permits

counts of the clock pulse to initiate transition in multiples
of ten. In this way .01, .1, 1, and 10 seconds can be used

to generate intervals from 10 milliseconds to 10 hours.

Following the counter set is a set of triplet words (maxi-
mum of three per input) consisting of the address of the
main code word of the next state, the 12-bit relay output
of this transition, and the Z output of the transition. If
the input does not need this information, as indicated in
the code words, these locations will not be included in the
constant table,

This completes the description of a single state in this
system. All the necessary states for a given box are en-
tered into the computer memory and are used when
needed, as determined by SKED, the operating program.

In summary, a system and computer language, general
enough to handle all schedules of reinforcement or other
behavioral procedures has been developed. The system
requires translating the desired procedure into a state dia-

gram, and entering the diagram into a compiler. The com-
piler produces a binary tape that the operating program
will translate into the desired schedule of reinforcement.

References

1. Mealy. G. H. A method for synthesizing circuits.
Bell System, Tech. Journ., 1955, 34, 1045-1079.

J

Moore, E, F. Gedanken experiments on sequential
machines. in Automata Studies, Princeton Univer-
sity Press, Princeton, N. J., 1956.

3.  McCluskey, E. 1. Jr. Introduction to the Theory of
Switching Circuits, Mc-Graw-Hill, New York, 1965.

4. Mechner, F. A notation system for the description of
behavioral procedures. Journ. Exp. Anal. Behav.,
1959, 2, 133-150.

5, Millenson, J. R. Principles of Behavioral Analysis.
Macmillan, New York, 1967.

Experimental

Question

State

Diagram

%

Teletype
ASCIlI
Compiler
"Binary
: Stimuli
Experlmental < SKED
Spuee (Operating
(Subjects) RESDO"Sﬁsr Program)
Data
F

Computer
Analysis

Figure 1

28

Flow Chart of Overall System

4/SR

OFF

Start

R/C1
R/C3
Start
_ _ R
¢ 0
Z1
Figure 2 State Diagram of DRL-10 Schedule, with Recording of IRTs.

¢

29




BOX # 3 SA 5805 # STATE SETS 2 10T 6611
RECORD ADDRESS1 200 INTERRUPT
PARAMETERS: OCCURS
SR ON=1 :
SR OFF=2 \ "
|l ON
IOF
STATE SET 1
10 ASSIGN
S)====>52 BOX NUMBER
AND
R/C1\
D e >S1 INPUT NUMBER
NO
R/SR ON» C2s, Z1 4
el S e m OBTAIN AR
APPROPRIATE YES MORE
4" /SR OFF CONSTANT STATE
S3-mmmmmm——— >51
TABLE SETS FOR
| THIS BOX
STATE SET 2 . o !
IS THIS =
& INPUT -
LT RECORDED a—
7
2"
S1=-==>52 - = NO
¢ O
R/C3 i i
o g >S1 IS THIS
INPUT USED |
zZ1 TO CHANGE
S1--->50 NO
STATES
?
2..
52-=-->53 YES
R/C4
d@m=ses =i IS 1T\ vES NO
COUNTED COUNT
2" ?
53===>54
5o YES PUT
R/CS L -
ouT 2
-==>51
S3 * ANY — .
OUTPUTS " PuT ouT
e "
Gt v
NO CHANGE CURRENT
R/Cé&
Gl >51 STATE TABLE

R/C7 ¢
S5 == >S1 - @ Figure 4

Figure 3 Compiler Format for DRL Schedule

Flow Chart of SKED Operating Program

30 31




ONE GENERALIZED STATE

T T T T T 1 i j I I i ¥
Procade Main Word in order KIE"L"I‘z,II.rlIn' from

maip '.sd !.ln_. br:iul-risl I L f 1 i

‘ I l l qullllI.‘ _Illll : aﬁd one

Used Bifs Kentd. il used) | K Mult, 7 |*he!

K R E T z R E T ‘ ouls
| | | | i 1 L hide:

Record Words,
One for sach C-Oul.
Maozx: 16 words.

Main Word

{one par St ale)

'
(it Z used-bit sat)

1 1 T e : Z |zout
'S K Mult. | re- on

cord|Zin

T&C OUT
(if C-and-Z-out-bit
sat)

Z'S Recorded
il Z record-bil sei)

Zoulon Iin
(if bit no.11 set in
Z&C-out word)

2 words-

Occur in poirs

Variable Counter
| 1 1 1 1 L1 1 1 1 1
T T T 1 T T T T T I |
Counter Constant

in order:KRET
MAX: 4 pairs

T T T T T T T T T 1 I

Next State Address
1 1 1 1 1 1 1 1 } 1 1

3 words

1 ]
T T T onE-sHor outedr cdoe
Occurs i the one-shot bit in the
Main Word is sef.
1 1 1 I 1 i 1 i 1 i

One set for each
input used.
MAX:16 Triplets

Z1‘.I'l'l.'.l-l'l.l' .'212
Encodes I oulpuls, it used,

i i Il 1 i i [| i 1 i |

Figure 5 One Generalized State of the Constant Table

32

¢

o

A MULTI-PURPOSE LOGIC MODULE FOR BEHAVIORAL EXPERIMENTS*

Arthur

FDR Veterans Administration Hospital
Montrose, New York

Julius Z. Knapp

Research
Schering

Bloomfield, New Jersey

ABSTRACT

A notational system has been developed that can be used to describe most reinforcement
schedules or other sequential procedures by appropriately interconnecting the basic nota-

tional units. The notational language has

oriented computer program for behavioral experiments. The present paper describes a
digital logic module designed to be isomorphic with the basic unit of the notational lan-
guage, thus permitting rapid programming of new experiments directly from the nota-
tional system. The major advantage of the new module is that it requires no electronic
sophistication on the part of the user, since the one module serves as the basic unit of all

experiments.

Psychologists often study behavior in the experimental
laboratory by establishing a set of rules relating responses
(defined by a specified electrical event, e.g., closure of a
switch activated by a lever) to certain stimuli (e.g., electric
shock, food for a deprived subject, etc.). Typically, a stim-
ulus is contingent upon the emission of a specified count
of responses, or a response emitted following a specified
delay after the previous response, or some combination of
these events. In more complex procedures the intensity or
frequency characteristics of a stimulfs might be adjusted
by the response of the subject.

Historically these procedures have been implemented by
electrical or electronic circuits in which a group of relay,
vacuum tube or transistorized logic modules are wired to
provide the desired experimental relation between behavior
and stimuli. A number of different suppliers have pro-
vided these modules, and, with a certain amount of trouble,
equipment from different suppliers can be used in the same
laboratory. However, it is true that voltage and pulse shape
requirements often differ widely among the many types of
modules available. Furthermore, most, if not all, of the
currently available devices require the psychologist or his
technician to become fairly adept in the design of complex
sequential circuitry as demanded by the idiosyncrasies of

a particular module line (e.g., trailing edge versus inverted
logic, relay timing problems, ete.).

Recently the advent of low cost digital computers has made
them available for realizing behavioral experiments (Weiss
& Siegel, 1967)8. The principle advantages of the compu-
ter are high-speed, flexibility, and the ability to program
procedures so complex that they are difficult, if not impos-
sible, to realize using standard logic modules. The major

*This research was supported by Grant MH-13049 from the National Institute
of Mental Health, USPHS, to W. N. Schoenfeld, Queens College, Flushing, New
York, and, in part, by the Veterans Administration,

G. Snapper

Laboratories
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been applied in the past to develop an user-

disadvantage is that the hard-pressed psychologist is required
to gain yet another skill, that of computer programmer, or
to obtain the services of a professional for his laboratory. |

As a solution to the programming problem we have proposed
a new computer language (Snapper, Knapp, Kushner & |
Kadden, 19677; Snapper & Kadden, 19695’) based on the

theory and notation of finite automata (Mealy, 19552;

Moore, 19563). We have attempted to show that behavioral

procedures are finite sequential systems, and that, as such,

can be completely described in terms of the exact arrange-

ment of a set of units called states (Snapper, Knapp &

Kushner, 19696). The computer language, originally written

for the PDP-8, provides for programming experimental con-

tingencies in terms of states and their interconnections, and

is thus a true psychological programming language.

The present paper extends this concept to logic modules by
proposing that construction of a unit state and some asso-
ciated hardware would permit a psychologist to implement
an experiment by interconnecting state modules. This pro-
cedure would require only that the experimenter notate his
experiment in terms of the state system. Once this had been
achieved, wiring of the circuit would follow automatically.
A second feature of the system is that modules from any
manufacturer would be logically compatable with each other,
thus making it possible to switch from one set of modules
to another without having to learn a new logical system.

Furthermore, properties of the state notational system com-

pletely eliminate certain problems that otherwise arise in the

design of sequential circuits from conventional modules (e,
critical races in relay circuitry) thus simplifying programming
of experiments,

A brief description of the state notational system follows to
clarify the power of the language and to specify the properties




of the system that must be provided by any form of
digital logic used to implement it. A fuller account may
be found in Snapper, Knapp & Kushner (1969)6.

States: The basic unit of the notational language is the
state. Any behavioral procedure or other sequential con-
trol system can be subdivided into a set of units, only one
of which describes the procedure at a particular time. For
psychology the state may have a stimulus (presented to
the subject) associated with it and these stimuli may differ
or be the same from state to state. Each state also defines
the requirements for state change to occur, if these require-
ments are met. States are notated by enumerated circles,
and associated stimuli are abbreviated as SN (or SR for
reinforcement) to the right of a slash following the state
number. Thus, in Figure 1, 1/81 in the circle on the left
indicates that some stimulus S1 is in effect during that
portion of the experiment in which state 1 is present.

Transitions: State change or transition is notated by an
arrow leading from one state to the next. In Figure |
state 1 will be replaced by state 2 if a response (R) occurs
when state 1 is in effect. Responses and time intervals
serve as inputs that may cause state change. The transi-
tion from one state to the next is instantaneous (i.e., no
other input during a transition can cause a second tran-
sition). If more than one transition is drawn from a par-
ticular state (e.g., the first state of the lower diagram in
Figure 3) then the input to occur first (20 sec or R in the
example) after the state is initiated, will cause a transition.

Outputs: As was noted earlier, each state may have an
associated stimulus output that is in effect when the state
is in effect. When a transition occurs to the next state the
output or stimulus can be changed. If, however, the stim-
ulus is to remain in two successive states and only their
transitions differ, the fact that state change is considered
to be instantaneous results in the common stimulus re-
maining in effect.

The definitions presented here provide the basis for a no-
tation system that can describe any reinforcement sched-
ule. Consider, for example, the diagram of regular rein-
forcement (CRF) shown in Figure 1. This diagram de-
scribes a procedure that starts with state 1 in effect. As-
sociated with this state is stimulus S1 which represents
the background stimuli of the experimental setting in-
cluding house light, etc. If a response occurs in state 1,
state 2 immediately replaces state 1 for 3" and the associa-
ted reinforcing stimulus (SR) is presented. Three seconds
after state 2 is entered, it is replaced by state 1 and con-
ditions are as at the start of the experiment.

A slightly more complex procedure is diagrammed in
Figure 2. The upper drawing consisting of three sequen-
tial states described a fixed-ratio schedule (Ferster &
Skinner, 1957)1 with a requirement of two responses for
each reinforcement. The experiment starts in state 1 with
stimulus S1 present. A response will cause transition to
state 2 but stimulus S1 will still be in effect. A second
response will lead to state 3 with a 3 sec reinforcement
replacing S1. Finally, 3 secs after state 3 is entered state’ |
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is re-initiated and S1 is again presented to the subject of the
experiment. Since fixed-ratio schedules require one more
state than the number of responses per reinforcement, it is
convenient to define the following higher order abbreviation:

When a set of sequential states have a common stimulus and
the same transition but differ only in the number of transi-
tions required to end the sequence, then the sequence may
be expressed as .a single state shown to terminate on the nth
input. In this way the lower drawing of Figure 2 is an ab-
breviation standing for the more complete upper state set.

It means that state 1 is replaced by state 2 only when the
second response in state 1 is emitted. This abbreviation may
be conceptualized as adding a counter of inputs that may be
associated with a state. On state entry the counter is set to
zero, and state transition occurs only on the completion of
the specified count.

In a similar way a definition of a resettable clock that may
be associated with a state has been developed (Snapper,
Knapp & Kushner, 1969)6. This definition specifies that a
timer associated with a state will cause transition after a
specified interval following state entry. Thus Figure 3 shows
in the upper diagram a fixed-interval (FI) schedule. Twenty
secs after entry of state 1, state 2 is initiated. Each entry of
state 1 restarts the timer so that the full 20 secs will elapse.
In the lower drawing of Figure 3 the diagram of DRL or
differential reinforcement of low rate is presented. This
schedule differs from that of FI only in the consequences
of a response in state 1. In the DRL procedure such a re-
sponse Te-initiates state 1 thus resetting the associated timer.

A slightly more complex schedule is diagrammed in Figure 4
which illustrates a modified version of a commonly used non-
discriminated avoidance schedule (Sidman, 1953)4. This
procedure starts in state 1. If no response occurs before

20 secs elapse state 2 with its associated aversive shock (87)
is entered. If a response does occur in state 1 its timer is
reset and a new 20 sec interval is started. Further responses
can keep state 1 in effect and thus avoid shock indefinitely.
A response in state 2 turns off shock and initiates state 1.

If no response occurs in state 2 state 3 is entered after 3 sec.
State 3 stays in effect for 5 secs if there is no response and
then restarts state 2. A response in state 3, however, leads
to state 1.

Even more complex procedures can be shown in the state
system with more complex diagrams. Other abbreviations
can be developed from the basic definitions of the system,
and recording of responses can also be diagrammed.

From the basic rules it follows that a state logic module and
associated equipment should, at the very least, provide:

(a) that within a state set only one state may be in
effect at any one time

(b) that state changes be as fast as possible

(c) that only one transition be allowed to occur at a
time

(d) that a timer be provided that resets on state entry 4. Sidman, M. Avoidance conditioning with brief shock
and no exteroceptive warning signal.

(e) that a counter be developed that is reset on state Science, 1953, 118, 157-158.

entry.

5.  Snapper, A. G. & Kadden, R. M. Time-sharing in a
small computer through the use of a notation sys-
tem. In B. Weiss (Ed.), Digital Computers in the
Behavior Laboratory, Appleton-Century-Crofts,

A simple relay state module and associated timers, coun-
ters and input circuitry has been developed to illustrate
the type of logic module that can be constructed to mimic

properties of the state system. Figure 5 shows a simpli- 1969,
fied schematic of two partially inter-connected relay state
modules. Each module contains two relays wired to act 6. Snapper, A. G., Knapp, J. Z. & Kushner, H. K.

as flops with separate set and reset inputs. Solid lines
represent hard-wiring and dotted lines show external

wires representing state transitions. Assume state 1 is

in effect. This means that its top relay is locked up through
its normally open contacts but that the lower relay has
been reset and is off as in the case of both relays in state 2 7.  Snapper, A. G., Knapp, J. Z., Kushner, H. K. &
alevel is provided from the contacts of state 1 to provide Kadden, R. M. A notation system and computer
stimuli. If a pulse (R) occurs, it passes through the con- program for behavioral experiments. Digital
tacts of the closed relay and operates the lower relay of Equipment Computer Users Society, New York,

Mathematical descriptions of schedules of rein-
forcement. In'W. N. Schoenfeld and J. Farmer
(Eds.), Theories of Reinforcement Schedules,
New York: Appleton-Century-Crofts, 1969.

state 2. This relay, in turn, locks up through its own con- 1967.
tacts and then simultaneously operates its upper relay and
releases the upper relay of state 1. At the end of the re- 8. Weiss, B. & Siegel, L. The laboratory computer in

sponse pulse, a clear pulse is generated that releases the

i s i psychophysiology. In C. C. Brown (Ed.),
- state 2.

Methods in Psychophysiology, Baltimore:

) Williams & Wilkins Co., 1967.
Not shown but needed in practice are diodes to isolate the

reset lines from each lower relay to the upper relay on

each of the other states. Also needed is a wire passing
through the normally open contacts of the top relay and
the normally closed contacts of the bottom relay which
would start a timer which is associated with the state.

This latter feature permits re-initiation of the timers by
operation of the lower relay of a state module. One must
also provide an input interface of relays that sets the dur-
ation of the response and timing pdises and prevents re-
sponses and timing pulses from entering the system while
transitions are occurring and stores these inputs until the
transition is completed. This type of state module has been
constructed and has been found to provide programming C R F
control for most commonly used reinforcement schedules
with three states, three timers and one predetermined
counter at a cost lower than $200. Similar modules could
be constructed at a lower price from transistorized mod-

"
ules which would also offer higher speed and greater 3
flexibility.
References START 1 R
1. Ferster, C. B. & Skinner, B. F. Schedules of S1

Reinforcement. New York: Appleton-Century-
Crofts, 1957.

2. Mealy, G. H. A method for synthesizing sequential
circuits. Bell Systems Technical Journal, 1955,
34, 1045-1079.

Figure 1. State Diagram Of Regular Reinforcement

3. Moore, E.F. Gedanken-experiments on sequential

machines. Automata Studies, Princeton:
Princeton University Press, 1956.

35




FIXED RATIO

START

Figure 2. State Diagram Of Fixed-Ratio

FIXED
INTERVAL 3"
START 20" e R
DRL 3

START 20" e R

Figure 3. State Diagrams Of Fixed-Interval and DRL

36

MODIFIED SIDMAN AVOIDANCE

R

START eﬂ Q
R

Figure 4. State Diagram Of Non-Discriminated Avoidance

TSy g
T e, fes
e | e,
| |
i : '

Figure 5. Schematic Of Relay State Module
External Wiring Drawn As Dotted Lines

[#%]
~J




¢

o

A GENERAL LANGUAGE FOR ON-LINE
CONTROL OF PSYCHOLOGICAL EXPERIMENTATION

J. R. Millenson
Department of Psychology, University of Reading
Reading, England

ABSTRACT

A problem-oriented language is being developed for on-line process control of psychological
experimentation. The language consists of nested blocks of simple English statements famil-
iar to every experimental psychologist. The function of this language is to produce an Auto-
mated Contingency Translator (ACT) which samples and updates a number of independent
time-shared experimental environments 60 times a sec. Experimental procedures are mapped
by the ACT compiler from the English statements into a probabilistic finite state network in
list structure format. An independent operating system (which in the PDP-8, 4K version
overwrites the compiler) then executes the list structure automata: that is, runs the experi-
ments, records and retreives data and admits low priority background programs in any avail-

able dead time.

Psychologists have made extensive use of computers for
data reduction and for simulation studies of behavioral
processes. They have been, with some notable exceptions
(references 1, 4, 15, 17) somewhat more diffident in ap-
plying computers directly to a third major class of pro-

blems, namely the laboratory control of their experiments.

With the appearance of the small fast, accessible, and re-
latively inexpensive general purpose machines this reluc-
tance on the part of psychologists can no longer be prin-
cipally ascribed either to economical or instrumentation
difficulties. *

If we look closely at the situation we discover that for
problems such as statistical analysis and data reduction,
flexible routines and sub-programs for building a variety
of special programs have been standardized in the alge-
braic-like languages of FORTRAN and ALGOL. Similarly
in the fields of artificial intelligence and simulation of
human problem solving by heuristic methods, well estab-
lished special purpose interpreters such as IPL-V, LISP,
and COMIT provide the investigator with a convenient
language to formulate and manipulate his problems. In
the field of laboratory control, however, the absence of
any such general problem-oriented languages (reference 5)
is conspicuous. Psychologists who wish to use the small
computer to program experiments are generally obliged
to learn a complex and unfamiliar code to communicate
with their machine. Many are deterred by this language
barrier; even for those who surmount it, the low-level
machine or assembly languages that they have had to learn
prove a poor vehicle for easy expression and creative ex-
ploration of new procedures. There have been attempts
(reference 4) to use existing problem-oriented languages
to do the job. But these problem oriented languages are
oriented for the wrong problem, and thus while FOR-
TRAN, for instance, makes algebraic formula translation
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and manipulation a routine exercise, it provides far less
obviously a natural language for the logical structure of
process control applications.

The key to a natural language for psychological procedures
is an adequate theory of those procedures. While there
have been a few attempts in the past to formulate the in-
dependent procedural variables of psychology into a uni-
field framework (references 8, 9, 14) these attempts have
contained important restrictions and indeterminancies
which limit their general application to all procedures of
the field. Recently, however, A. G. Snapper and his as-
sociates (references 6, 16) employed the concepts of
cybernetic machine theory (reference 2) to demonstrate
what amounts to a proof that all behavioral procedures
can be formulated as finite state automata. They exploit-
ed this discovery to write a very general program for the
PDP-8 computer to process control in real time a variety
of animal conditioning procedures associated with sched-
ules of reward and punishment.

Neither Snapper’s group, nor Marlowe (reference 7), who
also seems to have seen the implications of finite state
automata theory for a general problem-oriented psycho-
logical process-control language, went so far as to evolve
a general language for framing the procedures of psycho-
logy. Marlowe explicitly noted the practical difficulties
in developing such a language and speculated as to whether
‘the effort required. . . might offset any gain made by
using such a programming language’ (p. 10). There is
reason to believe that this conclusion was over cautious.
In what follows, the aims and lexical-grammatical prop-
erties of a compiler written for the Digital Equipment
Corporation PDP-8 family, purporting to establish such

a language, are described.




General Aims

From the outset it appeared that five major conditions
would have to be satisfied by the language. Firstly, the
language was to be a perfectly general problem-oriented
one, oriented to the particular problems arising in on-line
process control of behavioral experiments. It must be able,
without any ad hoc additions to its basic form, to describe,
and therefore given the support hardware, carry out the
procedures of nearly all experiments ever done in experi-
mental psychology. Only in that case could the kind of
generality that would permit the investigator to use the
language as a conceptual model or vehicle for creating his
procedures of the future be assured. The utility of these
new procedures, far more than its ability to simulate the
procedures of the past is likely to constitute the ultimate
justification of the language. It was thus apparent that the
language should provide no special constraints for any one
area of psychology, even though at present certain areas
(for example, automation of conditioning techniques, re-
cording of neuro-electrical phenomena) might be more
obviously computer oriented than others.

A corollary to this first condition was that since the lan-
guage was to provide a variety of investigators with differ-
ing backgrounds and theoretical dispositions with a gen-
eral tool, the language must not possess a bias towards any
one particular method of analysis within psychology.
Thus it should be possible for any psychologist of what-
ever persuasion to be able to describe his procedures in
this language. The general nature of Snapper et al’s con-
tribution assured that since all psychological procedures
could be reduced to a state diagram, in principle this would
indeed be the case. But the actual language that was to
map that state diagram to a computer data structure must
still contain as few idiosyncratic theoretical connotations
as possible. For instance, while the language would clear-
ly evolve with the ubiquitious terms of stimulus and re-
sponse, it must in no way commit the investigator to a
reflex psychology. Stimuli and responses, or if the in-
vestigator prefers, environmental situations and behavioral
repetoires, are simply a natural and operational way to
talk about the changes in environments and behavior pat-
terns of living organisms that make up psychological ex-
periments.

Secondly, parameter modification had to be integral,
simple, yet powerful. As I (reference 10) and other (ref-
erence 17) have pointed out elsewhere the special promise
of the high speed digital computer in controlling psycho-
logical procedures lies in its ability to adjust rapidly to
very intimate behavioral properties of the subject. That
adjustment consists of modifications, depending on the
moment to moment status of those behavioral properties,
not only of quantitative parameters but possibly even

the very structure of the procedure.

Thirdly, the fundamental features of the program had to
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be viable with a minimum hardware configuration (e.g.,

a PDP-8/S with 4 K of core and a single teletype) so as

to make the computer a feasible economic proposition

in even small laboratories. At the same time, the pro-
gram should possess sufficient flexibility to expand easily
its command features so as to exploit the additional hard-
ware of fortunate users with extra core, back-up memory,
auxillary teletypewriters, display scopes, analogue con-
verters, and so forth.

Fourthly, however complex the hardware input/output
interface might in reality turn out to be at circuit level,
it must appear to the psychologist-programmer wishing
to control it as simple as possible: e.g., with PDP-8 ma-
chines, a simple 12-bit parallel word. Thus the program
unlike ALGOL, but like FORTRAN, would standardize
its input/output instructions by assuming a standardized
interface terminal. Thus, complex microprogrammed
machine input/output commands as such need never be
seen directly by the programmer.

Fifthly, finally, and perhaps most important of all, the
vocabulary, syntax, and grammer of the command lan-
guage must be as close as possible to a simple English of
everyday usage not unlike that which the investigator
might employ in describing the procedures of his experi-
ment to a colleague. The ability to use the language
should therefore require almost no learning, it should be
as insensitive to syntactical formalities (e.g., critical
spacing, correct spelling, etc.) as possible.

Implementation On Site

A typical multi-access environment in which the com-
puter might be expected to act as a process controller
and data recorder for psychological laboratories is shown
in Figure 1. A PDP-8/S central processor is shown there
directing the procedures and recording the data from
four experimental stations. The system shown is slightly
expanded from minimal configuration, containing an
additional output teleprinter used exclusively for print-
ing out critical results of the experiments, and a high-
speed paper tape punch for outputting selected aspects
of the raw data.

In psychological experiments in environments of the
sort shown in Figure 1, a key role of the computer is
to provide automatic control of the relations or contin-
gencies that the experimenter desires to hold between
selected aspects of the behavior of the subjects, and
subsequent presentation and maintenance of selected
changes in the subjects’ environments. The language
that is to be described for this general task amounts to
an Automated Contingency Translator, hence its mne-
monic name, ACT.

The associated I/O hardware for each of the stations of

¢
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Figure 1
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A typical multi-access psychological environment controlled

by a rack-mounted PDP-8/S central processor. Four experiment-
al stations, one input teletype (left), an input/output teletype-
writer (bottom), and a high-speed punch are shown connected to
the central processor.
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Figure 1 must eventually terminate in two 12-bit words.
One of these words registers the outputs (responses) from
the subject and is read into the main arithmetic register of
the computer, the accumulator. The other word consists
of an input bit configuration and is strobed to the subject
from the accumulator. A typical configuration for a rat
subject in a conditioning experiment appears in Figure 2.
Only a portion of the two distinct words are used, 8 bits
for R outputs and 6 bits for stimulus inputs. Learning the
octal number system to designate the behavior and envi-
ronment events that he wishes to control is very nearly the
only specialized computer knowledge that the psycholo-
gist is obliged to acquire. The use of octal labels for sti-
mulus and response events is an important way of simpli-
fying the program to meet, in a small machine, all the aims
described above. Thus, R115 set in Figure 2 corresponds
to the closing of a switch by the experimenter and a cer-
tain value (17) of a 5 bit analogue voltage taken from elec-
trodes attached to the skin of the subject. S5 corresponds
to a compound stimulus: the presence of a 30 cps tone
and the presence of a small ‘houselight” in the subject’s
chamber. In the prototype installation for testing ACT these
stimulus outputs represent -24V to ground levels, and the
inputs represent switch closures. Nevertheless the language
of ACT itself is completely independent of how assertion
voltages come to be on the R input lines, and what work
one chooses to do with the assertion voltages the computer
puts on the S output lines.

Skin conductance E - switch

R looo 0083 gg8 ¥g8

[ / Lever

[l I I I I.'lololl‘1|°|‘|Rns
10 4 2 1

100 40 20

30¢ps Houselite

S:‘ooo 000 §§8 BgoB

Food Jeps

I

[ ] [oJoJo[1[o]1]Ss
40 20 10 4 2 1

12-bit S-input/R-output words compared
for illustrative purposes with two analagous
banks of toggle switches. Only 8 bits
(switches) of the R-output word and only
6 bits (switches) of the S-input word are in
use.

Figure 2

42

Writing in the language of ACT is expedited by first draw-
ing a modified state diagram of the desired procedures.
The units of these state diagrams are the state, shown as
a rectangle or a rectangular solid in Figure 3, labeled with
the actual environmental conditions; and the transitions
from one state to another shown as the vectored lines in
Figure 3 with actual time or response values as labels.
States may be (1) nested, as shown by the representation
of boxes within boxes; and (2) they may be organized in-
to multiple sets, or planes, of states as shown by the in-
dependence of the top portion of the figure from the
bottom portion. Not shown in the pictures is the ability
to modify at each occurrence of a unique state the value
of variable parameters of the experiment, and the execu-
tion of a variety of data retrieval routines such as PRINT-
ING. TAPING, DISPLAYING and so forth. These addi-
tions to the purely procedural contingencies relate ACT
to the automata oriented REACTION HANDLER of
Newman (reference 12), an intriguing correspondence
since Newman’s program was designed for an entirely dif-
ferent task environment, that of expediting communica-
tion between on-line users and graphical light-pen dis-

plays.

S3

Present | A/
1 Slide 52 —>
51

Two nested independent fragments of nested
state diagrams for representing the contingen -
cies of behavorial experiments.

Figure 3

To program his experiment the psychologist first works
out a state diagram of it by listing the various sequential
conditions and the temporal or behavioral events that
will cause one condition to change to another. Then he
connects up his structure with vectored lines correspond-
ing to the contingency logic of the experiment. He then
adds any special states he may need purely for recording
purposes, or any states used for trapping the occurrence
of rare or special experimental results. Then, referring to

a representation of his input/output words (c.f., Figure 2)
he assigns numerical values to the states, the behavioral
response events, and the times.

What are his restrictions on such labeling? Firstly ACT
is a completely synchronously driven system. An exter-
nal clock which in the prototype operates at line fre-
quency (60 Hz) restricts resolution of updating events to
60 times a second. Thus the shortest duration of a state
is approximately 16.7 msec. (This is of course not a con-
straint of the language per se, only of the particular im-
plementation of it. In the PDP-8 or 8/I a far faster clock
would be practicable.) Secondly, the values of states
must correspond to actual octal equivalents of 12-bit
numbers. State 9 is thus ambiguous; response 72413 is
too large.

Once in a state diagram, the procedure is ready to be
mapped to the basic English of ACT. The vocabulary
of ACT is shown in Figure 4. It will be

SYMBOLS
S1.2 3 V()
R4 - +
Us55 (tab) &
Ll,...N & =

ENGLISH WORDS
WHEN, WHILE, GIVE

IF
AFTER *
FOLLOWING

GO, THEN, GO TO
PROBABILITY

Figure 4 Legal ACT I Symbols and Words

observed that with exception of only a few special
symbols, the vocabulary consists of simple English
words, S, U, and V letter abbreviations for states, R
abbreviations for responses, and the integers I through

N for integer variables. In order to distinguish states
that are associated with the same environmental condi-
tions (e.g., the same octal output word) but which occur
at different points in the procedure and are therefore
associated with different experimental conditions, a
‘point’ followed by a unique number, less than or equal
to 778 is used as a way of distinguishing such states. The
ordinal number to the right of the point has no signifi-
cance except to provide a unique arbitrary label.
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STATEMENTS

In ACT there are six different classes of legal statements
utilizing this vocabulary. Examples of these classes are
shown in Figure 5. (1) Initialization of the integer vari-
ables by parameter assignment where the meaning should
be self-evident. Such assignments are limited to the range
-2048 <1< +2048. (2) Declarations of fixed variable
statesin S, U, or V state sets. Thus, writing a declarative
statement beginning with WHEN, GIVE, or WHILE follow-
ed by a state identifier amounts pictorially to drawing a
box. (3) Transition statements, of which there are three
types. Writing one of these transition statements is equiv-
alent to drawing a line away from one state rectangle to
another. The six examples of transitions illustrate differ-
ent features of the vocabulary. Response transitions begin
with IF and designate a fixed (R2), variable (R(K)), or
analogue (10<< R <L) behavioral output for initiating a
change in state. Time transitions are straightforward, with
the upper limit being 72 hr, the lower limit being 1 unit
(of time, determined by the clock) and variable times (be-
ing single precision integer) restricted to 16.7 msec. units
specification.

INTEGER ASSIGNMENTS

1=4
J=7
N=17772

DECLARATIONS

WHEN S1
GIVE U12.5
WHILE V(I)

TRANSITIONS

IF R2 GO TO S44
IF 29 R(K) GO TO V16.8
IF (10 <R <L) GO TO S5
AFTER 2 MIN GO WITH PROBABILITY
=3/32t0 S4
AFTER K UNITS THEN U2
FOLLOWING J 855.2 THEN GO TO $1.0

PARAMETER MODIFICATION

WHEN S1 [N=N + 4]
WHEN S1 [J = K & SWITCH REGISTER]

DATA RETRIEVAL

WHEN S1 [PRINT ‘EXPERIMENT FINISHED %#’]
WHEN S1 [PUNCH 2]

Figure 5 Six Classes of Legal ACT Statements
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RECORD DATA

1 IN S1: Rl LATENCY
2 IN 53: R1 COUNT

3 IN S5.1: R4 SUM

4 IN U(K): 82 COUNT

5 INVI16.7: V16.7 TIME

Figure 5 Six Classes of Legal ACT Statements (Cont.)

The first time transition (line 4 above under TRANSI-
TIONS) illustrates an additional feature of ACT, namely
its ability to describe probabilistic procedures. Probabi-
lities of the form A/B where A must be greater than or
equal to B, and B must be a negative power of two, less
than or equal to 2-7, may be specified for any transition,
Probabilities so specified produce bernoulli distributions
of events. In the prototype they are hardware generated
by the peaks of a noisy diode counting in a 7-bit shift
register.

The third class of transition shown as the last line under
TRANSITIONS in Figure 5, is a second order transition

in which an R or Time transition from any given state to
another, at some point in the state diagram, can trigger
yet another transition for a different state at a different
level or in a different state plane. Second order transitions
are essential for communication between state planes, and
for making possible the changes in a procedure after a
certain number of organism determined events, such as
numbers of stimulus presentations of a given sort.

(4) Parameter modification forms a fourth group of legal
statements. These constitute in ACT [ simple three-
operant ALGOL assignment statements written immedi-
ately after a state declaration and enclosed within square
brackets. In ACT I the operators are limited to addition
and subtraction (‘& means to add the switch register)
and only a single such statement may be written per state
declaration.

(5) Data retrieval statements shown just lower in this
figure are also written at state declaration time. They
make it possible to type messages and to retrieve various
data stored by the five recording directives shown below
them. The numerals after PRINT or PUNCH refer to
the line numbers of (6) the record statements.

The manner by which these statements are combined
into a program is straightforward, The statements are
written one statement per teleprinter line, sequentially
and in a block form suggestive of ALGOL. A given state
is first declared, its integer parameter modifications or
data retrieval orders enclosed within square brackets,
and on subsequent lines all the possible transitions for
that state are listed one by one. Another state is then
declared and its transitions listed; and so on. State
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diagrams seem to most easily be constructed and read from
left to right; so that the top of the page of ACT statements
will generally correspond to the left side of a state diagram.
For legibility the transitions of a state are indented one

tab stop in from the declaration siatement. Nesting of
states within states is accomplished by maintaining a one-
to-one relation between tabular indentation of the declared
state to degree of nesting.

An example of a simple complete program to control the
scheduling of a 3-second food reward to a confined pigeon
subject for each key peck on a plastic disk only after a
minute of non-reward has passed, appears in Figure 6. The
program is initiated by a special non-printing character
(WRU). The compiler (in 4K versions loaded by the user,
in 8K versions called down by monitor) then prints out an
installation identification followed by a new line and the
word EXPERIMENT. The user types in a comment iden-
tifying his experiment, followed by a carriage return char-
acter. The ACT compiler then asks for a number for the
station where the experiment is to be carried out. (This
number is none other than the W103 device code for the
station.) Upon receipt of this number the compiler will
respond BUSY if the station is already in use, or if not busy
with the approximate number of lines available for pro-
gram. The user then types any initialization lines, the

first declaration (S1), its transition, the next declaration
(S1.1), its transition, and the third declaration (S3) and its
fransition. Any desired comments are preceded by the

¢/* symbol. Finally a $3 terminates compilation.

U-READING PSY PDP8/S ACT I COMPILER
EXPERIMENT PIGEDN FIXED INTERVAL (FI 1%)
STATIORN 5

PROCEDURE (@877 LINES AVAILABLE)
1 /51=HOUSELIGHTS ONLY S3=REINFORCEMENT
1 GIVE s1
2 AFTER 1 MIN GD TO Sl.1
3 WHEN S1-1
4 IF R1 GO TO S3
S WHEN 83
(-} AFTER 3 SEC GO BACK TO 51
T 5%
RECORD

1 /RECORD ROUTINES NOT YET WRITTEN

@871 LINES STILL AvAIL
PROGRAM ACCEPTED @0@24096 MIN 29 APRIL 68

o AL LI SPYERSIR . R

Figure 6 A simple program typeout and its associated

state diagram. Lines typed by the computer
are underlined.

Not shown in Figure 6 are occurrences of any one of 45
compiler diagnostics. These advise the user of syntactical
(misspellings, illegal combinations of symbols, spurious
characters, and so forth) or semantic (attempts to direct
transitions from one state plane to another, or from one
level of nesting to another, exceeding the upper limit of
probabilities, failing to declare a state that is referred to
in a transition line and so forth) errors. Syntactical diag-
nostics occur immediately upon receipt of the illegal char-
acter. Semantic diagnostics occur only at the termination
of the current line.

The completion of the program leaves a data structure
corresponding to the state diagram resident in core. The
prototype system has 2K of core available to accommo-
date eight independent stations and at any one time, all
eight may be occupied with programs of moderate com-
plexity.

In practice a developed program would be stored on paper
tape, and entered whenever it was desired to run. In the
4K version once all desired programs are resident, an oper-
ating system to execute the data structure is loaded over-
writing the compiler, and thenceforth the teletypewriter
serves only to print data messages; or if the data rates are
low, to punch in coded form the significant events tagged
with their relative times of occurrence. There is only one

diagnostic at run time: *AVAILABLE UPDATE TIME
EXCEEDED" followed by the station last completed in
the queue. The example of Figure 6 serves to illustrate
the simplicity and naturalness of the language format for
the problems for which it is directed.

L ]
An important feature of the language is its ability to in-
corporate new increasingly sophisticated design features
without affecting the format of previous programs. Thus,
the obviously desirable ability to have compiler and exe-
cutive in core together with a monitor to schedule their
priorities along with other perhaps unrelated background
programs is a feature being developed for 8K systems.
Users will type in new programs from one teletype while
the central processor continues concurrent control of
other experiments. Yet these and further refinements will
affect only the power of the language system, not its
format.

Conclusions

In summary, the language that has evolved permits multi-
access control of up to eight independent laboratory en-
vironments. The language includes facilities for modifi-
cation of experimental parameters which, while simple,
are powerful enough to permit the experimenter to pro-
duce procedures whose quantitative properties and/or
qualitative structures can adjust to subtle on-going char-
acteristics of the input behavior of the subjects. The
language provides primitive facilities for retrieving the
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raw data of the experiment as it is being generated in a
form suitable for later input to a conventional off-line
data analysis program. An important feature of the
language is that its very nature is such as to preclude the
possibility of any user overwriting any other user. Thus
the language permits trouble-free time-sharing of the
central processor. Finally, as should be obvious, although
ACT was written with the psychologist principally in
mind, the language is a very general one. Whenever some
aspect of an environment is to be controlled as a function
of inputs from other aspects of that environment, as in
chemical process control, machine tool control, bio-
medical monitoring, and other industrial and scientific
applications (reference 13), ACT may provide a con-
venient method of implementing computer control by
non-professional personnel.
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LINC-8 TEXT-HANDLING SOFTWARE FOR ON-LINE PSYCHOPHYSICAL EXPERIMENTS

B. Michael Wilber
Stanford Research Institute
Menlo Park, California 94025

ABSTRACT

A complete text-handling system (LUCIFER) has been developed for the LINC-8. All
communication between LUCIFER and mortal man is carried on through a Teletype
medium, so that hard copy is always produced, and one need never invoke scope, switches,
and lights. Along with LUCIFER have appeared subroutines by which experiment-running
programs can do input and output of data with text files or the Teletype, This paper dis-
cusses the philosophy of LUCIFER and includes examples of the use of LUCIFER and the

running of a typical experiment.

We are using a LINC-8 computer for preseniing stimuli
and recording responses in psychophysical experiments.
This use is characterized by extremely low data rates over
long sessions. For example, experimental sessions typical-
ly take twenty minutes to an hour, with data rates of 30-
180 bits per minute in each direction. Since much, if not
all, of the computer’s time is taken with running experi-
ments, and because of the availability of commercial re-
mote-access time-sharing computer facilities using ASR-33
terminals, we have decided not to do processing on the
LINC-8 that can be done remotely. Communication be-
tween computers is via punched paper tape, and since this
is our only use of that medium, it is not viewed as onerous.
(Eventually we may be able to eliminate this use with a
connection of the LINC-8 to the telephone lines.) Since
the output of almost all the experiment-running programs
is to other programs, output formatting is considerably
simplified.

Because of the low data rates involved in our experiments,
it is practical to input and output data in the form of text
files called manuscripts. This greatly simplifies the pro-
blems of preparing input (stimulus) files and making sense
of output (response) files because our regular text-handling
programs can be brought to bear on these files. These
programs, part of the LUCIFER!*? gystem, are needed for
preparing the programs to run the experiments, so a ereat
saving is realized by using the same programs to handle

the data as much as it is handled on the LINC-8. A family
of text-handling subroutines has grown out of the family
of programs and has been made a part of LUCIFER, giving
it the structure shown in Figure 1. Experiment-running
programs can handle text by merely incorporating the
subroutines and using simple calling sequences. An ex-
ample of this is shown in Figures 2 and 3. We should note
in passing that LUCIFER includes a program to convert

lyine unrelenting console interception and file editing routines.
2 See LUCIFER documentation.
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almost any tape from LAP4 format to LUCIFER format,
but there is no such program for LAP6. It might also be
mentioned that the LUCIFER programs use the PROGO-
FOP typeout instruction and assumes the keyboard and
typing mechanism are connected, so they probably could
not be modified to run on the so-called classic LINC.

The LUCIFER Philosophy

Part of the philosophy of LUCIFER is that a typewriter-
like device is a good medium for interacting with compu-
ters. With such a device, one has hard copy of what one
did just before somebody walked in with an interesting
question. Since one is often referring to typed and writ-
ten material, a typed page in a well-lighted room seems
to cause a good deal less eyestrain than a flickering scope
in a dark room - - and well-lighted rooms are easier to
come by than dark ones. When one is interacting with
an active special-purpose program, one is less tempted to
push the wrong button than with a passive, general pur-
pose bank of switches and lights, because only logically
‘correct’ commands need be accepted by the program;
and one can easily arrange that the consequences of a
mistaken command are easier to recover from. See Fig.
4. Again, hard copy is produced automatically as a by-
product of initializing a program instead of (hopefully)
by somebody noting down on paper what is put into
certain magic locations, hopefully without making mis-
takes. There also seems to be some advantage to leaving
the file name permanently and automatically recorded
on paper instead of hoping the right paper or magnetic
tape or card deck was put in the right place. Operating
instructions can almost completely be dispensed with if
the program gives an idea of what parameters are needed,
and in this mode, one can easily arrange that no steps
can possibly be forgotten. Our experiment-running
programs run through a set dialog and do not start the
experiment until the end of the dialog.
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Figure 1 The overall organization of LUCIFER.

VISIZNY

GUTPUT TO *WORKY}
STIMULI #J00s

RANDOMIZATION «1 FRGM *@RDFIL3

EXIT

GUTPUT TO *_
MUNG ¥

MUNG FROM *W@RKe
TO #2694

MUNG FROM *_Q¥
TTYQAUT 4

STRAIGHT C@PY FROM *269)
R 3
4030
4013
4013
0167
0071

.

4315
4026
0067
QUIT.

TA-TAB%22-28

Figure 2 Running a typical experiment, including the output of
data via the Teletype. Here and in all the following
figures, keyboard type-in is underlined.
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It is felt that interactive programs can have more natural
and easy-to-use command structures than currently appear-
ing in many distributed programs. The LUCIFER programs
are few in number, interactive and frequently used, so ease
of memorization is a minor consideration. This is also help-
ed by the fact that they have as many commands in com-
mon as apply.

In most situations not every command makes sense at all
times. For instance, a line of the current file cannot be
examined if there is no current file. It would help if one
could obtain a priori knowledge of what sort of commands
are acceptable in a given situation. In the LUCIFER and
experiment-running programs, this consideration has given
rise to the concept of prompting, i.e., all type-in is in re-
sponse to some type-out from the program, and this type-
out is somehow indicative of the nature of response ex-
pected. For example, as illustrated in Figure 5, if the last
thing typed was an asterisk, then the program expects a
file name, consisting of up to six characters terminating
on a carriage return, Furthermore, rubout functions as a
backspace and types as a backslash, and the special name
blank Q(*Q’) causes the program to return to GUIDE.

In this connection, a little can be said about the LUCIFER
programs command structures and methods of operation,
First, one cannot modify text, directories, or core locations
without first seeing what one is modifying. This is in con-
trast to some systems in which one cannot see one’s text
and change it at the same time. For example, to kill or
replace a line of text, one directs the editor’s attention to
that line, which causes its contents to be typed out. and
only then will the editor accept a command to replace or
kill it. There is a certain amount of protection from care-
less errors afforded by the fact that the positions of the
keys on the keyboard were considered when choosing the
commands to be associated with certain actions. For in-
stance, the editor kills and replaces lines and inserts lines
before others (the commands are K, R and B) instead of
changing, deleting, and inserting forward of a given line
(the commands might be C, D and F) or killing, inserting
and overlaying with commands K, I and O.

All the LUCIFER programs and all the experiment-run-
ning programs always refer to files by name, and so the
actual location of a file is not relevant unless one wishes to
add new files to the directory or expand ones already
there, On the other hand, the format and location of the
directory are well noted in the documentation, and the
only program which lists the names in the directory also
lists sufficient additional information to reconstruct parts
of the directory or even the entire directory.

The editor edits a file in place and is a random access
editor. Thus opening a file involves ascertaining its loca-
tion, validity and length, requiring the inspection of ex-
actly two tape blocks, instead of copying the file into
some ‘working area’ and/or inspecting it to build a di-
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rectory. Also one has no need to edit a file serially and/or
be continually copying it between two temporary files and
finally rename one with the original’s name and kill the
other one and the original source.

The LUCIFER Programs

The purpose in writing the LUCIFER programs was pri-
marily to facilitate the process of forming programs on
the LINC-8., This imposed two requirements on LUCI-
FER. First, it had to have a much more tractable over-
all organization and command structure than other avail-
able systems. Also, it was felt mandatory that there should
be no overlaying. This not only greatly enhances response
time of the programs and greatly facilitates the process
of debugging them, but it makes programs more readable,
permits them to be ordinary GUIDE programs, facilitates
their assembly, and otherwise facilitates local and remote
program updating, A secondary purpose was to consoli-
date action from the switches, lights, scope and Teletype
to just the Teletype. The reason this was felt desirable is
a foundation of the philosaphy of LUCIFER. LUCIFER
includes DDT, a debugging program, and four kinds of
text-handling programs: the programs of primary interest
some bookkeeping programs, two programs whose sole
purpose is to allow our experiments to communicate ex-
perimental data with other computers. and one program
which does not exist.

DDT is a simple program to examine and change storage
locations in octal and exert some control over the execu-
tion of a program. It always works on the most recently
assembled program, and there is no provision for saving
(with GUIDE’s FILEBI) this program in any but its
pristine state - - it is possible to override this, but it is
ofien easier to bring the manuscript up to date, thus
facilitating later changes.

The programs of primary interest are the editor, the as-
sembler, and the lister. The salient features of the editor
have already been discussed. The assembler inputs the
names of the manuscripts composing a program, types
out all symbol (tag) definitions and assembles the binary
for the program. The language it processes is an exten-
sion of a restriction of LAP4. Details may be gotten
from its documentation, but some of the salient features
are that lines may be as long as the editor will handle
(something like sixty characters), symbols (tags) are up
to four letters and/or digits with at least one letter, com-
ments can be on the same line as anything else, and ar-
bitrarily complex, logically meaningful expressions can
be used for equalities and origins, Checking is much
tighter, with almost any situation the assembler cannot
correctly handle giving rise to a message containing the
name of the situation, the current core location in the
object program and the current line number. The lister
simply produces a listing of a manuscript, with options
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An experiment-running program
rejecting “logically meaningless”
parameters.
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Typical input files for the experiment of Figure 2.
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Prompting by an experiment-
running program and the iceberg.

to select only parts of the text and to form 8-1/2 by 11
inch pages.

There are three bookkeeping programs included in LUCI-
FER: MUNG!, the iceberg and DIRGEN?. The latter is
used to convert a LAP4 tape to LUCIFER format if that
is possible. All programs and subroutines concerned with
the text in a manuscript use information stored in the
manuscript’s directory, which tells how many blocks are
actually occupied by the text and the highest line number
for each block. A manuscript in this form is called normal,
but it is much more convenient for experiment-running
programs to write text in another form, called abnormal.
Also, pursuant to the second law of thermodynamics, the
manipulations of the editor are quite likely to lower a
manuscript’s packing density, but they are somewhat less
likely to raise its density. For these two problems, we
have a program MUNG, which reads a normal or abnormal
text file and writes a normal text file with the highest pos-
sible density. Finally, all responsibility for the tape’s di-
rectory of files is vested in the iceberg whose operation is
shown in Figure 6. This program accepts explicit com-
mands to change the directory but of course rejects any
commands which would result in the directory becoming
potentially invalid.

In running our experiments, we have found that addition-
al processing should be done on other computers. With
our present hardware and with the particular other com-
puters used (dial-in with a Teletype), the only means of
communication is ASCII-coded punched paper tape. This
particular medium is less onerous, however, when it is
viewed as backup to the storage of data in the more ac-
cessible forms and when one realizes that a very small
absolute amount of data is handled this way and quite
seldom at that. These programs are TTYOUT, which
punches the contents of a file onto a paper tape with blank
leader and trailer, and TTYIN, which inputs a paper tape
into a file. For timing reasons, the latter will not run with
PROGOFQP, but requires our own corruption of that pro-
gram, which is named PROTOCROCK?. Since it is only
intended for data, it does not handle the full character set,
and for timing reasons, it is extremely limited in the length
of a tape it will handle.

The last part of LUCIFER consists of a nonexistent pro-
gram - - a mythical beast: It may not be a program at all -
it may simply be a nonexistent feature of MUNG. Due to
its lack of existence, one cannot say very much about it,
and whatever one does say about it may be of indeter-
minant validity and concreteness. One can, however, say
that this program, which has no name, has the property of
merging several files, or possibly arbitrarily or otherwise
selected portions thereof, into one file. Despite the ob-
vious usefulness of this program, it has only been used

1 Manuscript ultra-normalization and generation.

2 The directory generator.

3 PDP-§ routine to oversee tape operations and cooperative routines which
obtain console-type knowledge (the program of total crockery).
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once, so it has never been written. Probably the principal
reasons for this state of affairs are that the assembler is
nearly indifferent to the number of manuscripts composing
its object program, and that the lack of real pages makes
short manuscripts desirable.

The LUCIFER Subroutines

While the LUCIFER programs were being written, it was
realized that their id and parts of their preconscious could
be unified, generalized and quickened in manuscripts, so
the experiment-running programs could easily communi-
cate with LUCIFER and each other. The logical outcome
of this idea is the LUCIFER subroutines. For the first few
months of their existence, they were highly evolutionary,
but as experiment-running programs were written around
them, they gradually coalesced into a unified, modularly
useful whole.

The structure of the subroutine package is that the sub-
routines are distributed across five interrelated manuscripts
in such a way that at least six subsets of the manuscripts
are conceivably useful. The selected manuscripts are as-
sembled along with one or several other manuscripts in
which reside the conscious part of the program and its
own special-purpose preconscious and id. These other
manuscripts have to set aside certain locations and areas
with specified names, and some small amount of initiali-
zation is required, but otherwise one need not consider
the internal mechanizations of the id of LUCIFER.

The specific functions represented on the manuscripts are
the following. The first contains basic pushdown list mani-
pulative functions. Although this makes recursive func-
tions possible, only one program actually does have a re-
cursive section, and that program is not often used. On
the other hand, the pushdown list is seen as a good disci-
pline for the allocation of temporary storage, and the
handling subroutine returns (always a problem on the
LINC) is uniformized and considerably simplified.

The next manuscript contains subroutines to type text
displayed in the calling sequence and to input and output
numbers in octal. In our use, it would seem that octal
numbers are not objectionable even to people having
their first contact with computers, because all numbers
handled by any part of LUCIFER are octal, so it is sel-
dom necessary to convert between octal and decimal.

On the next manuscript there is a subroutine to buffer a
line of input, up to a preset maximum length and pro-
cess backspaces. Since almost all input is performed by
this subroutine and the number input subroutine on the
previous manuscript,it does not take new people very
long to learn the interactive characteristics of our pro-
grams. The other subroutine on this manuscript is a
subroutine to find a file in the manuscript directory.
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routine calls. The subroutines, depending on the state of reduced to a number, which is then output onto the out- 0016/ 324
a flag in memory, cause either the Teletype or the current put file, 0017/ 325
open input and output files to be used. Thus we have a ooz20/ 320
degree of device independence. Device independence in Figure 2 illustrates the entire process involved in running o0oz21/ 314
itself is often used as a selling point for computers or an experiment and obtaining a punched paper tape for 0022/ 305
software, but here, it is precisely what makes the subrou- graph plotting and further analysis. The program is loaded Figure 7 Example 833:; ;ig
tine package useful in the experiment-running programs. from GUIDE and runs through a set dialog in which it is oBoes -dup FEiL
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! ments considerably. to be applied to the stimuli. After this dialog, the program 0031/ JMP TTXT [BPEN RESPONSE FILE

runs the experiment and, after writing the responses into
the output file, restarts itself. This time, it is given the
phony file name ‘Q’, which directs it to return control
to GUIDE. The next step is to MUNG the responses
from the abnormal temporary file to the normal perma-
nent file. Finally, since the response text has been nor-
malized, we can output it onto a paper tape, as is shown
in the illustration. Paper tape input is not shown be-
cause usually this is done concurrently with the final de-
bugging of the program which runs the experiment.

o032/ 317
0033/ 325
0034/ 324
0035/ 320
0036/ 325
0037/ 324
0040/ 240
0041/ 324
0042/ 317
0043/ 240

['BUTPUT T@ °*

Examples

Some examples of the use of LUCIFER are in order here.
The Figure 7 shows the initialization necessary before us-
ing the full generality of the LUCIFER subroutines. The
pushdown pointer (PDP) must be loaded with the address
of the cell below the first cell of the area (PDL) reserved
for the pushdown list, and the I/O medium switch (IOSW)

A s 2 00447 JMP PSHJ
must be set to indicate which medium is to be used first. 0045/ JMP @BPN
Both of these cells could be preset at assembly time, but A final example (Figure 9) is an illustration of the edit- (I 0046/ JMP 20 [IT DOGESN'T EXIST-TAKE IT FR@M THE TOP
then one would not necessarily be able to abort execution assembly-debug loop. The program is a simple adding . ) 0047/
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JMP -2 [ IGNORING THINGS THAT DO@N'T MAKE SENSE
JMP PSHJ [GUTPUT FILE WANTS A CsR.
JMP TCR
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SCR 14
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LDA TEMP
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SET & TEMP [HE PUSHED THE BUTT@N.
FACT [ G@@DIE.
LDA & [2UTPUT ZERO
3
SCR 14
APR 6
XS8K & TEMP [WILL MARK IFF NOT 0.1
SAM 10 [READ THE KN@&B
ADA & [ AND
377 [ BFFSET
AZE & [ PRBPERLY
CLR
BSE TEMP [N@W MAYBE MARK RESPGNSE
JMP PSHJ LAND @UTPUT
JMP TNUM

XSK & CNTR [MAYBE CONTINUE
JMP NXST [ THE EXPERIMENT

TA-T4a6822-24

Figure 8 Example
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Figure 9 The edit-assemble-debug loop.
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machine, residing in the manuscript FOO. At the begin-
ning of the example, the assembler (named A) is called
from GUIDE and directed to assemble the program, con-
sisting of the manuscripts FOO, PDLMAN and IOSUBS,
in that order. It lists the symbol definitions and notes an
undefined symbol in the program. The next step is to
direct the assembler to reload GUIDE, which is then told
to load and start the editor (named E), whose attention is
first directed toward the file FOO (which actually occupies
three blocks of its allocation) and then toward the line
mentioned in the assembler’s message. This line contains
a typing error (pahj for pshj), and this is corrected. Then
GUIDE is reloaded and the program is reassembled, this
time with no comment from the assembler. Now GUIDE
is restarted, from which DDT is loaded. DDT automati-
cally loads the most recently assembled program, which is
the program of interest, before requesting a command. We
change the location after the call to the number input sub-
routine to a jump to DDT, which starts, restarts and ex-
tends down to location 1400. Then we ascertain that the
program will be started at location 20 and start it. It iden-
tifies itself and awaits input. Numbers are given it, and it
types the running sum and then a letter is typed with no
preceding number after which DDT signals its readiness.
The accumulator is perceived to contain the character code
for the letter, the altered instruction is restored, the start-
ing location is again verified, and the program is restarted.
This time the subtotal and total features are seen to be
working, and the program is finally commanded to return
to GUIDE. This example was typed in to the computer
and debugged and embellished in twenty minutes, and the
sample run shown here lasted about eight minutes.

Critique

The LUCIFER system, being a real system in constant use
for four to ten months and having an evolutionary back-
ground, is possessed of some shortcomings, and it is felt
that some space could be devoted to exposing them. The
most fundamental fault is that, for historical reasons, two
different character sets are used - - the LINC character set
and DEC’s ASCII character set. Fortunately, one of these
is only used in outplotting to the Teletype. The full set
of subroutines, though composing a comprehensive, easy
to use package, require almost 380 locations in LINC
lower memory and two LINC memory quarters for buffers.
Of course, the buffers need only be respected while they
are inuse, a fact which is exploited in one of our experi-
ment running programs.

There is some conspicuous room for improvement in the
manipulations one can perform with the LUCIFER pro-
grams. The editor will not append to a manuscript but
will only insert before a line. In practice, this means that
all manuscripts have an empty line after the last meaning-
ful one. Also, the editor will not make a new manuscript,
but only edit an old one, so one usually has a manuscript,

56

usually named SEED1, whose contents are exactly one
empty line, which one MUNGs into a file before editing
new text into it. The editor has two further properties
which were included to increase its safety but which make
its interactions take longer than would otherwise be nec-
essary. First, it will not accept any commands pertaining
to a line of text without first opening the line and typing
out its entire contents, Also, whenever a change is made
to a line, both the block containing that line and the
manuscript’s directory are written out onto the tape.
Finally, editing would be greatly facilitated if it were
possible to alter a line without retyping it in its entirety.

Other criticisms of the LUCIFER programs are more
general. The editor, the iceberg, and the assembler are
all incapable of handling the null case (i.e., empty manu-
script, empty file directory and empty file directory and
empty program). The editor and the iceberg both have
safeguards built in so that they will not make an empty
manuscript or directory from a nonempty one, and the
action of the assembler on an empty program is harmless.
There is no facility in LUCIFER for merging or dividing
manuscripts. So far, LUCIFER is used mainly for pre-
paring programs, and the assembler accepts a program
spread out over many manuscripts, so the lack has not
been objectionable enough to be cured. In the lifetimes
of most data files, they are usually not changed enough
that such a facility would be a great convenience. The
iceberg is very crude - - it does little more than accept a
human-oriented command language for a minimal set of
atomic operations on the file directory and perform con-
sistency checking between those commands and the di-
rectory. The intent was (and still is) to have it auto-
matically invoked to create and extend output files as
necessary, and to have it automatically handle the case
where a file cannot be expanded without running into
another file, but where there are free blocks on the tape.
One final criticism which applied to all the LUCIFER pro-
grams is that their command languages are very tight, in
that any would-be command which is not of exactly the
correct format is rejected. For instance, in contrast to
assembly language, blanks are forbidden wherever they
are not mandatory.

These criticisms are presented to show the other side of
LUCIFER. Without this section, we would have just been
extolling the favorabe aspects of LUCIFER and ignoring -
the basic fact that ideal systems exist only before their
logical consequences are attained and that as soon as a
system is realized (in the form of running programs in
production use, in this case), the logical consequences

are hard to ignore. In considering the critique, one
should bear in mind not only that it is offered by the
author of LUCIFER, but that any sufficiently severe
faults would be (and have been) corrected in the evolu-
tion of the system.

CAN A SMALL DEDICATED MACHINE FIND HAPPINESS
IN A COMPANY THAT PIONEERED TIME-SHARING?

Joseph Markowitz
Bolt Beranek and Newman Inc.
Cambridge, Massachusetts, 02138

ABSTRACT

In the context of an automated psychophysical laboratory, the adequacies and inadequacies
of a small computer (the PDP-8) are discussed. Attention is given to the rationale for choos-
ing the implementation we did: in particular, a dedicated small system as opposed to time-
shared use of a larger system. The variables discussed include cost, flexibility, and storage
capabilities in addition to reliability. A compromise position that appears most viable for the

future is also suggested.

Several years ago we had the opportunity to build a new
laboratory facility for psychological research. Specifically,
the laboratory was to be used for basic psychophysical re-
search with acoustic signals. In certain instances, the im-
plementation choices we made may have been closely tied
to the portended nature of our work. In general, we think
they were not. Indeed, with small modification, the same
facility now serves a much broader range of psychological
research interests. Perhaps such versatility owes its due to
the way in which the facility was, in fact, implemented.
For various reasons, which are the very point of this paper,
we decided to automate our laboratory. The medium we
chose was a small, dedicated, general-purpose digital com-
puter — the PDP-8.

Our need for automation arose, we felt, because of the
drudgery which defines psychophysics. Our psychophys-

ical experimentation is characterized by a simple, repetitive,

short sequence of events where all the alternatives are
drawn from a small closed set. It is characterized by a
need for numerous observations in each of a few fixed con-
ditions. The operations are routine and boring. Errors
made by the experimenter as to what he presents (or did
present) are indistinguishable from errors on the part of
the observer as to what he observed. In this sense, errors
are very costly.

Psychophysics then does not demand a computer of high
intellectual ability or blinding speed. Its tasks are not that
challenging. Rather, psychophysical research requires a
tireless and accurate drone,

Quite simply, precision increases as experimenter errors
decrease, and as the number of observations increases.
Unfortunately, the rate of an experimenter’s errors accel-
erates as the number of observations increases. On the
other hand, a computer can keep its own error rate satis-
factorily and constantly low.

In designing our laboratory facility, we were confronted
with several options. Because all of these options are
nominally open, even today it is worthwhile reviewing
them.
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The first option we examined was construction of a special-
purpose facility out of logical building blocks. This was, of
course, a proven approach. We ourselves had had experience
with three generations of logical building blocks. We were
intimately familiar with the clatter and electromagnetic
splatter of relays, the shocking and geriatric nature of vac-
uum tube logic, and the unforgiving frailties of transistors.
We knew, too, the joys and sorrows of a variety of connec-
tors and programmable patch panels. Finally, we knew the
disproportionate number of logic modules and readout de-
vices required for even the simplest of data analyses. All of
these lessons stood us in good stead, we felt, and we never
regretted the experiences of the past. Yet, we were firm in
our resolve to depart from the past, for the lure of compu-
ters was irresistible. The printout was on the wall.

Another way in which we could have accomplished the
automation of our psychophysical laboratory was to use
time-sharing facilities available to us. We could conveniently

have run our experiments on one of several operating systems.

Our colleagues interested in running manual-control experi-
ments were setting out to do precisely that. Moreover,
ruling out such an alternative would be particularly signifi-
cant in view of our past history with time-sharing and with
computerized psychological experimentation.

Bolt Beranek and Newman Inc. has actively pursued time-
sharing system research, development, and application for
nearly a decade. Historically, we developed one of the first
operational interactive time-sharing systems in 1962. That
system was implemented on a DEC PDP-1, with the support
of the National Institutes of Health.

A succession of hardware and software improvements en-
abled us to move from 4 to 64 simultaneous users and to in-
crease the number and diversity of languages available to the
individual user. In 1963, development was undertaken on a
second PDP-1 interactive, time-sharing system. The system
provided a number of operational programs in a specialized
language at remote terminals in the Massachusetts General
Hospital. In 1966, we implemented a real-time hybrid I/O
interface to our time-shared SDS-940. This interface is
called a Hybrid Processor, and is capable of accurately timing
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real-time data-transfers between real-world devices and

the core memory of the SDS-940 without CPU interven-
tion. We have used our Hybrid Processor to control an on-
line video input device, to sample and generate speech
waveforms at up to 33 kHz, to interface to a CRT display,
and to control a hybrid analog computer (Applied Dynam-
ics 4), to name a few.

We have also designed a scheduler which will handle a
number of synchronous and asynchronous real-time pro-
cesses. The scheduler will permit a process to get on the
system only if the system can guarantee service to the
real-time demands of this and all other processes. Copies
of both the scheduler and hybrid-processor are presently
being installed on our most recently acquired time-shared
system, a dual-processor PDP-10 computer. The system is
backed up by a 100-million-word disc for bulk storage,
and has been modified by hardware “paging” of our own
design.

As you can see, quite a bit of hardware and software de-
velopment went into each of our time-sharing systems to
provide adequate real-time service. This, of course, is pre-
cisely the need for controlling psychological experimen-
tation. Nonetheless, we decided against time-shared service
for our laboratory. This is ironic, indeed, because among
the very earliest of computer-controlled psychological
experiments were some done by BBN on the very compu-
ter on which we pioneered time-sharing (Swets, Millman,
Fletcher, and Green, 1962).

The option we did exercise was to base our psychophysics
laboratory around a small, dedicated, general-purpose com-
puter. A computer-based system turned out to be cost-
competitive with the build-it-yourself option at the time
we made our initial decision. If anything, the economic
balance has swung even more markedly in favor of the
computer. Of course, this had not been the case when
manufacturers offered for sale only medium to large com-
puters. Now, however, small machines are a proven prod-
uct line. As a consequence, we think that the specially
designed collage of logical building blocks must be forever
foreshadowed.

Building up special-purpose logic means, almost by defini-
t@on, physically disparate pieces for each conceptual func-
tion the equipment must perform. With even a few func-
tions to be implemented in this fixed way, the amount of
logic required exceeds that necessary to build the processor
of a small general-purpose computer. Moreover, core stor-
age costs even at present are about $2.00 per word, a figure
to be compared with the cost of a three- or four-digit elec-
tromagnetic counter. Perhaps it is best to think of the
general-purpose digital computer as simply a particular,
concise arrangement of some hardware.

By opting for a general-purpose digital computer upon
which to base our facility, we also gained a degree of flex-
ibility unobtainable in a speically built piece of gear. But,
of course, as much flexibility and more would accrue if
we chose to be a time-shared user of a large computer sys-
tem. And yet we vetoed this course of action. We vetoed

it on almost religious grounds, but we shall try to detail .
our reasons in as rational a fashion as possible. .

Basically, our choice of a stand-alone system rested on the
fear of unreliability of a large, multi-user system. We were
then and are still of the opinion that unreliability is inherent
in so complex a system. There are simply many, many more
?icces, hardware and software, each with its own chance to
ail.

A second consideration related to, but still distinct from,
the reliability of a large multi-user system, is the integrity of
one’s own portion of the system. How secure is any user
from the malfeasances of other users, whether of malicious
or benign intent?

A third consideration was our feeling that the real-time
fiemands which we would place upon a time-shared system

in certain kinds of experiments were basically incompatible
with the system’s desire to schedule its activities “‘efficiently”.

Let us discuss these three points in turn.

First, reliability... It is important to understand for our-
selves, and to communicate to others, the premium we place
upon reliability. Architects of large computer systems and
directors of large computer centers rail at our demands for
reliability. Generally so tolerant of our meager demands on
their vast reservoir of compute-power and storage, they can-
not understand our phobia of system malfunction. But our
concern is hardly groundless, our fear scarcely irrational.

The problem is that our subjects — people, animals, or .1
whatever — change over time. They learn; they forget. They \
get rusty, or they rest up. The problem also is that our ex-
periments, by design, place emphasis upon changes over

time. All of us, I'm sure, can think of experiments where
equipment malfunction on a given day may jeopardize an
entire experiment. The cost, then, may not be simply the
actual time during which the system was inoperative, but

all of the experimental hours which preceded the failure as
well. And, too, when experimental hours are lost they may
involve a number of people: several subjects, an experimenter,
and so forth. We also run the risk, if malfunctions are fre-
quent, of tarnishing the image of omnipotence of the ex-
perimenter in the eyes of his subjects. And finally, even
through the experimenter may be able to excuse the equip-
men_t for malfunctioning, the subjects may not be as

gracious.

Most recently, informal sources indicate that an upswing in
the reliability of large time shared systems may be in the
offing. The idea seems to be that a portion of the potential
savings in collectivity will be used instead to provide for a
degree of parallel organization or redundancy in the system.
The premise is that such organization will allow the system
to provide fully adequate service to a decreased number of
users in the event of some system malfunction. Certainly,
the concept of parallel redundancy to ensure some minimal
level of functioning is a proven one. It is not at all clear,
however, that a degradation over all can be traded off against
a reduction in number of users. Besides, the limits to which
this approach will be pushed will be determined by what .
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standards of reliability the majority of users demand. As
we have argued, however, the psychologist anxious to have
the computer control his experiments may be rather more
demanding than most.

Suppose, however, that degradation can be made to man-
ifest itself solely as a decline in the number of allowable
users. Who is it that gets “bumped”? When the system
begins to falter and can accommodate fewer users, how
much bargaining power does the psychologist have? The
psychologist can keep the omnipotent CPU of a large sys-
tem busy for the merest fraction of time. What law of
economics dictates that he may pre-empt the inversion of
a grotesquely large matrix? Paying a price out of propor-
tion to the service must ultimately be the result.

Somewhere lower down in the hierarchy of reasons under-
lying our rejection of the time-sharing approach was the
relative dollar cost of the two alternatives. According to
standard accounting practice at then current pricing the
two alternatives were remarkably similar in cost. They
still are. They may always be. Not that the equation of
costs is axiomatic necessarily. More likely, those who
engineer time-sharing systems reinvest whatever savings
there are to be had in pooling of resources and needs.

The savings are plowed back into greater capacity, compute-
power, and storage, as well as additional peripherals. The
savings may also serve to underwrite more powerful lan-
guages, and a more intelligent time-sharing “executive”,
all of whose costs are ultimately borne by the overhead
of the system anyway. Naturally, constraints operate to
influence the decision of what savings should be rebated
to the users directly but these are largely covert, tempered
only by what the traffic will bear. At present (and per-
haps always) the traffic will bear up, to, but surely not far
in excess of, what a small dedicated machine would cost
to own and operate.

A second point to consider is the integrity of one’s system.

The security of a user in a time-shared computer system is
a concept of importance, not only to denizens of the
nether worlds of big business or national defense. Itis a
concept of importance not only to those of us who exagger-
ate the importance of our work and the larcenous intent of
our colleagues. For, if it is dangerous for our enemies to
have access, how much more dangerous is such access in
the hands of our friends? Presumably, people to whom

we are neutral present an intermediate danger. Another
maxim we might as well accept is that no realizable system
can be totally secure. What compounds the problem in a
time-shared computer system is the stratification of the
users. All users of a system are not equal. The status of
some is far above that of others. While most users have
access to only their own pieces of the system, programs,
and data, others have broader access. Whatever safeguards
are established, there are always a few who have keys that
unlock all the doors. It is not clear that this need always
be so, but at present it seems to be the case.

The differential status of various users works to the dis-
advantage of the small, real-time customer (for such is the

psychologist, in the main) in other ways. System maintenance,
and worse, system revision, are largely scheduled for the larg-
er good. How strongly can one press his case to have always
available the hours of noon till one o’clock, particularly if

that hour per day represents the sum total of use by the indi-
vidual? Even worse, careful examination of the records

might indicate that the hours of use reflects but several sec-
onds of CPU time — according to some, a measure of the in-
efficiency of the machine use, and, by association, the un-
worthiness of the job.

Finally, let us consider the real-time scheduling problem.

One of the considerations that distinguishes the experimen-
tal psychologist’s needs from those of many other real-time
users is the asynchronous nature of many of our demands.

In many applications — signal processing, or simulation, for
example — it is possible to predict in advance the exact

times at which service will be needed. However, many of

our experimental needs cannot be so easily predicted. “From
a scheduling point of view,” it is claimed (Fiala, 1968) “the
hardest processes to handle are those which vary rapidly at
some times, and slowly at others. The system should attempt
to guarantee satisfactory service to such a process under peak
loads, while simultaneously using left-over time efficiently
when the process imposes a light load on the system.”

In other words, the higher the inter-response-time variance,
the more difficult the scheduling problem. But for certain
problems of interest to the psychologist, events of note are
approximately Poisson-distributed. And, it is well known
that the variance of a Poisson-distributed random variable is
equal to — and therefore grows precisely as - its mean. Is
this to say that we psychologists who deal with the rela-
tively slow response rates of flesh and blood present quite a
difficult scheduling problem? The implication that the less
demand we make on the system, in terms of a low response
rate, the more difficult a scheduling problem we pose, is
indeed an interesting one.

The heart of the real-time processing problem is the input-
output portion, rather than the computation demands. The
program of a user operating in a time-shared environment has
three alternative ways to control input-output functions:
directly or according to a priority-interrupt scheme, or by
consigning them to a separate hardware configuration,
sometimes referred to as a hybrid processor.

Direct control of input-output functions means reasonably
synchronous interlacing of the input-output processing with
computation. As a result, the blocks of time left over to
share may be so small, relative to the program-switching
speed, that time-sharing may be infeasible, or uneconomical,
for moderately high-bandwidth input-output requirements
given direct control.

The use of a priority-interrupt scheme allows independent
scheduling of input-output and computation, and, therefore,
more efficient scheduling of computation may be imple-
mented because, in general, computation is real-time insen-
sitive. But, if enough devices are attached to the interrupt
lines — and psychologists, likely, want to attach many such




things — then, status tests must be made - an inefficient
situation. Moreover, the pigeon keys and people push-
buttons of the psychologists can hardly compete in prior-
ity with the system’s tape, disc, drums, display, ete.

Most interesting of the alternatives is the one called the
hybrid processor, which says that what is needed for
efficiency is a separate hardware configuration for input-
output processing, which is like saying that it needs a sep-
arate computer, which is like saying that one might just
consider having a separate computer. The hybrid proces-
sor is provided with its own portal to the memory of the
system. and, as we shall see, a reasonable proposal for the
psychologist’s own small machine is a similar portal to the
large machine — where time is no longer so critical, inas-
much as the small machine can provide considerable buf-
fering.

It is probably well to mention the rationale according to
which participation in a time-sharing system is usually
proposed. Basically, the argument is an economic one.
Users might have need for a piece of hardware or software
so infrequently as to be unable themselves to justify its
cost. Yet the equipment is still desired. By pooling wishes
and wants with others, these things may be acquirable.
There is undeniable merit in the approach, but a danger
as well. There is too often too little safeguard against ac-
quiring pieces of the system that no one will use. Picture
yourself coveting a novel piece of gear. Unable to justify
it yourself, you argue that, while you have no real use for
it, someone in the community of users must certainly. It
is a little like buying your wife a sabre saw or your two-
year old a set of electric trains.

It would be nice for systems to keep statistics on the use
of their components, hardware and software. This sort
of “over-buy” behavior may be more common than not.
In a sense, it may be somewhat unavoidable inasmuch as
a system must be planned before all the users and uses
can be exactly determined. The counter-claim, of course,
is that the sort of thinking to which we are here objecting
is precisely the guarantee of flexibility that will promote
the use of the system. We only suggest that the cost may
be high.

The system configuration at which we have arrived is really
quite straightforward — a basic PDP-8 with a high-speed
paper tape reader and punch at the heart of the system.
Equipped with only 4K of core and no other bulk-storage
devices, the system relies on paper tape as an auxiliary
storage medium, and as we shall see, occasionally needs
several passes to collect data and perform rudimentary
analyses upon it. Two digital-to-analog channels drive
either a display scope, added only recently, or the trans-
ducers for our psychophysical experiments, e.g., earphones
or vibrators.

Typically, three psychophysical observers are run in con-
junction, and each has a four-button response keyboard
convenient in that all subjects’ responses are easily encoded
as a single PDP-8 word. The subjects’ response keys are
also or-ed into the interrupt line along with the overflow
bit of our 12-bit clock, driven by a 1 kHz ticker. This is
illustrative of our solution to the PDP-8’s lack of a priority-
interrupt structure — our interrupt-handling routine is the
simple one of reading in all external buffers.
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Instructions, timing - control bits, as it were — and feedback
information are displayed to the observers by means of in-

dicator lights and form a single 12-bit buffered output word. @
A second 12 bits of indicator lights are provided for the ex-
perimenter. Another 12 bits of control information serve

multiplex switches that enable us to gate analog signals to

our observers. Finally, another buffered output word pro-

vides control bits for a 3-channel projection tachistoscopic
projector.

Initially, we had no high-speed 1/O device, but when we
called heavily upon the reader and punch associated with our
teletype, we found a distressingly high incidence of failure.
In our opinion, some sort of high-speed input-output is a
virtual necessity ... and this is equally true whether or not
the system has bulk storage in the form of additional core,

a disc, or drum.

There are several options as to high-speed 1/O devices. Some
are expensive — quite expensive in the case of multi-channel
digital magnetic tape, and somewhat less in the case of mi-
cro-tape. We adopted paper tape some three years ago when
ther was hardly any cost-competitive alternative.

Nowadays, paper tape is still appealing from the standpoint
of price, as well as compatibility with other systems if that
need should arise. However, two relatively recent alterna-
tives are well worth considering: the first is an inexpensive
mag-tape machine; the other is a high-speed communications
link to some other facility.

The inexpensive mag-tape machine takes a bit-serial data
stream and modulates it, thus making it compatible for stor-
age on a good quality home tape recorder. Demodulation of
the stored analog signal can subsequently reproduce the bit .\
stream for re-entry into the computer.

The high-speed communications link is perhaps the most
exciting new avenue. Properly done, with the cooperation
of the computer utilities available, such a link can effect

the compromise that must surely come for the user who de-
sires a dedicated small system yet yearns everso occasionally
for the benefits of a big system.

The dedicated system could be free-standing during crucial
experimental applications, yet store programs, data, and
institute analyses on a larger, more suitable machine. Con-
trol may be considered to be with the small machine. A
separate, conventional teletype link to the time-shared sys-
tem might then be reinterpreted as providing off-line file
handling and programming capabilities.
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THE LEARNING RESEARCH AND DEVELOPMENT CENTER’S
COMPUTER ASSISTED LABORATORY*

Ronald G. Ragsdale
University of Pittsburgh
Pittsburgh, Pennsylvania

ABSTRACT

This paper describes the operation and planned applications of a computer-assisted
laboratory for social science research. The laboratory centers around an 8K PDP-7 and
its special peripheral equipment, with most of the system already in operation. Special
devices include random-access audio and video, graphical input, touch-sensitive and
block-manipulation inputs. The control programs for these devices are incorporated in
an executive system which permits simultaneous operation of six student stations. The
system may be used for presenting instructional material or for conducting psychological

experiments.

In April of 1964, the Cooperative Research Branch of the
United States Office of Education established a research
and development center at the University of Pittsburgh as
part of the Office of Education’s program designed to con-
centrate major effort in various areas in education. The
Center at the University of Pittsburgh, called the Learning
Research and Development Center (LRDC), directs its
activities to design and development of instructional prac-
tices on the basis of experimental research on learning.

One activity has been construction of a computer-assisted
laboratory as a first step of a project on computer-assisted
instruction, The Computer-Assisted Instruction Project
has two principal objectives which guide the scope of the
effort undertaken within this group. The first objective

is to provide those facilities and services needed to support
the research and development effort of experimental
psychologists and others in the field of instructional tech-
nology. The facilities include apparatus and controls used
in learning experiments which use computer-related equip-
ment. The group provides engineering and programming
assistance in design and conduct of experiments. This
service, primarily for the Center staff, may be used by
other faculty members.

The second objective of this group is to conduct experi-
mental work in the development of computer-based-in-
structional systems. Examples of such work include the
development of supervisory programs for controlling
many independently operating stations; the development
of languages that educators can use for subject matter
programs on the computer; and the development of stu-
dent stations that will provide a high degree of interaction
between the student and the subject matter.

*The research and development reported herein was performed pursuunt
to a contract with the United States Office of Education, Department of
Health, Education and Welfare under the provisions of the Cooperative
Research Program.
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HARDWARE

The main piece of hardware involved in this project is a
Digital Equipment Corporation PDP-7 computer, installed
in mid-June of this year. In addition to the standard PDP-
7 configuration, this computer has 8,192 words of core
memory, 16 levels of automatic priority interrupts, the
extended arithmetic element, 100 card-per-minute reader,
variable time clock with speeds up to 1000 cycles per sec-
ond, 2 output relay buffers and terminals for connecting
student devices to the computer. The core memory will
soon be increased to 16,384 words, with the additional
8.192 already on order. It is anticipated that magnetic
drum storage will soon be added to the system as well.

In addition to the computer room, shop area, and an aux-
iliary equipment room, there are eight separate laboratory
areas which average about 180 square feet. The labs range
in size from 140 square feet to 285 square feet, with two
of the larger labs having observation areas separated from
the lab room by one-way glass,

Electrical ducts connect each laboratory area to the com-
puter room. This allows a great deal of flexibility in as-
signing display and response equipment to the student
station. The most basic device is the keyboard, which is
a modified Type 33 Teletype keyboard. Because no
printer is associated with the kevboard, this function is
usually served by an oscilloscope screen (a Tektronix RM
564 connected with a Type 34 interface). This scope can
be operated in stored mode in which information on the
screen is preserved and does not have to be refreshed.
When the scope is in dynamic mode (selected under com-
puter control) it may be used with a light pen.

Another basic device is the audio speaker (or head set).
Audio information is stored on loops of 6-inch wide mag-
netic tape. Each loop has 128 tracks, with 16 play and




record heads each servicing 8 tracks. The size of the loop
is variable, but at present each holds 1,024 seconds of in-
formation with each l-second block individually address-
able. Although it is not a standard item, there may also be
a microphone at the student station so that he can record
on certain areas of the tape reserved for this purpose
(through software). Basic equipment for a student station
consists of a keyboard, a cathode ray tube with light pen,
and an audio speaker or head set (see Figure 2).

In addition to the basic student station devices, a number
of special devices, some experimental, exist. One special
device already in operation is the “touch-sensitive display™
(Figure 3). A random access slide projector is focused on
a back lighted screen which displays the information for.
the student. Many fine wires within the screen allow de-
tection of an object, such as a finger or pointer, striking
the screen. Detection of such a response also specifies the
location of the response upon the screen. Since the pro-
jector and the screen are both under computer control,
the presentation of visual stimuli may be sequenced ac-
cording to the position of the preceding response(s).

Other devices under development include graphic tablets
like the “RAND tablet™ and “manipulation boards.” The
graphic tablet is a device through which a student may
input graphical information directly to the computer with
an electronic pencil (Figure 4). The tablet, used in con-
junction with appropriate diagnostic routines, permits the
teaching of printing and drafting, to name only one ex-
ample. in a manner which allows easy detection of stu-
dent errors.

At the RAND Corporation, the graphic input tablet is
used for debugging programs. A scope displays the con-
tents of several standard locations plus some memory lo-
cation. The programmer can search memory upward or
downward by pointing the electronic pencil at the ap-
propriate spot. He can change the contents of a displayed
memory location by merely writing over the display with
the electronic pencil.

Figure 5 shows the manipulation board which detects the
placement of objects on its surface and relays the corres-
ponding bit pattern to the computer. The problem here
is very similar to that of the RAND tablet in that a bit
pattern must be recognized. However, in this case, the
set of objects such as blocks representing different num-
ber quantities, can be restricted to those easily identifi-
able. With such a restriction, the set of objects can be
identified both as to item and location upon the board.
This device should be particularly effective in working
with young children, or the mentally retarded, since it
puts very little demand on the student insofar as the struc-
ture of the response is concerned.

approximately 500 pictures combining video camera or

computer-plotted output. The selection of pictures will
be under computer control and additional points may be
plotted on the selected picture at any time. This system
will also permit the use of a light pen.

SOFTWARE

The present software system, still in the final debugging
state, consists of a set of control programs for each of the
various devices as well as an executive system to control
the sequencing of jobs, timing, memory allocation, etc.

All teaching or experimental programs being contemplated
are of a type usually waiting for a student response or for
some time delay to run out. When this happens, the pro-
gram returns control to the scheduler and some other job

is initiated. In general, this sytem is capable of servicing six
devices of each type, although at present only one of each
is in use.

Most of the 16 priority levels are already used by the sys-
tem. The 60 cycle and 1000 cycle clocks each use 2 levels.

Keyboards, light pens, touch-sensitive displays, microphones,

and audio tapes also require priority levels based upon the
speed of the response they demand. In addition, the exe-
cutive routine responds to a priority level which may be
activated through software.

This interrupt, which has the lowest priority level, is set
whenever an interrupt signals the end of some job’s sus-
pension. Thus, when all other interrupts have been pro-
cessed, the scheduler regains control and can reinitiate this
job.

Programming of learning experiments, teaching routines,
etc., can be accomplished only by machine language at
present. A large part of the coding would, of couse, be

in the form of subroutine calling sequences which reference

the control programs. This type of programming may be
more difficult and time consuming, but it also offers a
maximum in flexibility.

One major goal of the Computer-Assisted Instruction Pro-
ject is the implementation of a language which educators
can easily use for programming subject matter on the com-
puter. Although the final goal in this area is a compiler

which accepts lessons written in some behaviorally oriented

language and translates them into the proper codes, several

steps are involved. The first, and probably the most impor-

tant, is the definition of terms which denote particular in-
structional subsequences, etc. From this foundation, one
can proceed until a final compiler is defined and operating.

INDIVIDUALIZED INSTRUCTION

A project which is planned to eventually merge with the
Computer-Assisted Laboratory is now being carried out
in a suburban Pittsburgh elementary school. In this
school, students are allowed to progress at their own rate
through curricula in mathematics, reading, and science,
as they might in a computer-assisted classroom. Each
unit of instruction is composed of skills which must be
mastered with appropriate instructional materials and
progress and quality control tests provided for each skill
to be learned. There is a considerable library of instruc-
tional sequences and relevant information provided by
the materials for a particular skill, and the teacher must
prescribe those materials which she feels are most appro-
priate, It is clear that a curriculum of this type lends
itself well to computer instruction, the major difficulty
being simulation of the teacher’s decision process.

LEARNING EXPERIMENTS

The development of a library of programs relevant to the
running of learning experiments is less structured. There
are certain basic paradigms which provide a basis for such
a library, but the need is for more flexibility, in addition
to implementing the old routines.

There are two major objectives in the learning experiment
area: experimental design and real-time data analysis.

In the design and control of learning experiments, pro-
grams would assign subjects to groups on the basis of cer-
tain control variables; they would monitor information
such as “anxiety level,” for example, and modify it if
necessary; and they would equate the subject’s perform-
ance on a certain task prior to the application of the ex-
perimental treatment by the assignment of appropriate
training or by statistical adjustment. These programs
would perform those tasks usually requiring lengthly sub-
ject selection prior to the experiment or the conduct of
preliminary base-line pilot studies.

Closely related to theése programs are programs for real-
time data analysis which provide data for the control and
design section, This would permit use of complex crite-
rion measures in equating the performance of subjects,
to mention only one example. This type of data analysis
would be especially helpful in a pilot study, since one
could start out with a large number of variables and as
the analysis indicated, discard those obviously relevant
or obviously irrelevant, and concentrate on the more
marginal variables.

Eventually, the system might assist in the selection of the
variables of interest and the assignment of the experi-
mental treatments. The system would also analyze the
data, and terminate the experiment when sufficient pre-
cision was attained,

I A device for magnetic storage of video information is i
i planned for the near future which will permit storage of @

Figure 1 The random access audio-unit built by Westinghouse
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Figure 2 The basic student station with keyboard, scope Figure 4 The graphical input surface.

Il speaker, earphones, and microphone, |

|! - Figure 3 T%xe touc.h sensitive display with random access Figure 5 A small developmental model of the
| slide projector. manipulation board. |
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DISPLAYS FOR STUDYING SIGNAL DETECTION AND
PATTERN RECOGNITION

T. Booth, R. Glorioso, R. Levy, J. Walter, and
H. Kaufman
University of Connecticut
Storrs, Connecticut

ABSTRACT

The use of a unique computer-controlled (PDP-5) CRT display system with light pen
facility in the study of a wide range of signal detection and pattern recognition pro-

blems is described.

The displays used to study the capabilities of the human operator to detect signals
embedded in noise are described and illustrated. In addition to illustrating displays
to study the effects of various signal and display parameters, pre-processing and real-
time, operator-directed (via light pen) processing are also shown,

The use of this system for tachistoscopic stimulus presentations to study basic human
information processing capacities is also described.

| 5 Introduction

The Electrical Engineering and Psychology Departments

at the University of Connecticut are engaged in an interdis-
ciplinary research project to study how man processes
visual information. A series of experiments are currently
underway which involve presenting the human operator,
in real time, various classes of visual displays and measuring
his ability to process the information contained in them.
This information may or may not be contaminated with
background noise.

Because of the large amount of information which must
be handled during each experiment, it is impossible to
employ classical psychophysical display and measurement
techniques to present these displays and collect data about
the operator’s reactions. This problem has been overcome
by using a PDP-5, a high speed CRT display, and several
special purpose 1/O devices as a central data processing
and control system. This paper will describe the various
types of experiments which are currently being conducted
and illustrate the advantages gained by using this auto-
mated display and data gathering system.

II. Basic Research Problem

The basic problem under investigation concerns man’s
ability to use and process various types of visual informa-
tion. At present two specific types of problems are being
investigated.

The first area concerns the ability of an operator to de-
tect and/or recognize a pattern in a noise background. In
this area a series of experiments are being conducted in
an attempt to develop a model which describes the opera-
tor’s detection and dynamic information processing cap-
abilities. Figure 1 illustrates a typical display an operator

might see during a given experiment. His task would be to
decide which column in the display has the largest number
of intensified points. Once he makes this decision, he is
asked to identify the line by use of a light pen.

The second area of interest involves measuring the amount
of information that an operator can extract and utilize
from a noise-free display. In a typical experiment, the op-
erator would be shown a series of patterns selected from a
given class of patterns. After seeing each pattern he iden-
tifies the pattern that he thinks he saw by pushing the ap-
propriate button on the operating console in front of him.
Figure 2 shows one typical pattern that might be present-
ed to the operator. By varying the number of component
dimensions of the pattern, it is possible to obtain an idea
of how much information the operator extracts when
making his decision.

Traditionally, research of this type has been cond ucted by
using a tachistoscope which is a small display device for
presenting visual stimuli under controlled conditions of
visual field, illumination, and exposure. An experimenter
must be present during the whole experimental session to
control the operation of the tachistoscope and to record
the subject’s responses. In addition, all of the displays
must be fixed a priori, since it is impossible to present dy-
namic displays to the operator. Such an experimental pro-
cess suffers from several very severe limitations. Most
notably, when dealing with problems of the type described
above, it is not uncommon to require over one thousand
different displays in order to gather statistically significant
data,

The first major problem involves the mechanical process of
generating, storing, and presenting a large number of dis-
plays when a tachistoscope is used. If a thousand different
displays are used, the experimenter must generate each




display and record it on a card. During an experimental
session he must load each card into the projector and con-
trol the presentation of the card, which takes approximate-
ly 20 seconds. Therefore, a minimum of 6 hours would

be required to run an experiment involving a thousand
displays. For much of this time, the subject is waiting for
the next display to appear; consequently, he quickly loses
interest in performing his assigned task.

The physical task of generating a large number of display
cards is also a major problem. It is possible to use a digital
computer to generate the data required to specify each of
the patterns needed for a given experiment. However, it
is still necessary to transfer these computer generated data
onto the display cards used by the tachistoscope. This is
a tedious and time consuming task.

Even when the mechanical problems associated with pre-
paring the experiment have been solved, the problem of
collecting and processing the experimental data must be
considered. In the types of problems under investigation,
it is necessary to record parameters such as the subject’s
identifying response, the time he took to respond, the
position of the pattern or patterns he responded to, and
the statistical properties of the display itself. To collect
this information using standard techniques can become a
monumental, if not impessible, task. In some experiments,
the experimenter must also have access to the display in

order to make measurements on the display itself to deter- sure. Once the program has been developed. the actual | LLehE
mine which pattern the subject indicated. When this running of the subject is handled almost entirely by the .| Pg
occurs, it not only disturbs the subject, but also increases i

the amount of time needed to perform a given series of
trials,

Because of the above difficulties, many interesting pro-

a.  Light pen - The light pen is automatically tracked and
controlled by logic built into the display system.
Whenever needed, the position of the light pen can be
read by the main program.

b.  Noise generator - A wide-band Gaussian noise generator
is available which can be sampled by the A/D conver-
ter under program control to produce a Gaussian dis-
tributed statistically independent variable.

c.  Clock - An external program controllable clock can be
used to measure total elapsed time and/or incremental
changes in time.

d.  Push button matrix - A 2 x 4 array of pushbuttons is
available for the subject to indicate his responses to a
given set of experimental conditions or to initiate a
change in the display under light pen control.

To perform a particular experiment, all that an experimenter
must do is write a program which will present the proper
sequence of displays to a subject and measure the appro-
priate responses. During a given session the collected data
may be stored in the computer until the end of the experi-
ment. At that time the data is processed and the results

are typed out on the teletype. The flexibility of this system
is mainly limited by the skill of the experimenter in design-
ing his program and identifying the data he wishes to mea-

computer. Thus, once the experimenter has started the
program, he is free to carry out other work while he waits
for the end of the session.

In order to illustrate how this system is used, several of the

- Figure 1
Signal Detection Display

Figure 2
Information Transmission Display

blems concerning the way in which a human processes experimental programs which have been run by this system b
visual information have been difficult to investigate. In will be described in the following sections. No attempt will High Speed
fact, without the use of the on-line system described in be made to explain the reason for the experiments since Display
the next section, it would have been impossible to carry this information is available in the papers cited in the re- ASR-33 PDP-5
out some of the experiments which will be described in ferences. The main emphasis will be upon showing how
sections IV, V, and VI. the experiment was programmed and illustrating the savings

in time which were possible.
[1I. Computer Control System Used to Supervise ' Raporimntar

Experiments IV. Signal Detection Experiments Copmande | Push Button
. . F . . ) R Array

To overcome the experimental problems described in the These experiments have been concerned with the ability of
last section, the computer controlled system illustrated an operator to detect a target signal which is embedded in
in Figure 3 was developed. The heart of this system is a a noise background. Figure 4 illustrates a typical display
PDP-5 computer coupled with a special-purpose high- shown to a subject in a given class of experiments, Under
speed CRT display. This display system, which is described normal operating conditions the target path will not be as A/D Converter Noise
in detail elsewhere, can present flicker-free 72 x 85 dot strong as shown in this Figure. Clock Generator
patterns of the type shown in Figure 1 and Figure 2. ‘
These patterns, which are under direct program control Two basic modes of operation have been considered. The
at all times, can easily be modified to satisfy any desired first is the so-called ““alerted operator mode™ where the |
experimental conditions. subject is told the location of a possible target and his task

is to detect targets at that location. The second is the “un-
For a given experiment, an experimenter can use any or alerted operator mode™ where the target location is not Figure 3
all of the following I/O devices in conjunction with the known and the operator’s task is to locate a target, if pre- . ; ’ Block Diagram of Display System

CRT display system. sent. Although these programs are similar, each has its |
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own special requirements. They are alike, however, in the
manner in which displays are generated.

To generate displays of the type shown in Figure 4, the
system samples the external noise generator through the
A/D converter. If the sampled value exceeds a predefined
threshold value T, a one is stored in the display, corres-
ponding to a dot in the display matrix at the appropriate
location; otherwise, a zero, corresponding to no dot, is
stored in the display matrix. The number of intensified
points appearing in any part of the display matrix can be
controlled by varying the value of Tg. To see how this is
accomplished, it is necessary to consider the properties of
the random number produced by the A/D conversion pro-
cess.

Since the A/D converter operates from 0 volts to -10 volts,

the mean of the noise generator is set at -5 volts and the
standard deviation is set at 2 volts. The output of the
noise generator is Gaussian distributed and its spectral
density is flat from d.c. to 100 keps. Under this condi-
tion the probability that the noise voltage will exceed the
dynamic range of the A/D converter is .012. In order to
insure that the noise voltage remains constant during the
conversion time, a track and hold circuit is used between
the noise generator and the A/D converter.

If a point is to be generated with a probability of intensi-
fication of 0.5, a threshold value of Tg = 40008 which
corresponds to -5 volts is used. If a point intensification
probability greater than 0.5 is needed, a constant Cq is
added to 4000g, or subtracted for a probability less than
0.5. For each trial during a given experimental session. a
display is generated point by point and stored in core lo-
cations 6000g to 7247g. A target path is produced by
changing the point intensification probability for the
points in the desired target path by adding the appropri-
ate constant to the clipping level. Generation of the
6000 point display takes 1.8 sec.

The alerted operator experiments are usually conducted
with straight line targets where the location of the target
is indicated by an arrow as shown in Figure 4. The oper-
ator indicates the presence or absence of a signal by means
of the push button matrix. After the operator’s response,
feedback may be presented as shown in Figure 5. An H
corresponds to hit or correct response and an M corre-
sponds to miss or incorrect response. A typical alerted
operator experiment runs for 15 to 20 minutes during
which 150 displays are viewed by the subject. The trial
by trial data, as well as a compilation of the data after

the run is complete, are usually printed and/or punched
by the ASR-33. Previous alerted operator experiments
using non-automatic techniques ran one hour and only

20 to 40 displays were viewed.

The display for an unalerted operator experiment is gen-
erated in essentially the same manner as was used for the
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alerted operator experiments except that the position of

the target path is not indicated. Because of this, it is nec- ‘
essary to use the light pen as well as the push button matrix

to communicate with the computer. A typical experiment,
which gives the operator control over computer processing
options will be illustrated.

The subject is presented a display such as the one shown in
Figure 6 and he is asked to indicate which column in the
display is the target column. The dot cluster at the bottom
of the display is the light pen tracking square which the
operator can use to carry out one of the following program-
display options:

1. Any column can be eliminated by placing the light
pen tracking square under it and pushing the appro-
priate button,

(%]

Any column can be checked against two preset thresh-
olds by using the light pen and pushbuttons: If the
column strength is below the first threshold, the column
is eliminated; if it is between the first threshold and the
second threshold, it is left unchanged; and if it is above
the second threshold, a marker is placed under the
column.

3. Any two columns can be compared by placing the
tracking square under one column and pressing the
appropriate button and then placing the square under
the other column and pressing the button again. The .
weaker column is then eliminated.

Figure 7 through 9 indicate the results of applying these
program-display options to the display illustrated in Figure
6. Figure 7 shows the same display after the column above
the tracking square has been eliminated. The columns with
marker lines under them in Figure 8 have been checked and
are above the second threshold. Figure 9 illustrates the
effect of comparing the column above the square and the
strong column on the left of the display.

The unalerted operator detection task can be generalized by
asking the subject to detect targets with curved paths. A
curved path is shown without background noise in Figure
10, and with background noise in Figure 11. In this type
of an experiment, the subject indicates the path of a pos-
sible target by tracing it with the light pen. If the operator
goes off the path or indicates an incorrect path, all points
in the correct target path flash on and off and a line appears
at the bottom of the display. If the operator indicates the
correct path, all points in the target path flash after the
tracking square is below the last row of the display.

Most unalerted operator experiments require trial by trial

printing and/or punching as well as run compilation print-

outs. Usually 50 trials are run in one hour in these experi-

ments. This kind of experiment is almost impossible to

perform without a computer-display system. .

Figure 4
Alerted Operator Display

Figure 6
Unalerted Operator Display with
Light Pen Tracking

Figure 8
Column Check
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Figure 5
Alerted Operator Display With Feedback

Figure 7
Column Elimination
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Experiments which use these displays are described in re-
ferences 2, 3, and 4,

V. Dynamic Displays

The detection problems discussed in section V concerned
the ability of a subject to detect a target path in two di-
mensions. Such displays are common in radar and sonar
systems. However, in systems of this type it is usually
necessary to process three dimensional information con-
sisting of two spatial dimensions, say X and Y, and time.
This section will discuss a display capable of presenting
information of this type to an operator. These displays
are being used to investigate the ability of a subject to
detect targets in a dynamic display situation.

The dynamic display presentation scheme uses a two di-
mensional display and time to present the three dimen-
sions in such a way as to take advantage of the human
eye-brain system’s spatial and temporal integration cap-
abilities.

Figure 12 is a representation of the three dimensions. At
any given point in time, current X and Y information is
assumed to be available from a device such as a sonar or
radar receiver. This information can readily be shown on
the two dimensional display tube; in this case, a signal
from a target would not appear as a column, as it does in
a two dimensional display, but as a cluster of cells in the
matrix. Asin the digitized displays shown in section IV,
the difference between the target area and the background
is that the former is generated by sampling from a distri-
bution with a higher mean than that which produces the
latter. Thus, the matrix containing a target will have a
clustered subset of its cells within which the probability
of a dot appearing is greater than in the rest of the matrix.

This eurrent information could be put on the 2-dimension-
al display at time T=t and remain unchanged for one time
interval (i.e., until T =t + 1) at which time it could be re-
placed with the new information.

However, at time T = tg, all the information from some
previous time, tA, up to the present can be stored in the
computer memory. The number of time intervals between
tA and tp, of course, depends on the number of points
along the X and Y dimensions and the size of the memory.
Having this information available makes the following
possible: in the interval between tg and tp+At, all the
successive X, Y displays from tA to tg can be shown in
rapid sequence, rather than having a static display of the
information from tg alone. Similarly, in the interval
(tp+At) to (tg+2At), the information from (tA+At) to
(tg+At) is shown sequentially, etc. The last frame in each
sequence is shown a little longer than the others while the
frames are shifted up in the memeory in preparation for
the next sequence and the information from the present
time is brought in. The effect is that of a moving window
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scanning the T dimension for some distance, jumping back
to near its initial position, and moving on again, etc.

The human observer looking at this dynamic X, Y display
sees a matrix of randomly flickering dots, but in the target
cluster there are more dots; hence, they appear to flicker
less frequently. In addition, the movement of the target
cluster through the matrix, which would be hard to see in
sequential static displays is made to stand out as smoother
movement, as in movie film.

A program has been written for the PDP-5 which presents
displays in this manner. Input parameters are: for the dis-
play: (tB-tA), At, frame rate; for the signal: matrix size,
target cluster configuration, path, P (dot/noise), P (dot/
Target).

This program requires about 350 core locations, leaving
about 3000 for storage of display information. Thus, 250
12 x 12 matrices can be stored or 27 36 x 36 or only 5 of
the maximum size 72 x 85, Because of these memory
limitations, an expanded core or magnetic tape unit would
make the program more versatile.

In operation, the sequence of events is as follows: First,
the program generates as many frames (X, Y displays) as
will be shown in one sequence and stores them. Next it
transfers the first frame to the display area of core, hence
onto the screen. Then it enters a wait loop whose length

is determined by reading the switch register. After the wait
loop, it transfers the next frame onto the display, ete. Thus,
the frame rate is determined by the length of the wait loop
and the amount of time required to transfer one frame;
hence, the maximum frame rate decreases as the size of the
frame increases.

After displaying all the frames in a sequence, all the frames
in core are shifted up, as many frames as specified, and the
new frames for the end of the next sequence are generated
and stored. The program then jumps back and shows this
new sequence.

A movie has been made with some examples of 12 x 12 and
36 x 36 frames shown in this manner. Figure 13 is extracted
from this movie to illustrate a dynamic display when a very
strong target is present, and Figure 14 shows a typical path
which the cluster may follow in time.

VI. Pattern Recognition and Information Transmission
Experiments

The use of the display system described in section I1I for
studies of human pattern recognition and information
transmission capabilities and characteristics has lead to
great experimental flexibility and ease of data collection.
Two research programs are currently underway in this
area.

Figure 10
Curved Target Without Noise

Figure 11 i
Curved Target With Noise

Figure 12
Representation of Three Dimensional Display
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The first program is concerned with a problem related to
pattern recognition, namely how do stimulus dimensions,
such as size, hue, linear extent, and brightness, influence
a subject’s ability to identify a particular pattern from a
set of possible patterns. Although, the operator can
judge as alike or different 1000 or more stimulus values
sampled from along one of these dimensions, he can only
identify the equivalent of approximately 7 values. One
only need witness the speed and accuracy with which the
operator identifies the letters of the alphabet and other
complex patterns to see that the number of dimensions
which make up a pattern are an integral part of the oper-
ator efficiency at pattern recognition.

A requirement for studying how dimensions combine is
ease of manipulation and generation of dimensions rele-
vant to the particular research problems. In previous
research on dimensionality [5], the dimensions of hori-
zontal and vertical linear extent were used. Information
transmission was compared for stimulus values along the
single dimensions alone and for stimulus sets formed by
combining values along both dimensions. Stimuli, which
were prepared with black tape (approximately 2" x 3/32")
on 8-1/2” x 117 white poster board cards were presented
with a Gerbrands tachistoscope. Because of manual pre-
sentation and interchanging of stimulus cards about 45
minutes were required to run 125 trials. From the sub-
jects viewpoint, relatively little time is spent in his assign-
ed task of identifying stimuli compared to the large amount
of time idled away while the experimenter carries out his
duties.

The CRT offers a means of displaying stimuli varying
along these same dimensions of horizontal and vertical
linear extent. The dots used to generate the patterns
with other signal detection studies can be transformed so
as to give the appearance of a solid line. When a single
column and/or row is filled with intensified points, the
gain on the X and Y axis controls turned all the way down
(which gives a density of approximately 15 dots/em.) and
the focus and astigmatism adjusted appropriately, stable
solid lines can be presented. The length of line is mani-
pulated by the number of points displayed. In the pre-
sent experiments, lines consisting of 33, 65, 67 and 69
dots are used. A.third variable dimension, intensity, was
obtained by putting 4 preset intensity levels under 1/O
transfer control. The levels of intensity are preset in the
sense that the experimenter sets each level to any desired
value within the dynamic range of the CRT. These levels
are then available under program control.

Stimulus patterns are presented for short exposures (ap-
proximately .19 sec.) which leads to inherent problems.
With short exposures, display duration must be calibrated
according to full sweeps so that the display dies out uni-
formly. The exposure of .19 sec. corresponds to 7 full
sweeps. Besides the flicker-free characteristics of the dis-
play system, the high frame rate allows relatively sensitive
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control and manipulation of the exposure times. Although
a medium persistence phosphor is in use, it is essential to
eliminate any persistence, since it leads to uninvited cues
for stimulus identification during the task. An obvious
solution to this problem is to have a high level of ambient
light. A requirement for the ambient light, however, is
that no reflections be cast off the front of the CRT. A
reasonable level of ambient light is also desirable since it

is perceptually unsound to have the subjects visual field
switch, continuously, from light to dark as displays go off
and on, Furthermore, control of the area of the subject’s
visual field would be advantageous since it would also pre-
vent the use of extraneous cues in carrying out the assigned
task. The requirements just outlined have been met by a
19" wide x 15™ high x 22" long adapter that is easily hung
over the face of the CRT.

A photograph of a subject’s eye view of the face of the
CRT through the adapter is shown in Figure 15. Non-
reflecting lighting of the face of the CRT is achieved by a
string of 7 watt lights placed around the front frame of the
adapter. It would not be at all unreasonable to say that the
CRT has been transformed to a super tachistoscope with
all the advantages of on-line computer control.

The actual preparation of stimuli is under program control.
On a trial by trial basis the appropriate horizontal, vertical,
and intensity components of stimulus are either set up in
the display area of core storage for horizontal and vertical
dimensions or the I/O transfer pulse sent out. The opera-
tor pushes a button which exposes the stimulus and then
pushes an appropriate button recording his response. Sti-
mulus and response data are pre-processed and stored over
a series of approximately 120 trials. These same 120

trials, including printout time, take approximately 10
minutes to run compared to the 45 minutes required to
run 125 trials using the Gerbrands tachistoscope. Further-
more, changing stimulus conditions is extremely easy

since the only input to the control program besides number
of trials (the sequences of randomizations are prepared
independently on each run by using sampling techniques
with the noise generator) is a specification for each of the
stimuli and the value along each of the component dimen-
sions,

A second program is investigating the amount of informa-
tion that a subject can retain and recreate after he has
viewed various classes of displays. In 1956, George Miller
[6] described means of remembering information in which
the human takes a number of symbols to be remembered,
groups them, and remembers the names of the groups. He
then decodes the groups to the individual components
when asked to recall them. Miller referred to this as
“chunking.” All of us use this procedure when we remem-
ber a 12-bit binary number by storing its octal equivalent.
Miller’s implication was that human memory capacity can
be multiplied tremendously by taking larger and larger
groups or chunks. However, all the examples he cited

involved sequential presentation of the symbols and the
time required to do the coding fits in between symbol
presentations. Simultaneous presentation, however, is a
different story. In this instance, Hyman and Kaufman

[ 7] have shown that memory capacity is defined in terms
of amount of information stored, not number of units,
as Miller implied. Also, it has been shown that humans
tend to adjust input and output rates so that the bit/sec.
rate of throughput is relatively constant. An experimen-
tal program is currently underway which combines this
type of research with simultaneous presentation by vary-
ing the information loading of the symbols used, the
length of time they are presented, and whether or not
chunking is used.

The display used is a matrix of 64 symbols randomly
chosen from 4 different ones, as illustrated in Figure 16,
It contains 8 rows of 8 symbols each, each symbol being
13 dots arranged in the cells of a small 5 x 5 matrix. These
have been shown to be readily discriminable. The pattern
of dots in each row of each different symbol is stored in

a number of locations in the core, these locations differing
only in the rotation or position in the register that the
bits occupy. This is done because each column in the 8

x 8 matrix corresponds to a different part of the word
being displayed. That is, the first column corresponds to
the left end of the first word in the row, the second col-
umn corresponds to the right end of the same word plus
the left end of the second, etc. In generating the matrix,
the program samples the noise generator twice to get a
random number between 0g and 38 corresponding to one
of the symbols. From this number and the position in
the row into which the symbol will be put, the program
generates the address of the location where the particu-
lar symbol is stored in the correct rotation. Having thus
generated the 8 addresses required for the first row, it
then transfers the symbols to the display area of the core,
repeating this 8 times to get the full matrix.

When the operator is presented with this display, he tries
to recall as many of the symbols as possible and pushes
appropriate buttons in the response push button matrix.
Each button generates a code between 0g and 38, so the
program keeps track of whether each response is right
or wrong and when the operator pushes a fifth button to
indicate he can respond no more, the program punches
out the number of responses he made, the number that
were correct, the number correct after correcting for
guessing and the time required to make the responses.
The codes for the responses and 64 symbols on that trial
are also available, This program takes about 600 core
locations and generates these display matrices as fast as
the operator can push a button to request a new one.

The use of this system for this type of experiment has

tremendous advantages over the use of a manual tachis-
toscope as was done in refs. 5 and 7. Once the program
has been written, the actual symbols used can be deter-

mined or changed in a matter of minutes rather than the
hours required to prepare cards with appropriate symbols:
as required by the tachistoscope. Alse, the running of the
subject is automated with a hard copy of the data available
at the session’s end. This frees the experimenter to do
other work during the session, as opposed to continuously
manipulating cards for the tachistoscope and writing down
responses, as well as eliminating the need for later punching
of data onto cards.
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Figure 16
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MESSAGE SWITCHING SYSTEM USING THE PDP-5

Sypko W. Andreae
Lawrence Radiation Laboratory
Berkeley, California

ABSTRACT

At the Center for Research of Management Science at the University of California,
Berkeley, recently a message switching system was constructed for research of

human behavior in game situations.

The system uses a PDP-5, a 630 System with ten Teletypes, a DEC tape unit, and
an IBM compatible tape unit. The basic laboratory layout entails many soundproof
rooms in each of which the subject can use one of the Teletypes. The controlling
program is essentially a simply time-sharing system of which the organization is out-
lined in this paper. Among the many advantages of the existing system over the
previous manual method are improved traffic intensity, better record keeping, net-
work control by the experimenters, etc. Two examples of games used in these ex-

periments are given.

In the Department of Business Administration on the
campus of the University of California, Berkeley, Califor-
nia, a laboratory was constructed recently named “Center
for Research of Management Science,” (CRMS). Most of
the research in this laboratory is aimed at the behavior of
people in business situations. In the experiments being
conducted, questions are asked such as: On what does a
businessman base his decisions? Does he listen to qualified
advice, and if he doesn’t, why not? What causes one per-
son in a team of businessmen to be dominating?

To shed some light on how experimenters go about setting
up their experiments, I will give the following hypotheti-
cal example: A team of five people run a fictional com-
pany in a simulated market situation. The five function-
aries are a Chief Executive, a Purchasing Manager, a Comp-
troller, a Sales Manager and a Production Manager. Be-
forehand, the subjects (in general students), are supplied
with information about the status of the company they
are going to run. In general, the company sells three pro-
ducts and they start from a situation which is illustrated
in financial statements. One game may take a whole
afternoon, and consists of half-hour periods. During

each period all team members communicate with each
other via communication channels. The communication
network may or may not be under certain constraints.
There are several reasons for these constraints. For in-
stance, it would be very difficult to find causes for cer-
tain kinds of behavior when communication was com-
pletely free. In a real situation, the businessman bases
his decision on many facts coming from many sources,
not only his letters, the telephone, but also the radio, TV,
the newspaper, cocktail parties, etc.

In the experiments, the subjects are not able to see or
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hear each other; they can only communicate via the writ-
ten word. First, this took the form of written notes which
were picked up and delivered by research assistants, who

kept a kind of running mail service between all the subjects.

Now this is being done with Teletypes connected to a PDP-
5.

The experimenters are certainly aware of the fact that the
constraints being put on the communications medium
creates a situration which does not compare with the
reality of business life. However, when one’s aim is to
search for certain well-defined and specific phenomena,
these constraints do not necessarily invalidate the results
of the research.

The properties of the market in which the company is be-
ing run are well known, and therefore an optimal solution
for the operation of the company exists. The subjects, in
general, do not know this solution. Every half-hour the
team has to make a decision about purchasing, production,
etc. The decisions are then fed into a computer program
which prepares financial statements as a result of the deci-
sions of the team and the properties of the market. Dur-
ing the next period the subjects can see the results of their
previous action.

The standard model of this experiment is very often modi-
fied to study certain specific effects. For instance, some-
times a stooge is inserted. Unknown to the others, one of
the team members is informed about the key to the opti-
mal operation of the company. Once the game is started
he is not to inform the team members of his specific
knowledge, but nevertheless he is to convince the team
members how to make certain decisions. It is interesting
to see that in most cases the team members do not accept
his advice, however well-founded it may be.




During the summer an experiment was performed in which
an operations research group was included in the team. The
five executives were student subjects; the operations re-
search group (which was in touch with all team members
via Teletype), consisted of three highly skilled profession-
als in the business trade. Still, it was obvious that most

of their advice was not being accepted, and in many cases
their suggested decisions were vetoed by the Chief Execu-
tive who happened to have different “feelings™ about the
matter. Idon't intend here to elaborate on the research
itself. These remarks were merely an introduction to the
atmosphere of this project.

The use of the Teletypes over the use of little slips of paper
was an obvious improvement. Of couse the costs of a small
computer and an interface for Teletypes, the Teletypes
themselves, the cabling in the building, etc., is considerable
and therefore it is obvious there must be very good reasons
to offset these expenses. Without going into detail, I could
mention a few of those reasons.

The time sequence of the messages needs to be recorded.
There is also a need to process communication patterns as
they emerge from the experiment. Also, several efforts
have been made at CRMS to use informal language. This
is a language of which all the rules are known and in gen-
eral, this takes the form of a predetermined set of sen-
tence elements which a subject is to use only according

to a predetermined syntax. Messages furthermore need

to be stored and later recorded together with all pertinent
experimental data.

Previously, much of the preparation for analysis of the
experimental data was done by scores of secretaries who
transcribed all the communications, counted communica-
tions phenomena, and tried to find the proper time se-
quence.

Figure 1 shows the configuration of the equipment now
being used, and the remainder of this paper will develop
several reasons for the acquisition of this particular con-
figuration. Instead of a small computer like the PDP-5,
one could probably use a simple electronic switching net-
work when communication is the only function to be
performed. A stored program processor as a part of the
system obviously can perform many more desired tasks,
and will make the whole system more versatile. Unlike
the normal telephone system (one-to-one communication),
this system was required to have fanned-out communica-
tion; that is, any one Teletype should be able to communi-
cate to one or more others. Once this is allowed for, one
has to deal with the difficulty of unavailability of the re-
ceiving stations. The computer can take care of this by
storing the message temporarily and transmitting the mes-
sage as soon as the unavailable stations are available.

Storage on IBM compatible magnetic tape is especially
convenient in view of future off-line processing on a larger
machine.
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Figure 2 shows a memory map and in the following 1 will
elaborate on the construction of the software that controls
the message switching system.

The memory is roughly divided in two parts of which one-
third contains the different control programs and roughly
two-thirds is reserved for temporary storage of messages of
all of the stations. Each station has its own message area
which can contain about 450 characters. The control pro-
grams take care of a time-shared processing of characters
received from the Teletype stations. The characters receiv-
ed from the Teletype stations can be the result of a keyboard
action at the station or from the transmission of one char-
acter from the computer to the station since all Teletypes
are connected to the PDP-5 in a half-duplex fashion. The
interface for the ten Teletype stations is made by DEC and
is called 630 Data Communication System.

In the use of a half-duplex system. one must remember in
the program whether a station is being transmitted to or is
being received from. This problem is solved by the use of
status words. Each station has a status word from which
the program learns what to do with a received character.
But this is not the only function of the status word. It also
serves as a memory for the particular phase of the proce-
dure in which the station happens to be. I will elaborate
on this procedure later,

The total program can be divided in two main parts:
SWITCHYARD and all consequential routines, and DIS-
TRIBUTOR. On the upper part of the memory map is
SWITCHYARD, which is responsible for processing in-
coming characters according to the information in the
status word and also for transfer of control to the proper
part of the remaining software system. DISTRIBUTOR
tries to initiate the transmission of stored messages to these
Teletypes, in case no characters are coming into the PDP-5.

FILTER is a routine which executes certain prepared con-
straints on the communication patterns between stations,

A software clock updates the time every second. On the
same page is an interrupt service routine for other devices.
The routine specifically responsible for the transmission of
messages is TX#SUB, the transmitting subroutine. The
routine responsible for the construction of a message as it
is received from a station is RX#SUB, the receiving sub-
routine. There is a program which consists of the controls
for the D-2020 tape unit. It includes all the timing and
length control of records that can be both read and written
and it can generate end-of-files. The remainder of the mem-
ory is used for the ten station message areas.

Before the experiments start, however, the experimenter
has an opportunity to set them up as he likes. He there-
fore enters a conversation with the PDP-5: the PDP-5 asks
for certain information from the experimenter, which,
after his response, is stored in the memory. For instance,
the program will ask the experimenter to specify with
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which stations one particular station is allowed to com-
municate, whether a station can only communicate to
one station at a time, whether each station should be
sent back a copy of his own message, and whether certain
monitoring stations should be added to the requested
destination as provided by the station of origin, The
PDP-5 will ask the experimenter to type in the time at
which the clock should start and then finally to start the
clock (see Figure 3).

All the programs necessary to control this conversation
and to store information from the experimenter are
loaded in the part that is used later by the stations as
message areas.

Once the clock starts, all conversational routines are de-
stroyed and the message switching program is in control,
All subjects at the stations start their communications
according to a certain procedure,

The next figure shows what the subject sees on his Tele-
type as a consequence of conversation with the message
switching program. After hitting carriage return on the
Teletype, the computer answers, “TO WHOM™? The
subject types in the station numbers that he requests as
destinations for his message, delimiting the string of
station numbers with a vertical arrow (used throughout
this system as a MESSAGE DELIMITER). The program
ignores anything other than numerals during this part of
the procedure. As soon as the program detects the de-
limiter, it invites the subject to start his message by the
response “GO AHEAD.” He can now enter his message
in standard English and completes it by typing the de-
limiter. The program then adds certain information to
the message now residing in the core memory (from what
station, to what stations the message is going, and the
time), after which the program proceeds to write a record
on magnetic tape containing this message.

Figure 5, a simplified flow-diagram of the program, shows
these actions. After initiation, the system continuously
checks the flag of the 630 system. As soon as a char-
acter arrives, the status is checked, and when the char-
acter is recognized as a carriage return and the status
word for this station equals 0, the message “TO WHOM"?
is transmitted to that station.

Note that SWITCHYARD only initiates the message.
Transmission subroutine TX#SUB takes care of the frans-
mission of the message until it finds the delimiter. The
status word is then modified to indicate completion of
this part of the procedure.

The DESTINATION ROUTINE assembles the incoming
numerical information and stores the result in the RE-
QUESTED DESTINATION WORD (RDW). After the
delimiter is detected, the message GO AHEAD is initiated
and the status word is modified accordingly.
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The next character coming in is processed by RX#SUB,
the receiving subroutine. When RXSUB detects the de-
limiter, control is transferred to the routine called TLABEL.

In the top of the flow diagram next to node D is the DIS-
TRIBUTOR which starts transmission of messages residing
in the station message area if the destinations are available.
Once it is successful in initiating a message to an available
station, a special word called the DESTINATION WORK
WORD is updated. When DWW is updated, the bit corre-
sponding with the station to which the message was being
initiated is subtracted from the DWW. This word (DWW)
contains all destinations for one particular message. Another
function of the DISTRIBUTOR is to send a message
(YOUR LAST MESSAGE IS RECEIVED BY . . .) when all
destinations of a particular message have been reached.

The receiving subroutine, RX#SUB stores the characters,
two characters per PDP-5 word, in the message areas of

the stations. It accounts for the load pointers, pack words,
ete., guards against overflow of the message area, handles
special characters, and corrects the status word at the end
of the message. Most characters are trimmed to a code
which consists of six bits per character. The 6-bit code is
formed by subtracting 2408 (octal) from each Teletype
character. The first character to be processed by the
RX#SUB is placed in the pack word which belongs to that
particular station. In the meantime RX#SUB can handle
characters of many other stations before it returns to the
previous station to handle its next character. The pack
word is retrieved, the next character is placed in the left
half of the pack word, and this word containing the two
characters is stored in the message area. This packing meth-
od is of great importance for economical utilization of the
available memory space.

A character set of 64 characters may not be enough, how-
ever, although the frequency of the use of characters
which do not fall within this group of 64 is very low.
Therefore, RX#SUB as well as TX#SUB have a special
arrangement to process characters not belonging to this
group of 64 (for example: carriage return and line feed).
One complete word is storing these special characters,

The program FILTER is essential for many of the proposed
experiments in this laboratory. FILTER modifies the des-
tinations of each message before the distributor initiates
transmission of the message to one of the destinations.

The following are functions of FILTER.

1. Requested destinations are checked for the presence
of one or more destinations, if the experimenter has
specified that only one destination per transmission
will be legal. If, nevertheless, the station has request-
ed more than one destination, control is transferred
to a routine called ILLEGAL. The ILLEGAL routine
destroys the message built up in the message area and
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*kk TO WHOM?Z **%
7t returns to the violating station a message telling the One of the interesting technical questions that one can ask
*** GO AHEAD *#* ‘ . subject why his message did not come through. Note about the system is if the system is capable of handling all
T that one station may be allowed to transmit to sev- the traffic at its highest possible intensity. Since the equip-
THIS TIME IT SHOULD GET THROUGH!!!'!!i!!! 1 cral other stations but, if so specified by the experi- ment arrived in August, 1965, and the software was com—p
menter, only to one other station per communica- pleted two months later, there has been little opportunity |
tion. to do measurements. The first indications are that during |
FROM 8 TO O 5 7 8 TIME 133618 a normal experiment the PDP-5 idles about 95% of the i f
2. When the experimenter has so specified in the begin- time. Nevertheless, certain queuing effects generate a po-
THIS TIME IT SHOULD GET THROUGH!@!l:!!!! ning, the message from the station of origin is re- tential danger of garbling messages under certain circum-
YOUR LAST MSG RCVD BY 0 5 7 8 turned by the computer to the station of origin. Ista‘ncics. In _thc existing system, every character that comes
in is immediately and fully processed. The length of the |
3. When the subject at the station has requested a group process varies quite a bit according to the status of the sta- I
_ of destinations among which several are illegal, FIL- tion. Certain probability of garbling is due to the constraint
it TER subtracts those destinations from the requested that the character of a particular station has to be processed
il el Y LT YT group of destinations. Thus. the R_EQUI?‘STED DES- wi_thin a limited time after its arrival. Wllen a Teletype trans-
i TINATION WORD (RDW) is modified into the LE- mits characters at full speed, the rate will be one character
INDEED, STN # 8, YOU GOT IT. GAL DESTINATION WORD (LDW). In this case each 100 msec. Somewhere near the end of the character
| THIS IS TO SHOW YOU THAT I DO NOT EVEN NEED ONE MISTAKE TO GET the message will come through when there are still cycle, the Teletype flag is raised, and if the flag is not ack-
i THROUGH TO YOU!lil:: some legal destinations left and the routine ILLEGAL nowledged within a period of about 20 msec, part of the
" will not be used. next character may be superimposed on the previous char-
L m——— | o o - ) acter in the Teletype buffer, with disasterous results.
! Message Switchﬁ@ Program 4. (.cr_tam destinations specified by the;}_{penmlemer ‘ . ‘ |
i beforehand can be added to LDW. This facility is One obvious way to resolve this type problem is the use of
i being used by experimenters who want to have a a buffer area in core (see Figure 8). As soon as a character
' .!i Teletype station available on which all communica- arrives, it is stored in a buffer consisting of 24 bits, of which
L tions can be monitored instantly. 12 bits are used for the character and 12 bits are used for
| the station number, Each buffer element could consist of |
: A real-time clock arrangement labels all messages from the one word since the station number will never use more than |
| 1 stations with a time tag containing hours, minutes, and four bits, and a character will never use more than eight bits,
' . . seconds. This is useful for later analysis, and helpful dur- but for simplicity we choose one pair of 12 bit words as the
| ing the communications in referring to previous messages. smallest buffer-element. The total buffer has a length of
| : The 1-mc computer clock is used as a time reference base. 20 word pairs. As soon as a character arrives, it is stored in
i Six micro decades are used in a 6-Uigit scaler arrangement, a buffer element under control of an input pointer. SWITCH-
it This scaler produces a carry every second. This carry YARD retrieves characters plus station numbers from this
‘ pulse enables two flags; each of the flags connects to the buffer under control of an output pointer. SWITCHYARD
| program interrupt bus and the 1/O skip bus. If one or now checks if the output pointer equals the input poinfer
| = more flags are set, a program interrupt occurs, and the and if not a new character can be processed. Once the
| il = information that one or more seconds have passed is pointers reach the bottom of the buffer, they are transferred
| | * processed. There may be reasons for which the interrupt to the top again, so that in effect the buffer is a cyclic soft-
il - is temporarily turned off. In that case, the hardware is ware device.
Ul 2 able to remember how many seconds the software has
| = missed. To accomplish this, the two flags are arranged in Now other interesting measurements can be made. For in-
9 a scaler configuration. If the program interrupt is turned stance, at predetermined time intervals a record can be
1l \ off, and the flags are therefore not being sensed or reset, made of the position of input and output pointers. The
i the flag scaler is able to count up to 3 seconds. When the maximum distance between the input and output pointer
| interrupt is turned on again, the program interrupt occurs dictates the length the buffer should have. This configura-
! | and the program that services flag-interrupts determines tion also affords a reliable method fo measure average maxi-
J how many seconds the software clock is behind and up- mum and minimum times to process each character after
I dates the software clock accordingly. As shown in Figure its arrival,
bl 6 the clock can be started and stopped under program
i [FILTER —{ILLEGAL | control. As an additional feature it is possible to read a The following is a short description of another type game
I | small part of the 6-decade scaler into the accumulator, f_or which the system program was completed. Apart from
| o functions the computer performs as described above, sev-
The flow diagram of the clock explains how the real-time eral special functions are added. The experimenter may
|l clock is simulated. The essential part of the routine is a have several versions of his game prepared and stored on
i : scale of 60 which transfers its carry to another scale of the library tape. The versions differ in the established com-
Figure 5 System Flow Chart . . 60 which transfers its carry to a scale of 24, munication patterns. In this game there are nine subjects,
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and the experimenter uses one of the Teletypes, station
No. 0.

At the beginning of every trial all subjects are given a
piece of information, for example a character, or a word.
During the trial period all subjects are to put all pieces
together in cooperation with each other. Each subject is
to give a solution for the problem. For example, the ex-
perimenter may give each of the subjects one word and
ask them to form a sentence of the nine words. As soon
as one of the subjects thinks he has the answer he trans-
mits his answer to the experimenter. Every transmission
to the experimenter is being remembered by the computer
program. As soon as all nine subjects make a communi-
cation to station 0 (whether they had the right answer or
not), the trial period automatically ends and the computer
sends a message to that extent to all subjects. Both the
experimenter and the computer program have control
over the completion or starting of all phases of the ex-
periment, the pretrail period, the intertrial period, etc.

All pertinent information is recorded on tape.

Several developments are undertaken for experiments to
be performed in the future. A special effort is aimed at
the implementation of formal language. A formal lan-
guage may be built of a set of predetermined sentence
elements. All the sentence elements are grouped in
columns and each column may have from 10 to 50
sentence elements. Elements of each column can be used
according to the rules set forth by a sentence pattern. A
simple example is the sentence consisting of elements
from the columns 1-6-3-4-5-12-14-11. (See Figure 9 for
formal language.)

The computer can now do several things. [t may store in
its memory all available sentence elements. The subject,
who has a list of all possible sentences in front of him,
can select certain code numbers which result in an as-
sembly of a sentence of his message. The computer can
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check if the subject kept the rules of the sentence pattern
or syntax.

The latest development requires only a reasonable know-
ledge of sentence elements to be used. The subject need
only type in the beginning of each sentence, and as soon

as the computer recognizes the sentence element it fin-

ishes it automatically. When the computer, on the other
hand, finds that the sentence element doesn’t exist, it

may either add the new sentence element in the proper
column in its memory or it may reject the information

from the subject and let the subject know about the re-
jection. When the subject violates the rules of the sen-
tence pattern, the computer may not only reject the next
sentence element, but may make suggestions about what

to do. Another development concerns gathering sentence
elements by the system. In other words, the system starts
out with a completely blank memory about what sen-
tences to use. Research assistants then play the game,
conscientiously adding “experience” to the system. Experi-
ence, of course, can be trimmed after a review of the experi-
menter.

Another development consists of the simulation of people.
No more than five subjects will play a game (one subiect
with four simulated subjects, present as “‘robots” in the
system). Here we hope to use a similar approach of teach-
ing the system how to respond to the message as before, in
formal language. It is obvious that many very difficult pro-
blems lie ahead; one can teach a system how to respond to
certain assemblies of message elements, but it would be de-
sirable to let the system review previous parts of the con-
versation. The question is then how far back, let alone how.
One can imagine a situation in which the subject communi-
cates to the computer program and, in case the computer
program does not know the answer, it asks for help from the
experimenter who uses a separate Teletype. The computer
could store each response made by the experimenter and
relate it to the subject message.
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