decsUsceno

TECO

dliloli tfall

WDewnss D, S:MP“”-‘_ 3

JecsyUscenito TECO
TEXT EDITOR AND CORRECTOR PROGRAM
PROGRAMMER’S REFERENCE MANUAL

This manual reflects the software as of Version 23B of TECO,

Additional copies of this manual may be ordered from: Software Distribution Center,
Digital Equipment Corporation, Maynard, MA 01754 Order Code: DEC-10-UTPRA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, January 1968
Second Printing, October 1968
Third Printing, August 1969
Fourth Printing, April 1970

Fifth Printing (Rev) October 1970
Sixth Printing (Rev) May 1972
Seventh Printing (Rev) April 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

copyright (C) 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975 by
Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN KI10 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECSYSTEM-10 GLC-8 0s/8 RT-11
DECTAPE IDAC PDP TECO
DIBOL IDACS PHA TOPS10

TYPESET-10

TECO

This manual reflects the software as of Version
23B of TECO.

CHAPTER 1
CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2,3
2.4
2.5
2.6
2.7
2.7.1
2.7.2
2.7:3
2.8
2.9

CHAPTER 3
3.1
3.4
3.1.2
3.1.3
3.1.4
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.0
3.2.6
3.2.7
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.5.1

CONTENTS

INTRODUCTION
CONCEPTS

Data Files

Character Set

Special Characters

Control Characters

Carriage Control Functions
Symbols

Data Format

Editing Buffer

Buffer Pointer

General Command String Syntax
Arguments

Alphanumeric Arguments
Numeric Arguments

Commands That Return a Value
Q-Registers

Core Expansion

COMMANDS
Initialization Commands
R TECO Command
MAKE Command

TECO Command

Examples of the Use of Initialization Commands

File Selection Commands

ER Command

EM Command

EW Command

EZ Command

EB Command

Editing Line-Sequence Numbered Files

Examples of the Use of File Section Commands

Input Commands
Y Command
A Command

Examples of the Use of Input Commands

Special Characters as Buffer Position Numeric Arguments

Buffer Pointer Positioning Commands

J Command

TECO

Page

2-1
2-2

2-3
2-4

2-5
2-6
2-7

2-8
2-8
2-9
2-1
2-1
2-12

3-10
3-1
3-1
3-1
3-12
3-12

TECO

3.5.2
3.5.3
3.5.4
3.5.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.7
3.7.1
3.7.2
3.7.3
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.7.1
3.8.7.2
3.8.8
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.10
3.10.1
3.10,2
3.10.3
3.11
3.11.1
3.11.2
3113

CONTENTS (Cont)

C Command
R Command

L Command

Examples of the Use of Buffer Pointer Positioning Commands

Text Type-Qut Commands
T Command

Command

tL Command
nET Command
Case Flagging On Type-out
Examples of the User Text Typeout Commands
Deletion Commands
K Command
D Command
Examples of the Use of Deletion Commands
Insertion Commands
| Command
Tab Command
@ | Command
nl . Command
n\, Command
Examples of the Use of Insertion Commands
Case Control with Insert Commands
Alphabetic Case Control
Special ""Lower Case'' Characters
Inserting Control Characters
Output Commands
PW Command
P Command
EF Command
Examples of the Use of Output Commands
Exit Commands
EX Command
EG Command

@ and @ Commands
Search Commands
S Command
FS Command
N Command

vi

Page
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-16
3-16
3-18
3-18
3-18
3-19
3-19

3-20
3-20
3-20
3-21
3-21
3-22
3-22
3-24
3-25
3-26
3-26
3-26
3-28
3-28
3-29
3-29
3-30
3-30
3-32
3-33
3-33
3-33

3.11.4
Fedlnd
3116
3.11.6.1
311602
Sl 1 #
3.11.8
3.11:8:1
3.11.8.2
3.11.8.3
3.11.8.4
3.1.¢9
3.11.10
3.12
3.12.1
3.12,2
3.13
3.13.1
3.13.2
3.13.8
3.13.4
3.14
3.14.1
3.14.1.1
3.14.1.2
3.14.1.3
3.14,2
3.14.2.1
3.14.2.2
3.14.2.3
3.14.3
3.14.4
3.14.5
3.15
3.16
3.16.1
3.17
3.17.1
3.17.2
3.17.3

CONTENTS (Cont)

FN Command

Backarrow Command

Search Command Modifiers

@Medifier

Colon Medifier

Automatic Typeout After Searches

Case Control in Searches

Alphabetic Case Control in Search Arguments
Special ''Lower Case'' Characters
Control Characters in Search Arguments
Case Match Mode Control in Searches
Special Match Control Characters
Examples of the Use of Search Commands
lteration Commands

Angle Bracket (<...>)

Semicolon Command

Flow Control Commands

Command String Tags

O Command

Conditional Execution Commands
Examples of the Use of Flow Control Commands
Q-Register Commands

Commands for Storing Integers

U Command

- Q Command

% Command

Commands for Storing Character Strings

X Command

G Command

M Command

Saving the Previous Command String
Q-Register Pushdown List

Examples of the Use of Q-Register Commands
Numeric Typeout Command

Special Numeric Values

Examples of the Use of the Special Numeric Arguments
TECO Programming Aids

@Commond

Question Mark (?) Command

The EQ Value

vii

TECO

Page
3-34

3-35
3=35
3-35
3-36
3-36
3-36
3-39
3-39
3-39
3-40
3-41

3-43
3-43
3-43
3-45
3-45
3-46
3-44
3-47
3-49
3-49
3-49
3-49
3-49
3-49
3-49
3-50
3-50
3-50
3-51

3-51

3-54
3-54
3-56

3-57
3-58
3-58

TECO

3.18
3.18.1

CHAPTER 4

4.1
4.2
4.3
4.4

CHAPTER 5

5.1

532 4|
2.1.2
5:1.3
5.1.4
5.2

Gurdid
5,2;2
5.2.3

APPENDIX A
APPENDIX B
APPENDIX C

CONTENTS (Cont)

Command String Type=in Control Commands

Carriage Return, Line Feed, and Spaces
TECHNIQUES

Creation, Execution, and Editing of a FORTRAN Program
Rearranging a File

Splitting and Merging Files

Example of an Advanced TECO Macro

USER ERRORS

Erasing Commands

Rubout Command

Double @ Command
Command

Bell-Space Command

Error Messages

Question Mark Command

Slash Command

EH Command

APPENDICES
TECO ERROR MESSAGES
ASCII CHARACTERS
SUMMARY OF COMMANDS

viii

Page
3-60
3-60

4-1
4-3
4-4
4-7

5-1
5-2

5-3
5-3

5-5

A-1
B-1
C-1

CONTENTS (Cont)

TABLES
Special Characters
Special Symbols
Numeric Operators
EM Commands
Special Buffer Position Arguments
L Commands
T Commands
K Commands
P Commands
Conditional Execution Commands
TECO Error Messages
ASCII Characters

Command Description

TECO

Page

2-4
2-9
3-6
3-12
3-13
3-14
3-18
3-27
3-47

A-1

C=]

To“l'e,] 5K
3](Eecn+ran+
Z.M USEfa_ TECO

Chapter 1
Introduction

This manual is a complete reference manual for the advanced TECO user. It is not designed to be used
as a beginner's text, and people who are learning TECO should not use it as such. Beginners are re=
ferred to the tutorial "'Introduction to TECO"', which appears in the DECsystem-10 SOFTWARE
NOTEBOOKS.

TECO is a powerful text editor for use with all DECsystem=10 systems. TECO enables the advanced
user to easily edit any ASCII text. Most editing can be accomplished using a few simple commands;
or the user can select any of a large set of sophisticated commands, such as character string searching,
command repetition, conditional commands, programmed editing, and text block movement. Refer

to Appendix C for a summary of the commands available.

TECO editing is normally done on-line, using the terminal. However, the user can also write his

editing commands as a TECO command file and have his editing task run by an operator.

TECO is a character-oriented editor; one or more characters in a line can be modified without re-
typing the rest of the line. Any source document can be edited: programs written in FORTRAN,
COBOL, MACRO-10, or any other language, as well as memoranda, specifications, and other types
of arbitrarily=-formatted text. TECO does not require that line numbers or any other extraneous in=
formation be associated with the text. The full ASCII character set, printing and nonprinting

characters alike, can be processed.

TECO requires a minimum of 5K of core memory, 3K of which is shared in a reentrant system. TECO

takes advantage of any additional core available to expand its buffers, as required.

A single terminal is required for typing in commands. Data can be input or output on any standard
/O device.

s April 1975

TECO

Chapter 2
Concepts

2.1 DATA FILES
DECsystem-10 TECO operates on ASCII data files. The input file is the file that the user wishes to

change. The output file is the file that receives the newly created or edited data.

Inputting is defined as the process of reading in data that already exists in some computer-readable
form (paper tape, disk file, etc.). Data can be input from any device except the user's terminal (or
another user's terminal). Inserting is defined as the actual typing in of new data and is done only at

the user's terminal.

In the case of such hard-copy devices as the card reader and the paper-tape reader, only the device
need be specified to open a file for input or output. For disk and DECtape files, filenames, as well
as the device, must be specified. The device DSK: is the normal mode of operation, and is therefore
assumed when no device is specified, Magnetic tape files are specified by naming the tape drive and

by using special TECO commands to position the tape properly.

Any 1/O device name acceptable to the monitor in ASCIlI mode can be used. Some examples are:

DSK: Disk (including drums)

DTAn: DECtape (n is the number of the drive on which the
tape is mounted)

MTAn: Magnetic tape (n is the number of the drive on which
the tape is mounted)

CDR: Card reader
CDP: Card punch

PTR: Paper-tape reader

PTP; Paper-tape punch

LPT: Line printer

TTYn: Terminal number n, usually a terminal having a low=

speed reader or punch

April 1975

TECO
NOTE

TTYn: used as an /O device must be different from the
user's terminal and must not be the terminal of any
attached user,

Filenames for disk and DECtape files consist of two parts: the first part, the filename proper, consists
of from one to six alphanumeric characters; the second part, which is optional, is called the '*filename

extension, "'

If given, the filename extension consists of from one to three alphanumeric characters
and is separated from the filename proper by a period. If the filename extension is not given, it is
defined as null and as such is distinctive. In the case of a null filename extension, the period after

the filename proper can be omitted.

Examples of filenames:

TECO.21 The source file for TECO version 21
EARNNG .F4 A FORTRAN source program

0015J.CBL A COBOL source program

GLOB.MAC A MACRO-10 source program
GLOB.BAK A backup file

FRMTTR.TEC A file containing a TECO macro

M20 A filename with null extension

M20.1 A similar filename with non-null extension

2.2 CHARACTER SET

The TECO character set is the full ASCII set. To obtain particular information about individual char-
acters, the user should refer to the table of ASCII characters in Appendix B. This table contains

the following:

a. A list of all ASCII characters and the symbols used in this manual to represent
them,

b. octal and decimal values of the characters, and,

comments concerning any special significance of each character,

In general, the user must be concerned with the character set on two levels: the data level and the

command level,

Every ASCII character from control-A (decimal value 01) through rubout (decimal value 127) is legal
in TECO data. They can all be input and output, and they can all be inserted. The only character
that is not completely legal as data is the null character (decimal value 0). The null character can be
inserted and output, but it is ignored on input. Form feed characters (decimal value 12) are com-

pletely legal in data but are treated specially on input (see Sections 2.3 and 3.3).

Most of the ASCII characters have some meaning when used as commands. Some are monitor commands.

When used as commands, the lower-case characters have the same meaning as their upper-case

2-2

TECO

equivalents. The table in Appendix B tells where in this manual the uses of the various characters

as commands are explained.

2.2.1 Special Characters

Because of their use as special immediate=action commands (monitor control commands or erasing
commands), certain characters must not be typed in explicitly as alphanumeric arguments. All of

them, however, are legal as data (except the null character) and can be inserted using special tech-

niques. The characters to which this restriction applies are referred to in this manual as "'special

characters.'' These specia| characters are listed in Table 2-1.

Table 2-1 t
Special Characters
Character Remarks
@ (control =C) A monitor command
@ @ (two successive An erasing command
contrel-G's) (A single control-G is
acceptable.)

@._l (control -G, space) Immediate editing command
(causes current line to be
retyped).

(control-O) A monitor command

@ (control-U) An erasing command

ESCape or PREfix Equivalent to ALTmode

ALTmode or @ Standard text argument
terminator (Two successive
AlLTmodes terminate a
command string.)

Rubout An erasing command

Tin monitors preceding the 5.02 monitor the characters i @ , and

are also monitor commands and must be included in the above list for these systems.

2.2.2 Control Characters

Control characters are characters that are typed by holding down the CTRL key while striking a char-
acter key, The control characters have decimal values 0 through 31. When TECO is printing text,
a control character is printed as an up-arrow, followed by the character which is typed to produce

the control character. For example, control=A prints as '' tA'',

In many cases the control character commands can be typed into command strings by using an alternate
procedure to the standard method of holding down the CTRL key while striking the desired character.

2-3

TECO

Instead, the user can first type up=arrow and then type the desired character without depressing the
CTRL key. For example, when used as a command, the two-character sequence up-arrow, H (denoted
by tH) is equivalent to the single character control-H (denoted by @). This method can be used
only when the control character is typed as a command, not when it is typed as text or as an alpha-
numeric argument. Control characters appearing as fext arguments must be preceded by a .

Exceptions are noted at appropriate places throughout the manual.

2.2.3 Carriage Control Functions

A few of the control characters are the special terminal functions: bell, tab, line feed, vertical tab,
form feed, and carriage return. All of these characters echo by performing their particular function;

they also perform this function when TECO is printing out text from the buffer.

When a carriage return is typed in, the monitor automatically generates a line feed following it. The
echo to the carriage return type=in is a carriage return followed by a line feed. If a carriage return
is typed to TECO, a line feed is automatically inserted immediately after the carriage return.

Altmode (or escape or prefix) echoes and prints out as a dollar sign.

2.2.4 Symbols

In the examples in this manual, some special symbols are used to clearly indicate what the user must

type. These special symbols are listed in Table 2-2,

In all examples containing both characters typed by the monitor or TECO and characters typed by the
user, the characters typed by the monitor or TECO are underlined, Carriage control characters
(carriage return, form feed, etc.) typed by the user are indicated through use of the special symbols,

Table 2-2
Special Symbols

Symbol Character

tab

line feed
vertical tab

form feed
carriage return

space
altmode

rubout

e@)en»@@—i

control-A

tA up-arrow
followed by A

(Other control characters similarly denoted)

2-4 April 1975

TECO

2.3 DATA FORMAT

TECO is capable of editing text written in any format. There are, however, features in TECO that
make use of the concept of a line and the concept of a page. Therefore, the user must know how

these concepts are defined in TECO.

Lines can be of any length. The characters that define the end of a line are the line feed, vertical
tab, and form feed. The end of the editing buffer also counts as an end-of -line character if there is
no other end-of-line character at the end of the buffer. When TECO counts lines, it does so by
counting these end-of-line characters. An end-of-line character is considered to belong to the line

that it terminates.

Examples:
The following text comprises three lines of text as defined by TECO:

LINE ONE !
LINE TWO Q) |
LINE THREE) !

The following text is considered to be two lines:
BEGINNING,) OVERPRINT () CONTINUATION) !
The first line is terminafted by the @ character and the second by the | character.

Text to be edited by TECO does not have to contain end-of-line characters; however, if it does not

contain them, those features of TECO that count lines will not be useful.

NOTE

If the EO value has been set to 1, the only end-of=line
character is the line feed (refer to Paragraph 3.17.3 for
a description of the EO value).

Pages are defined in TECO by form feed characters, which act as page separators. They are not con=
sidered to belong to either of the two pages that they separate. Two consecutive form feed characters
delimit a null page. A form feed charater at the beginning of a file delimits a null page at the be-
ginning of the file. A form feed character at the end of a file has no effect in TECO. It can be

omitted.

2-5

TECO

Examples:
The following file consists of two pages:

LINE ONE) !
LINE TWO J !

LINE THREE J !
LINE FOUR D!

The following consists of four pages; the first and third pages are null:

L!NE ONE J!

LINE TWO J ¢

(FORMLINE THREE) |

LINE FOUR D!

TECO operates most efficiently with files that are divided into pages of approximately fifty or fewer
lines. Files with longer pages or files containing no form feed characters can be edited with TECO;

but, this process requires either additional core storage or more care when editing.

The processing of form feed characters by TECO must be thoroughly understood by the user. The page
concept is further discussed in relation to the size of the editing buffer in Section 2.4, and the rela-
tion of form feed characters to input and output commands is discussed in Sections 3.3, 3.9, 3.10,
and 3,11,

TECO may be used to edit files containing the special line-sequence numbers produced by BASIC,
the PIP /S switch, LINED, and several other editors, but TECO does not need these numbers and
makes no special use of them (nor does it destroy them). See Section 3.2.6 for an explanation of how

these numbers may be processed.

2.4 EDITING BUFFER
Editing is accomplished by:

a. Reading text into the editing buffer
b. Mdking changes to the text in this buffer
c. Writing the modified text out to a new file

The editing buffer is a block of core memory within TECO. Data is put in the editing buffer when it
is read in or inserted; it is kept in the editing buffer while it is being modified.

Text is packed in the editing buffer with five 7-bit ASCII characters per 36-bit word. When TECO is

running in the minimum 5K of core, the editing buffer holds approximately 3600 characters. Each

additional 1K of core assigned to TECO increases the size of the editing buffer by 5120 characters.

2-6

TECO

TECO normally passes data into and out of the editing buffer a page at a time. Pages are delineated

by form feed characters (see Sections 2.3 and 3.3).

2.5 BUFFER POINTER

TECO is a character-oriented editor, therefore, the concept of the buffer pointer must be understood
by the user. The position of the buffer pointer determines the effect of many editing commands. For

example, insertion and deletion always take place at the current position of the buffer pointer.

The buffer pointer is a movable position indicator. It is always positioned between two characters in
the editing buffer, or before the first character in the buffer, or after the last character in the buffer.
It is never positioned exactly on a particular character; it is positioned either immediately before

or after the character.

The pointer can be moved forward or backward over any number of characters. |t cannot be moved
beyond the boundaries of the buffer; i.e., it cannot be moved further back than the position immedi=
ately prior to the first character in the buffer, and it cannot be moved further ahead than the position

immediately after the last character in the buffer,

In the examples in this manual showing text in the editing buffer, the position of the buffer pointer is

shown by a caret (/\) directly under the line of text.
Example:

TEXT IN THE ED}{ING BUFFER

When discussing text in the editing buffer in terms of lines, the phrase ''current line'' is frequently

used. The current line is the line at which the buffer pointer is currently directed. The pointer can

be positioned either at the beginning of the line or in the interior of the line.

2.6 GENERAL COMMAND STRING SYNTAX

Commands are given to TECO by typing a command string; command strings are formed by writing a
series of commands, one immediately after the other, and concluding with two consecutive altmodes

(refer to Appendix C for a summary of commands).

A command string may be typed ofter TECO indicates that it is ready by printing an asterisk. An

example of a command string is as follows:

*YIHEADING (§) 2K4DNTAG (§) 2L

Execution of the command string begins only ofter the two consecutive altmodes have been typed.

TECO then indicates that it is beginning execution of the command string by typing a carriage return=

2-7

TECO

line feed. At that point, each command in the string is executed in turn, starting at the left. When
all commands in the string have been executed, TECO prints another asterisk indicating it is ready to

accept another command string.

If a command in the string cannot be executed due to a command error, execution of the command
string stops af that point, and an error message is printed. Commands preceding the command in error
are executed. The erroneous command and the commands following it are not executed. Errors,

error messages, and recovery techniques are fully discussed in Chapter 5.

There are exceptions to the general rule that commands are not executed until the end of the command
string has been indicated by two consecutive altmodes. These exceptions are the commands listed in
Table 2-1 in Section 2.2,

2.7 ARGUMENTS
2.7.1 Alphanumeric Arguments

Most alphanumeric arguments are text arguments that are interpreted as ASCII data by TECO. Some
examples of text arguments are: data to be inserted in the buffer, search character strings, and com-
mand string tags. Other types of alphanumeric arguments are device and filenames and Q-register

names,

An alphanumeric argument always follows the command to which it applies. As a rule, most commands
that take text arguments require that the argument be terminated by an altmode; however, there are
exceptions to this rule which are explained at appropriate places in the manual . An altmode, even

when not required, may be used to terminate any TECO command.

An altmode used to terminate an alphanumeric argument can also function as one of the two altmodes
necessary to terminate a command string.,

Example:

is terminated by an altmode. The
second argument, ""TEXT2'', is also
terminated by an altmode, but this
altmode is also used as one of the
altmodes terminating the command string.

* ITEXT @ STEXT2 The alphanumeric argument, "'TEXT'',
*

Any printable ASCII character is legal in an alphanumeric argument with the exception of the special

characters listed in Table 2-1, Section 2.2, In addition, non=printing characters are legal when they

are preceded by a .

2-8 April 1975

TECO

2.7.2 Numeric Arguments

Numeric arguments always precede the command to which they apply. In some cases, only a single

numeric argument is required; in others, a pair of numeric arguments is required.

When two numeric arguments are used, they are separated by a comma. In most cases, numeric argu-
ments must be positive; however, some commands allow a numeric argument to be negative or zero.
The number and type of numeric arguments allowed by each command are stated in the section in

which that command is explained,

Where a numeric argument is used to specify a buffer position, the number used is the number of
characters in the buffer to the left of that position. Thus, n means the position to the right of the

nth character in the buffer (between the nth and n+ 1st characters).

Numeric arguments used in pairs are always buffer position arguments, Such a pair specifies all the
characters in the buffer that lie between the two buffer positions represented by the two arguments.,
This definition is precise because the term ""buffer position'' always indicates a position before or

aofter a given character, not "'on'' or "'at'' the character.

Example:

12,20 This argument pair specifies the thirteenth (13th)
through the twentieth (20th) characters in the
buffer. These characters are specified because
the 12 indicates the position between the 12th
and 13th characters, and the 20 indicates the
position between the 20th and 21st characters.

Numeric arguments can be used in arithmetic/logical combinations. The characters shown in Table 2-3

are used as operators.

Table 2-3
Numeric Operators
Operator Function Example
+ Ignored, if used before the first term +2=2
in a string.

+ Addition, if used between two terms. 5+6=11

space Equivalent to +. L 2=2
S &=11

- Negation, if used before the first -2=-2

term in a string.

2-9

TECO

Table 2-3 (Cont)

Numeric Operators

representations of two terms, if used
between the terms.

Operator Function Example

- Subtraction, if used between terms. 8-2=6

* Multiply. (Used between two terms.) 8*2=16

7l Integer Divide (and drop the remainder). 8/2=4
(Used between two terms.) 8/3=2

& Bitwise logical AND of the binary 12 &10=8
representations of two terms, if used
between the terms.

Bitwise logical OR of the binary 12¢ 10=14

When more than one arithmetic/logical operator is used in a single numeric argument, the operations

are performed from left to right. This sequence can be overridden through use of parentheses (). All

operations within parentheses are performed before those outside parentheses.

nested,

Parentheses can be

In TECO, numbers are ordinarily assumed to be decimal integers. Preceding a number with tO

(uparrow=Q, not control-O) causes the number to be read in octal radix.

Example:

10177 is equivalent to 127,

Examples:

3*1010=24
243 * 4=20
2H3 * 4)=14

263 * (16/(3-1)) /2 H2 * 5)) =24

2&(3%5) # 16=18

((2¢(3*4)-18&(648)) /2) ==6

The arithmetic/logical operators and parentheses can be used to form one or both of the numeric

arguments in a pair.

Example:

260 - (3 * 42), 250 + (77/3)

2-10

T
2.7.3 Commands That Return a Value BES

Generally speaking, there are two main categories of TECO commands: 1) those that perform some
operation, such as inserting text, and 2) those that ''return'' a value, such as the number of characters

in the editing buffer. (There are also some commands that do both.)

A command is said to "'return'' a value if the command causes the current value of some quantity to be
calculated, and then the command takes on this value, becoming itself a numeric argument that may
be used by another command. Using such a command is equivalent to typing the particular number
that the command returns as a value, except that the value is not usually known in advance. This
value can then be used as an argument by the next command in the command string, provided that the

command is one that can take a numeric argument. Otherwise, it is ignored.

An example of a command that returns a value is the Z command (see Section 3.4). The Z command
returns o value equal to the number of characters in the buffer. It has no other function. Thus, in

order to be useful, Z must be used as a numeric argument preceding another command.

Commands that return values may be used in arithmetic/logical combinations with each other and
with explicit numbers. All the same rules apply. Each command that returns a value has all the

properties of a number that has been explicitly typed in.

If commands that return values are concatenated with each other or with digits, the value returned

is that of the last command or number in the string. An operator preceding such a string continues

to appty.

Examples:

ZZ =17

Z48 = 48
QL ==f
HZZ =3+Z

2.8 Q-REGISTERS

Q-registers are data storage registers that are available to the TECO user. Q-registers give a great
amount of editing power to the user by enabling programmed editing and text block movement. Data
stored in Q-registers is not disturbed by the flow of data into and out of the editing buffer. It can be

preserved throughout an entire TECO job, and it is available for retrieval or change at any time.

There are 36 Q-registers; each Q-register has a single character name, which is either one of the
digits O through 9, or one of the letters A through Z. Also, there is a Q-register pushdown stack that

effectively makes available an additional 32 Q-registers for certain applications.

IThe number of entries in the pushdown stack can be increased by changing the parameter LPF in
TECO.MAC and reassembling TECO,

TECO

Two types of data can be stored in Q-registers: decimal integers or alphanumeric character strings.

For numeric storage, a Q-register can be used to hold a single positive, negative, or zero decimal

5

integer in the range -2:3 +<n< 235 =1. Numbers stored in Q-registers can be incremented, tested,
or recalled. Hence, Q-registers can be used as switches and counters, as well as for simple data-save

functions.

For text storage, a Q-register can be used to hold a character string of any length. Two types of
character strings can be stored: ordinary text and TECO command strings. Ordinary textual data
stored in a Q-register is copied into the Q-register from the editing buffer without destroying the copy
in the editing buffer. Storing text in a Q-register is useful for functions such as making many copies
of a given segment of text throughout a file without retyping it each time, for moving a block of text

from one position to another in a file, and for moving a block of text to another file.

Textual data in the form of TECO command strings can also be stored in Q-registers. Such a command
string can be executed over and over throughout an editing job, much like calling a subroutine. This

feature enables an editing job to be typed up off-line and then executed at a later time. Such

command strings can be edited just as any other text.

2.9 CORE EXPANSION

Core memory is allocated within TECO in the following manner. There is the executable code, which
is pure and is shared in a reentrant system. The other core memory is allocated to the data segment.
Part of the data segment is used for program variables and fixed-length |/O buffers, while the rest is

used for three variable-length storage areas:
a. The editing buffer,
b. the command string buffer, and

c. the storage area for Q-registers containing text.

When TECO is initialized, the three variable=-length storage areas are assigned a specific amount of
space. After a command string is executed, the command string buffer is cleared. When text is de-
leted from the editing buffer, the formerly occupied space is reclaimed. However, during a TECO
job, conditions may arise where the available space is not sufficient for the three variable=length
storage areas. For example, a command string having a single insert command with many lines of text
to be inserted may overflow the command string buffer. In such a case, TECO attempts to obtain the
required space from one of the other variable=length storage areas. If, however, all three areas are
filled to such an extent that the total amount of space allotted to all three is insufficient, TECO

automatically requests another 1K of core memory from the monitor.

If the request for more core is successful, operation continues normally, TECO prints a message of

the form ''[nK COREI"" (where n is the new number of 1K segments of (low) core allocated to the

2-12 April 1975

TECO

user) to inform the user that his core has been expanded to the specified amount. (This message is
suppressed while the user is typing a command string.) |f the request for more core is unsuccessful,
TECO stops execution of the command string at this point and prints the error message ?COR Storage
Capacity Exceeded.

2-13

