sun microsystems, inc. The UNIX System:
A Sun Technical Report

A SUN TECHNICAL REPORT

1he UNIX System

Written and vesearched by Bill Courington

Book design and line illustrations by Neumeier Design Team
Electronic publishing by Adapt, Inc.

Printed by Malloy Lithograpbing, Inc.

© 1985 by Sun Micrasystems, Inc.

This publication is protected by Federal Capyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a vetrieval system, translated, transcribed, or transmitted, in
any form; or by any means manual, eleric, eectronic, dlectro-magnetic, mechanical, chemical,
aptical, or theriise, without prior explicit written permission from Sun Microvystens.

Contents

Sun Technical Reports 1
Introduction 3

1 Perspective 5
1.1 Sources of Strength 5
1,2 Areas of Weakness 06
1.3 Guiding Evolution 7
1.4 Multiple Versions 8
1 Conclusion 11

2 The Kernel 12

241 System Calls 12

2.2 Processes 12
2.2.1+| Privilege 12
2:2:2 Creation and Termination 13
2.2.3 Scheduling 16
2.2.4 Signals 17
2.233 Pipes 18
2.2.6 Sockets 19

2.3 Memory Management 20
2.3.1 Segments, Pages, and Page Frames 20
2.3.2 Data Structures 21
2.3.3 Memory States 23
2.3.4 Address Mapping 23
2.53 Paging 25
2.3.3:1 Page Replacement 26
2.3.5.2 Page Faults 26
2.3.6 Swapping 27
2:3.7 Dynamic Allocation 27
298 Stack Extension 28

2.4 Input/Outpur 28
2.4.1 Byte Streams 28
2.4.2 Descriptors 29

243 Files 29
2.4.4 Directories 30
2.4.5 Permissions 32
2.4.6 File Sharing 34
2.4.7 File System Implementation 36
2.4.8 Devices 37
2.4.9 Terminal Database 39
2.4.10 Standard I/O And Redirection 39
2.4.11 | Non-blocking /O 40
2.4.12 Network File System Overview 41
2.4.12.1 Servers and Clients 41
2.4.12.2 Server Functions 42
2.4.12.3 Client Functions 42
24.12.4 NEFS Implementation 44
2.5 Timers 45

3 The Shell 46

3.1 How the Shell Works 47
3.1.1 | The Login/Logout Cycle 47
L2 The Shell Environment 49
3.1.% | Commands 49
3.1.4 Command Execution 50

3.2 Interacting with the C-Shell 51
o Command Syntax 51
2.2 File Name Shorthand 52
3.2.3 Command Aliases 53
3.24 Command History 54
32,3 Job Control 56
3.2.6 I/O Redirection 59
3:.2.7 Pipelines 60

3.3 Programming the Bourne Shell 61
331 Installing and Running Shell Scripts 62
3:3.2 Variables 63
333 Input/Output 65
3.3.4 Flow Control 65
3.3.5 Debugging 68

4 | The Utilities 69 1
4.1 The Basics 69 1 5
4.2 Editors 70]

4.2.1 ed 70
4.2.2 ex And vi 71
4.3 Programming Tools 72
4.3.1 Program Translation 72
4.3.1.1 Preprocessor 72
4.3.1.2 Compilers 73
4.3.1.3 Assembler 74
4.3.1.4 Local Optimizer 74
4.3.1.5 Linker 74
4.3.2 Languages 75
4.5.2.3 FORTRAN 77 75
4.3.2.2 Pascal 75
4.3.2.3 C 76
4.3.3 Debuggers 77
4.3.4 Profilers 79
4.3.5 Management 80
4.3.6 Compiler Construction 80
4.4 Filters 81
4.4.1 grep 81
4.42 sed 82
4.4.3 awk 82
4.4.4 sort 83
4.5 Formatters 83
4.6 Communication 86
4.6.1 mail 86
4.6.2 USENET 89
4.6.3 news 89
4.6.4 tip 90
4.7 Putting Utilities Together 90
4.7.1 Disk Space Consumers 90
4.7.2 Frequently Used Words 91
4.7.3 A Primitive Rhyming Dictionary 92
4.7.4 Finding CPU Gluttons 92

] The SunWindows System 93
5.1 Using SunWindows 93
5 R The Display and the Mouse 93
5.1.2 Windows 94
5.1.3 Subwindows 97
5.1.4 Icons 98

1 Menus 99

5.1.6 Panels 100

3:1.7 Standard Tools 101
5:17:1 clocktool 101
52 shelltool 101
2. 1.7:3 graphicstool 102
5.1.7.4 icontool 102
$.1.75 fonttool 104
5.1.7:6 dbxtool 105

5.2 Programming with the SunWindows System 107

5:2.1 SunWindows Structure and Facilities 107
5 | pixrects Level 108
5.2.1.2 sunwindow Level 108
9.2.1:3 suntool Level 108

5.2.2 Anatomy of a Tool 109
5.2.2.1 Getting Started 109
5.2.22 Building the Window Frame 110
5.2.2.3 Building Subwindows 110
5.2.2.4 Installing the Window 111
5.2.2.5 Responding to Events 111
9:2.2.6 Handling Panel Notifications 112
5.2.2.7 Handling Window Changes 112
5.2.2.8 | Cleaning Up 113

1.1

2.4
2.5
2.6
2.7
2.8
2.9

3.1
32
3:3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

%:1
5.2
5.3
5.4
2.2
5.6

Figures

UNIX System Structure 3
UNIX System Genealogy 9

Forking a Child Process 14

Waiting for a Child Process to Terminate 15
Process Segment Layout 21

Memory Management Data Structures 22
Page Map Entry 24

File System Hierarchy 31

File Access Permissions 33

Using a Lock File 35

Exporting and Mounting Network Files 43

Login/Logout Cycle 48

C-Shell Command Execution Logic 51
Form Letter Shell Script 64

Global Replace Shell Script 67

Program Translation Stages 72
Preprocessor Examples 73
Sample C Program 78

troff Example 84

A troff Pipeline 85

tbl Example 86

eqn Example 86

CPU Utilization Shell Script 92

Typical SunWindows Display 94
Mouse Pointing Device 95
Anatomy of a Window 97

Icons 98

Tool Manager Menu 99

A Panel 101

5.7
5.8
5.9
5.10
5.11
2 12

3.1

4.1
4.2
4.3
4.4

graphicstool Window 102
icontool Window 103

fonttool Window 104

dbxtool Window 105

SunWindows Facility Structure 107
Tool Program Anatomy and Control Flow

Tables

Job Control Commands 58

Basic Shell Commands 70
Sun C Language Elements 77
Minor Filters 81

Basic ms Commands 85

109

Sun Technical Reports

The engineer or system architect evaluating a computer is often
presented with two written descriptions of the product. These are
the “brochure” and the “manual.” Between these is a large gulf that
makes it difficult to obtain a moderately detailed picture of a
system, or a particular aspect of it. To fill this gap, Sun provides
this first in a series of Technical Reports.

As implied in its name, a Technical Report introduces a subject
to the technically competent engineer., What do we mean by
“technically competent?” We mean that the reader is familiar with
the general subject area, but not with the specifics of Sun's
implementation. For example, the UNIX" System Technical Report
describes how processes are created, how processes communicate,
how they are scheduled, and so on, but it does not describe what a
process 5, nor what a multiprocess operating system is good for. The
reader is expected to bring this level of knowledge from school or
from experience with other operating systems. At the same time,
some Technical Reports will cover topics that have not yet become
part of the “general knowledge.” Such a Technical Report provides
commensurately more background information.

While Technical Reports are not aimed at the computer-naive,
they nevertheless deliberately oversimplify their subjects and omit
coverage of some features. If a subject appears to be missing, or is
explained in insufficient detail for your needs, consult a Sun sales
office for more information.

1. UNIX is a crademark of AT&T Bell Laboratories.

e

Fig. 1

UNIX System
Structure

Introduction

This Technical Report describes the UNIX system — the operating
system that is the heart of the Sun computing environment.' The
material is organized in four chapters. Chapter 1 establishes a
perspective that helps to explain why the UNIX system looks
different from many other operating systems. It also explains how
the several versions of the UNIX system came into being, and
describes some of the differences between these versions.

The remaining three chapters reflect the structure of the
UNIX system. It is convenient to think of the system as consisting
of a kernel, a shell, and a large collection of utilities (see Figure 1);
one chapter describes each of these.” The kernel manages the
hardware (for example, processor cycles and memory) and supplies
fundamental services (for example, filing) that the hardware does
not provide. The shell is the interface between the kernel and
system users; it is both a command interpreter and a programming
language. Utilities are programs in the usual sense: compilers,
editors, debuggers, and the like; however, the number of utilities
(around 220), their scope (they include a compiler-compiler and
typesetting software), and the ways in which they can be fit
together is unusual indeed.

©
=)

—

I Hardware —l

This “inside-to-outside” sequence differs from most descriptions of
the UNIX system which begin with instructions for logging in,
and discuss the kernel lictle if at all. However, readers of this report

1. The report describes Sun's Release 2.0.

2. Actually, the shell is just another urilicy, bur is so important as to merit separate
consideration,

e e

THE UNIX SYSTEM

are likely to be as interested in the services the UNIX system
provides for programs as those it provides for users. Moreover,
several important shell services are not the shell’s own inventions
but convenient notations that give users access to underlying kernel
facilities. Exposing the kernel first provides a more accurate
description of the system and shortens the total discussion as well.
Such an approach does, however, rely on the reader’s general
familiarity with multiprocess operating systems.

The report also surveys two facilities that are Sun innovations
and are not part of the UNIX system proper. These are the
Network File System (covered in the Input/Output section of the
kernel chapter) and the SunWindows® user interface, which is
covered in its own chapter following the utilities. These facilities
are fundamental to “what makes a Sun a Sun,” are heavily used by
Sun customers, and fit so well with the UNIX system that for
practical purposes they are not considered as separate. While it is
possible to use a Sun workstation as standalone “UNIX system
box,"” with no Network File System and no windows, no one would
willingly do so.

For these reasons, the topics are covered in this report.
However, the subjects are large and rich and space does not permit
their treatment in the same depth as the UNIX system. Therefore,
the NFS and SunWindows descriptions should be considered as
introductions only.

3. SunWindows is a trademark of Sun Microsystems, Inc.

11

Sources of Strength

Perspectrve

The UNIX operating system is a multiprocess (or multitask)
operating system with facilities functionally similar to other
minicomputer and mainframe operating systems. But the UNIX
system is also a phenomenon. Designed by a small group of people for
their own use, it has, with almost no conventional marketing effort,
become perhaps the most widely used operating system for
mid-range computers.

The UNIX system has been propelled to prominence not by a
corporate campaign, but by the grassroots enthusiasm of its users.
These users have diverse impressions and opinions of the system; as
a result, the public image of the UNIX system is somewhat fuzzy.
This chapter tries to clarify the picture by illuminating some key
issues: why the UNIX system is so popular; why it is fairly
criticized; how Sun has changed it; and why there are multiple
versions of the UNIX system.

The UNIX system’s extraordinary popularity can be credited to
three of its fundamental properties:

1. The UNIX system is a portable operating system. Hard-
ware vendors are attracted to it because they can imple-
ment it on a new computer with relatively little effort; in
so doing, they inherit a large community of users. With
implementations available on dozens of machines, both
software vendors and users become computer-independent
when they adopt the UNIX system. A high-level language
program can make direct use of operating system facilities
and yet be transported to a different machine by simply
recompiling. Not only do programs move easily from one
UNIX machine to another, but so do the tools and
expertise of people. Personnel trained on one UNIX
implementation are productive almost immediately on
another.

2. The UNIX system provides an exceptionally productive
computing environment, particularly for programmers.
Included in the UNIX system is a rich set of software
development tools, many of which apply to general text
manipulation (for example, documentation) as well. More-
over, these tools can be used in combination to solve a
remarkable number of problems without conventional
programming. In sum, the UNIX system probably sup-

1.2

Areas of Weakness

THE UNIX SYSTEM

ports the ideal of reusable software more effectively than
any other commercial operating system.

3. Finally, the UNIX system is an elegant design that is
intellectually appealing and satisfying to use — many
experienced users would say fun to use. It is difficult to
capture the essence of the system’s elegance, but it has to
do with power derived from simplicity, rather than
complexity. Instead of the “laundry list” of semi-indepen-
dent (and sometimes conflicting) features that characterize
many operating systems, the UNIX system provides a
relatively small number of fundamental, but universal,
facilities. It obtains generality by eliminating restrictions
instead of adding options. In the words of one of its
designers, it is a “simple, coherent system that pushes a
few good ideas and models to the limit.”' At the same
time, users can connect these simple mechanisms to build
powerful new tools that meet their own needs or reflect
their own preferences.

It is easy to understand and appreciate the value of a portable
operating system. The UNIX system’s qualities of elegance and
improved productivity are less tangible. This report tries to
demonstrate them, but they can only be deeply understood by
using the system for a few months. Nevertheless, it is these
qualities that fuel the enthusiasm of UNIX system users; it is very
hard to find a user who both deeply understands the UNIX system
and would voluntarily choose another commercial operating sys-
tem. The system’s strengths greatly overbalance the shortcomings
described in the next section.

Critics tend to focus their complaints on the interface the UNIX
system presents to novice users.” The command interface is terse
and inconsistent, error reports are sketchy, and the system has no
“help” facility. Some commands have strange names like grep and
awk. The system presumes users know what they are doing; for
example, its default action is to overwrite an existing file when a
new file with the same name is created.

Why are these widely perceived shortcomings present in such
a popular system? They are the consequence of the environment in
which the UNIX system was designed and first used. This
environment was a Bell Laboratories computer science research
group in the early 1970s. The members of this community were
computing experts, and they were building a system for their own

1. Dennis M. Rirchie, “Reflections on Sofeware Research,” Communications of the ACM, Volume
27, Number 8, August 1984

2. It is only fair to point out, however, that many expert users are proponents of the system’s user
interface, especially its terseness and ics implied respect for their competence.

1.3

Guiding Evolution

Perspective 7

use — they had no pretensions of building a commercial operating
system. Their hardware was a small minicomputer equipped with
slow teletypewriter terminals. They designed the system so operat-
ing system utilities, which comprise much of the user interface,
could be added by users, and many were. It is not surprising that
this environment spawned a simple timesharing system, with a
terse and inconsistent user interface (remember those slow terminals
and their expert users).

The UNIX system initially spread to similar environments,
namely research laboratories and university computer science
departments. The user interface presented no particular difficulties
to these communities, particularly when balanced against the
system’s strengths. Later, when the system was adopted by
professional programmers in industry, the user interface again was
not a major issue. Now, however, the UNIX system is used in
many different environments. System users include the
computer-naive as well as the computer scientist. As a result, the
difficulty of the user interface for new users is appropriately
receiving more attention. There may be another reason that the user
interface has been slow to change: the hardware and conceprual
ingredients for radically improving the user interface, such as
dedicated processors, bit-mapped displays, pointing devices, and
the notions of windows and menus, have only recently become
widely available and affordable.

Other UNIX system weaknesses have been cited as well: small
process address spaces, a slow file system, and overly constrained
interprocess communication are among them. These kinds of
defects have somewhat inhibited the system’s acceptance as a
general-purpose operating system. As will be shown in this report,
some UNIX versions, including Sun’s, have eliminated most of
these problems, thereby widening the scope of problems to which
the system can be effectively applied.

UNIX system users have changed since the system was designed, as
have the problems to which the UNIX system has been applied.
But the hardware on which it runs has changed even more
dramatically. Microcomputers with multimegabyte address spaces
are common, and fast display terminals have completely replaced
teletypewriters. Bit-mapped graphics displays and pointing
devices, such as mice, are emerging as standard equipment.
Increasingly, timesharing is giving way to networks of dedicated
workstations.

To keep pace with changing patterns of use and developing
hardware, the UNIX system has changed over the years, as it must
continue to change. At the same time, to keep one of its most
important strengths — portability — intact, it has also stayed the
same and must continue to stay the same. These seemingly

1.4

Multiple Versions

THE UNIX SYSTEM

paradoxical requirements can be reconciled by carefully distin-
guishing between interfaces and implementations.

Two kinds of interface are of interest, program interfaces and
user interfaces. Sun's general approach is to maintain existing
interfaces to preserve portability, and to add new interfaces to
provide access to new capabilities. As an example of a such a new
interface, consider the SunWindows system described later in this
report. SunWindows supports the construction of applications that
present interfaces based on the recent technologies of overlapping
display windows, pop-up menus, and the mouse pointing device.
Such an application is called a tool. A tool can be designed to
assume its user knows nothing of the UNIX system, perhaps not
even how to type. Thus SunWindows allows the development of
alternate system interfaces. Although most tools are developed by
Sun customers, several general-purpose ones are supplied with the
SunWindows system. One of these is a terminal emulator that
makes a window behave like an ordinary display terminal, thereby
preserving the conventional UNIX system interface. Thus, the
SunWindows system embraces new technologies, permits con-
struction of natural interfaces for varieties of different users, and
simultaneously maintains compatibility with the UNIX system.

Besides adding new interfaces, Sun has improved the imple-
mentation of several facilities, and will continue to do so. Where an
interface defines what something does, an implementation
embodies Aow something is done. Implementations are functionally

. invisible and therefore can be changed without adversely affecting
programs or users. For example, the Sun file system is considerably
faster than many UNIX file system implementations, and Sun’s
virtual memory management accommodates programs that are t0o
large for many UNIX versions. Programs written for other UNIX
versions work properly on Suns because Sun has not altered the file
system and memory management interfaces, only their implemen-
tations.

Speaking of versions, as Figure 1.1 shows, there have been, and
continue to be, several versions of the UNIX system. These are
largely but not completely compatible. In general, two forces have
driven the evolution of the UNIX system, new hardware capabili-
ties (for example, virtual memory microprocessors and local area
networks) and the quest for wider applicability (for example, from
running on timeshared minicomputers to dedicated workstations).
As the system matures and gains the commitment of more
computer vendors, its shape should stabilize. For the present,
compatibility is a larger problem than it should be. (On the other
hand, it is hard to think of any commercial operating system that is
available for processors of different architecture. The UNIX system
is commercially available on at least a dozen of them.) The

Fig. 1.1

Perspective 9

following historical overview traces the ancestors of the currently
extant versions and gives some reasons for their development.

1969 1973 1976 1979 1980 1982 1984

UNIX System [Version 3 Version 6 Viersion 7 32v [Systemiil| [SystemV

Belllabs 'Bopi79 | [POPAT, POP/TT, POPITT, VAX | PDP1,VAX | PDPAL
“Interdata® “Interdata’ “interdata : + Lyax, 38+
418sD || [42BSD
LsE:Beiey VAX VAX
. Sun UNIX

Sun Microsystems Sun

Others

UNIX System
Genealogy

~LWarious 3] L |
{e.g., XENIX") Varigus Various J,_,
Various Various

*XEMIX is a frademark of Microsoll

The name “UNIX" is not an acronym but a play on the phrase
“castrated MULTICS,"” MULTICS being an operating system that
influenced (both positively and negatively) the UNIX system's
designers. In 1969 there was no simple powerful minicomputer
operating system, so Ken Thompson at Bell Laboratories set out to
build one for his own use and the use of his programming research
group. He was soon joined by Dennis Ritchie.

Following the initial assembly language implementation for
the PDP-7? and two assembly language versions for the PDP/11, a
major milestone was reached in 1973. The system was translated
from PDP/11 assembly language to the mid-level language C. (C
was developed by Ritchie and was based on Thompson's language
B, itself a descendent of Martin Richards's BCPL.) Recoding the
system in C reduced its machine-dependent components to a few
percent of the total lines of code, and made the job of transporting
the UNIX system to a new machine a matter of a few months work.
(It also increased the size of the system by about one-third.) Soon a
version was running in Bell Laboratories on an Interdata 8/32, a
machine whose architecture was much like an IBM/370 and very
little like a PDP/11. The C implementation was described in the
July 1974 issue of Communications of the ACM; this was the UNIX
system’s first exposure to a large audience outside Bell Labs. The
essence of the system has not changed since then.

By 1974 Bell Labs was licensing Version 5, and shortly
thereafter Version 6, to universities for a nominal fee.* The system

3. PDP is a crademark of Digital Equipment Corporation.

4. The early versions were also known by the editions of the manuals that described them, for
example, the 6th and 7th Editions.

10

THE UNIX SYSTEM

was unsupported, but the source code was included in the distribution.
As a result, over the next few years the UNIX system was both used
and studied by many students. Following graduation these enthusi-
astic students “marketed” the system in the commercial world.
Version 7 is the common ancestor of virtually all UNIX versions in
existence today. Compared to its predecessor, Version 7 was more
easily transportable, and incorporated a better file system and
additions to the C language.

The next major historical event occurred in 1980 when the
U. S. Department of Defense chartered the University of California
at Berkeley to redesign the UNIX system. Up to this time, the
UNIX system had been a pure timesharing operating system. The
Berkeley group was to transform it into an appropriate vehicle for
research in distributed computing. The result is commonly known
as 4BSD, for Fourth Berkeley Software Distribution (earlier Berke-
ley efforts for the PDP/11 are known as 2BSD). The first
development in this project was called 4. 1BSD: its roots were in
System 32V, a UNIX version that ran on the VAX’ , bur did not
exploit the virtual memory facilities of that machine. 4.1BSD,
which amounted to a major redesign of System 32V, included:

O A greatly expanded process address space;
O Demand-paged virtual memory;
O A faster, more robust file system;

O Generalized interprocess communication, including basic
local network support.

Berkeley also added utility programs such as a full-screen editor, a
generic interface to smart terminals, and an alternate command
interpreter. This second group of facilities, which many UNIX
versions have adopted, is often described as the “Berkeley enhance-
ments,” but it is the first group that constitutes the really
outstanding Berkeley achievement.

In 1982 AT&T offered their first commercial version of the
UNIX system, called System III. System III added a number of new
capabilities, including remote job entry, a Source Code Control
System for managing large evolving software products, and
accounting routines, but maintained the memory management
limitations of its predecessors. System III's successor, System V,
was largely compatible with System III and included a faster file
system, an improved terminal driver, generalized interprocess
communication (quite different from Berkeley's), shared memory,
and semaphores.

Sun adopted the 4.2BSD design as the starting point for its
operating system. While in many ways suitable for a network of
technical workstations, 4.2BSD is still at its heart a minicomputer
timesharing system. Accordingly, after transporting the system to
its own hardware, Sun began a continuing program of adaptation

3. VAX is a rrademark of Digital Equipment Corporation.

P e AR TILT Y1 |

e R]

1.5

Conclusion

Perspective 11

and extension. For example, support for graphics and a win-
dow/mouse interface were added and workstations without local
disks gained the ability to transparently use the network for paging,
file storage, and file sharing. Remnants of the timesharing heritage
remain (for example the process scheduler and virtual memory
manager), but can also be re-implemented to better fit the Sun
workstation environment.

The UNIX system is unquestionably one of the great milestones in
the history of computing. Its strengths are substantial and undeni-
able. It has no faral flaws. Its shortcomings, which are largely
historical artifacts, are disappearing. Indeed, the system has proven
remarkably adaptable; it has incorporated change more gracefully,
than, for example, FORTRAN, with which it is sometimes
compared.

In fact, the comparison with the FORTRAN of the 1950s and
1960s is fairly apt. FORTRAN was the first “programming
environment” that transcended machine and manufacturer bound-
aries. The language itself was well-suited to a large class of
computing problems, and was a great advance over assembly
language. FORTRAN's greater significance, though, was its
replacement of dozens of assembly languages, in other words, its
nearly universal availability. FORTRAN demonstrated the power
of a standard (or largely standard) language for programs and
programmers.

The UNIX system, of course, is not a language but an
operating system. Keeping in mind that it is considerably more
powerful, flexible, and fun to work with than FORTRAN, the
similarities between the two are nevertheless clear. Not without its
faults, the UNIX system is a very good operating system. It is
applicable to a wide spectrum of computing situations. It provides a
largely standard environment for both programs and programmers
that spans a wide range of machines. Finally, the shared pool of
knowledge and software built upon this standard provides tremen-
dous leverage for applying computers to business and technical
problems.

6. The UNIX system does not, however, pretend to be suitable for applications with severe
real-time requirements. At the same time, machines running true real-time operating
systems can productively coexist and cooperate with Sun workstations on a network.

2.1

2.2

2.2.1

System Calls

Processes

Privilege

The Kernel

Strictly speaking, the kernel /s the UNIX operating system; the
shell and the utilities are ordinary programs with no special
privileges. The kernel is a virtual machine that hides the character-
istics of the underlying hardware, providing a collection of services
that is independent of any particular computer. These services fall
into four broad functional groups: processes, memory manage-
ment, I/O, and timers. Before describing these services, it is
necessary to see how they are invoked.

The kernel performs some functions autonomously (for example,
allocating CPU cycles and real memory) and others in response to
requests for service from processes. These requests take the form of
system calls. To the programmer, a system call is indistinguish-
able from an ordinary function or procedure call.

System calls are most often made from C programs (the C
language is described later in this report), but they can be made
from programs written in other languages as well. For the benefit of
those readers not familiar with C, examples in this report are
written in a pseudocode that resembles languages in the Pascal
family. All system calls take the form of functions. A function
always returns a value and for system calls, the value -1 indicates
unsuccessful execution. When a call returns -1, an external variable
called errno describes the nature of the problem.

In this report we consider a program to be a machine-interpretable
text of instructions and data; it is analogous to a musical score. We
define a process as one execution of a program, analogous to a
performance. (Some operating systems give the term “task” to this
notion of a unit of execution). Multiple concurrently executing
processes are the norm in a UNIX system, and multiple processes
frequently execute the same program (for example, a compiler or a
shell) simultaneously. Each process, however, runs in its own
address space, protected from all other processes.

The UNIX system provides a number of system calls that, while
necessary for system administration, can be disruptive or damaging
if improperly used. Only privileged processes can execute such
calls. Fundamental control over which processes are privileged and

2.2.2

Creation and
Termination

The Kernel 13

which are not is vested in the system’s login facility. In the UNIX
system all' processes are ultimately created by users who log into
the system by typing in a login-name and a password. A
predefined login-name called root denotes the system’s
“superuser.” The superuser is the person responsible for administer-
ing the system. For the most part, processes created by the
superuser are privileged and all others are unprivileged; therefore
the ability to create a privileged process is restricted to users who
know the root password. However, the UNIX system also has a
more fine-grained privilege-granting mechanism called set-uid,
which allows non-privileged users to run trusted programs as
privileged processes. This facility, which in fact is patented, is
covered later in the chapter.

Compared to many operating systems, a typical UNIX system
exhibits a rather high rate of process creation and termination.
Some of this activity is due to the design of the shell, which
customarily creates a process to execute a command (in the UNIX
system, most commands are just ordinary utility programs — they
generally are not embedded in the operating system). User-
written programs often employ the same technique. For example, a
process might want to count the characters in a file. A utility called
wc does just that. Instead of executing its own code, the process can
create a child process to execute we. Thus, in the UNIX system,
processes frequently use processes like programs use subroutines —
and for the same reason: to avoid reinventing code that already
exists. Of course, processes also create processes to run portions of
algorithms in parallel — the conventional reason for creating a
process in most operating systems — but the use of a process as
something similar to a subroutine is largely unique to the UNIX
system and the programming style that has come to be associated
with it.

When one process creates another to do some work for it, the
new process often has something in common with the old process.
This may range from complete commonality (the old process is
creating another instance of itself), to sharing files but running
different programs (as in the character counting example above), to
complete independence. It is difficult for a single “create process”
call (such as typical multiprocess operating systems provide) to
handle all of the possible situations well. The UNIX system
provides several simple calls that can be issued in combination to
achieve the desired effect. The calls are designed to take advantage
of situations in which the new and old processes share some
resources.

In the UNIX system a process is represented by three memory
segments, called the text (or code), data, and stack segments, and
by a set of data structures collectively known as the process

1. The exceptions are a few system processes created by the kernel. The most common system
processes are various daemons thar wake up periodically to perform housekeeping operations
such as delivering electronic mail.

14

Fig. 2.1

Forking a Child
Progess

THE UNIX SYSTEM

environment. A text segment contains code and constant data, a
data segment contains variables, and a stack segment holds a
process’s stack. The process environment records the information
the kernel needs to manage the process, such as register contents,
priority, open files, and so on; for protection, a process cannot
address its environment, but can alter it with system calls.

A new process is created with the fork system call. This call
takes no parameters, and needs none, because the newly-created
process (called the child) is effectively a duplicate of the process that
calls fork (known as the parent).” fork copies the parent’s data
and stack segments to the child, and copies the parent’s environ-
ment to the child as well. The child shares its parent’s text segment
to conserve memory space (UNIX programs are by default reen-
trant). Passing the environment down through the generations
facilitates sharing, and minimizes the amount of work children
have to do before they can run — rather than having to create a new
environment, they only have to change that part of their inheritance
that is inappropriate.

fork is unusual in that it returns to both the parent and the child
— the child is executing the same program as the parent — but it
returns a different value to each. The parent receives the process
ID of the child (which is never 0) and the child receives 0. In this
way the two executions of the parent’s program can tell which is
which and take different branches in the code. This is simpler than
it sounds; Figure 2.1 shows an example.

’ (* parent calls fork %)

process_id := fork();

(* parent and child test process id %)
if process_id = 0

then ...

(* child takes this path %)
else |,

(* parent takes this path %)
endif;

After checking the value returned by fork, the parent and child
are executing different branches of the same program in parallel. In
other words, the parent has just spawned an instance of itself. Often
the child, while preserving much of its inherited environment, will
make a few changes before proceeding with its real work.

If the child needs to execute a different program, as it often
does, it issues an exec call. exec replaces the text and data
segments of its caller with those of 2 new program read from a file
specified in the call. exec does not alter its caller's environment; a
child process may be executing a different program, but it still has
access to its parent’s files (possibly modified by the child between

2. fork operates in a manner somewhar reminiscent of biological cell division.

Fig. 2.2

Waiting for a Child
Process to Terminate

The Kernel 15

the fork and the exec). After issuing an exec call, the next
instruction the child executes is the first instruction in the new
program. Thus, a fork followed by an exec is equivalent to a
traditional monolithic “create process” call. Note also that a
multiphase sequential program whose phases communicate
through files, such as a compiler, can use exec to advantage
without fork; each phase can end with an exec that invokes the
next phase.

When a child is ready to terminate, it issues an exi t system
call; this call takes a parameter whose value is returned to the child’s
parent. The preceding describes normal termination; a child may
be terminated abnormally by any of several signals (discussed later
in this chapter) initiated by the kernel, by a user, or by another
process. When this happens, the parent is notified, also by a signal.

Back to the parent. The parent’s environment is not changed
by anything the child does, since the child is working with a copy of
the parent’s environment description. The parent is free to execute
in parallel with the child. When, and if, the parent wants to wait
for the child to terminate (parents often use children to simply run
utilities in the manner of subroutines as mentioned at the begin-
ning of this section) it issues the wait system call. wait returns
the process id of the terminated child (a parent may be waiting for
any of several children) and the status code passed by the child when
it exited. Figure 2.2 shows how a parent can create a child and
wait for it to terminate.

(* parent calls fork %)
process_id := fork();

(% both parent and child

are now executing this code %)
(% both test value returned by fork %)
if process_id = 0

then
(% child %)
(* ...optionally adjust environment... %)
(% switch to new program %)
exec (new_prog,...);
(* new program issues exit
call to terminate %)
else
(* parent *)
(% wait for termination %)
process_id := wait(status);
endif;

(% child has terminated; parent is running again;
it should check status to see if the child
ran into problems. ¥)

16 THE UNIX SYSTEM

Should the parent choose to run in parallel, it may wish to be
notified when a child terminates normally or abnormally. It can do
50 by catching the SIGCHLD signal; upon receipt of this signal, the
parent can issue a wait to find out what happened to the child.
Besides the basic fork and exec calls described above,
variants are available for specific situations. For example, vfork is
an optimized fork (and a Berkeley enhancement) that runs faster
when the parent knows that it does not want to run in parallel with L
the child. In a normal fork, the stack and data segments and the _ i
environment of the parent are copied for the child, and the text '
segment 1is shared. vfork copies nothing — the child uses the A |
parent’s stack, data, and environment. Eliminating the segment
copying makes vfork fast but also makes the child responsible for
terminating without having made any alterations that might |
confuse the parent when it resumes.

2.2.3 Scheduling The Sun UNIX system schedules ready processes according to their
base priorities, tempered by dynamically-computed priority
adjustments. Base priority values range from -20 (high), to + 20
(low); a new process inherits its parent’s base priority. In the
absence of any explicit action (as discussed shortly), the base priority
will be O (that is, a medium value).

As it runs, a process is charged for each 200 ms. of CPU time
that it consumes (a hardware clock interrupts the processor every
200 ms.). Once per second the kernel recomputes the priority |
adjustments of all ready processes. It adds a process’s adjustment to i
its base priority giving a current priority. After computing all
current priorities, the kernel dispatches the process with the highest
current priority. The priority adjustment gives preference to those
processes that have consumed the least CPU time in the recent past.
CPU consumprion in “the recent past” is determined by an
exponential decay of CPU usage — 90% of past CPU usage is
forgotten in 5*7 seconds where # is the average over the last minute
of the number of runnable processes. Thus, the system penalizes
CPU-intensive processes more heavily during periods of heavy
loading and is more forgiving of them when lightly loaded. The
scheduling technique has three results:

1. VO-bound processes, which include most interactive pro-
cesses, run very quickly after finishing an I/O operation
(for example, after receiving a command from a terminal).
The reason is that in the recent past such processes were
waiting for I/O and thus consuming no CPU time.

2. CPU-bound processes do not starve, but run in bursts of !
up to one second, because as time passes, the scheduler |
forgets a process's CPU consumption. The greater the |
system load the less often a CPU-bound process will |
receive a turn on the CPU, minimizing its impact on |
interactive response.

2.2.4

Signals

The Kernel 17

3. Changes in process behavior (for example, a process that
starts out I/O-bound as it reads data from a file, then
becomes CPU-bound as it processes the data) are compen-
sated for automatically.

A process may lower its base priority with the setpriori ty call;
however, only a privileged process may raise its base priority, or
change the priority of an unrelated process.

A UNIX signal is a software mechanism that is closely analogous to
a hardware interrupt; it is a means of asynchronously notifying a
process that an event has occurred. Unlike interrupts, signals all
have the same priority; simultaneously occurring signals are
delivered to a process serially, but in no defined sequence. Signals
should 7ot be used as a primitive interprocess communication
mechanism. Pipes and sockets (described later in this chapter) are
provided for this purpose.
A signal may ultimately originate with:

O The hardware; the kernel transforms hardware conditions
such as addressing violations and arithmetic exceptions into
signals;

O The kernel (for example, a process has asked to be notified
when a device is ready for I/O);

O Another process (for example, a parent terminates a child
that has run too long);

O A user (for example, typing Control-C to “interrupt” a
running process).

One process may send a signal to another process with the kill®
system call; it may send a signal to a group of processes (typically,
those started directly, or indirectly, by one user) with the killpg
system call. Only a privileged process can send a signal to a process
outside its process group.

A process should expect to receive signals; it may deal with a
signal in one of three ways:

L. It may accept the system’s default action; often the default
action is to terminate the process and notify its parent. For
some signals (for example, addressing violations) the
default action includes producing a file containing the
memory image of the process for post-mortem debugging.

2. It may ignore the signal; the kernel simply discards a
signal that a process is ignoring. Some “strong” signals,
such as SIGKILL, which abnormally terminates a process,
cannot be ignored.

3. The term “kill” is a misnomer — its sense is really “notify."”” The confusion may be historical
— perhaps ki1l originally did kill a process and was later generalized to deliver any signal.

18

2.2.5

Pipes

THE UNIX SYSTEM

3. It may catch the signal. In this case the process designates
a function (called a signal handler, analogous to an
interrupt handler), which is automatically invoked when
the signal is received. When the handler returns, execu-
tion resumes at the statement that was about to be
executed when the signal was received. Often, a signal
handler just performs some cleanup operations (for exam-
ple, removing a temporary file) and then terminates the
process gracefully. Rather sophisticated signal handling is
also possible, however.

A process’s signal disposition (that is, how the process wants the
kernel to treat each type of signal that it could receive) is recorded in
its environment. Since a child inherits its environment, in the
absence of any action by the child, the kernel will deliver signals to
it in the same way it would to its parent. If the child wants to do
something different with signals, it issues the sigvec* system call
early in its execution. This call takes parameters specifying how to
treat each signal and the addresses of the handlers of signals that are
to be caught.

If a process is catching signals, there may be critical sections of
its code that must be executed without the possiblility of a signal
being delivered. Consider an editor that is executing the following
sequence of operations:

1. Rename current file to backup file.

2. Rename working file to current file.
3. Delete backup file.

If the process were to receive SIGINT (a “program interrupt” signal
which a user may initiate by typing Control-C) during execution of
this sequence, the user’s files would be left in an inconsistent state.
The Berkeley sigblock and sigsetmask calls may be used to
temporarily delay incoming signals to protect such a critical region.

A pipe is a conduit that enables a one-way byte stream to flow
between two processes.” A process creates a pipe with the pipe
system call. This call returns two descriptors; one of these
represents the “write end” of the pipe (that is, the end into which
bytes are written) and the other represents the pipe’s “read end.”
(Descriptors are central to the UNIX model of 1/O and are discussed
later in this chapter.) A process can write a string of bytes into a
pipe with the write system call. write takes three parameters:

1. the descriptor that represents the pipe’s write end;

4. The conventional UNIX mechanism for dealing with signals is the signal system call.
sigvec is a Berkeley addition thar is more versatile bur more complex to use. To preserve
comparibility signal is provided as a library routine; ic simply calls sigvec.

5. Since processes occupy separate address spaces, an address (pointer) sent through a pipe will
not be meaningful to the receiving process. (Just as an address written to a file by one process
is not meaningful if read by another process.)

2.2.6

Sockets

The Kernel i9

2. the data area containing the bytes;
3. the number of bytes to write.

write returns the number of bytes actually written (which, in the
case of a pipe, is always the number requested) or -1 in the case of an
error. The writing process terminates the byte stream by issuing a
close system call. A process wishing to read from a pipe issues a
read system call. This call is essentially the mirror image of
write, raking the same three parameters. read returns O (bytes
transferred) when no more data remains in the pipe (that is, the
writer has closed the other end of the pipe).

The kernel serializes simultaneous operations by the two
processes on the pipe and buffers bytes written but not yet read.
read and wr i te block if the state of the pipe prevents immediate
completion of the call (that is, writing to a full pipe or reading from
an empty one). A blocked wr i te call completes as soon as enough
bytes are removed from the pipe; a blocked read completes when
bytes are added to the pipe. An unlimited number of bytes can be
transferred through a pipe.

Unlike files, pipes do not have system-wide names; to read or
write a pipe, a process must have a descriptor for it. Descriptors can
only be passed within a process or to a process’s children (via
environment inheritance). Therefore, to use a pipe a process must
have created it or have inherited it from an ancestor that created it.
In practice, a parent generally creates a pipe and then forks the
children who use it.

Thus, unrelated processes cannot communicate through
pipes. Although pipes are very useful, this is an important
limitation. Consider, for example, a general server process such as a
print spooler. Any process should be able to send a file to the spooler
for printing. To permit communication between unrelated process-
es, System III introduced named pipes, System V added message
queues, and Berkeley added sockets.

To permit processes running on different machines to communicate
over a local area network, 4.2BSD introduced the notion of
sockets. Processes on the same machine can also communicate via
sockets, and need not be related in any way.® Thus, intramachine
socket communication is just a degenerate case of intermachine
communication, which is the subject of the Network Services
Technical Report. Note, however, that the same read and write
system calls work on sockets as on pipes — and on files and on
devices, as will be shown later in this chapter.

6. Indeed, in the Sun UNIX system, pipes are implemented as degenerate sockets.

h———‘

20

2.3

2.3.1

Memory
Management

Segments, Pages,
and Page Frames

THE UNIX SYSTEM

Based on the limirtations of the PDP-11 architecture, early UNIX
implementations provided comparatively small process address
spaces. Depending on the PDP-11 model, a process was limited to
either 64 Kbytes total, or 64 Kbyrtes for code and 64 Kbyres for data
and stack. Multiprogramming was provided by swapping whole
processes to disk. The fundamental innovation of the VAX
architecture was very large process address spaces supported by
virtual memory; Berkeley redesigned the memory management
portion of the UNIX kernel to exploit the VAX's new capabilities.
Sun’s virtual memory implementation is, at present, predomi-
nantly a port of the Berkeley VAX design to the Sun architecture.
As such, it bears the marks of a design oriented toward a machine
running in a timesharing environment and is not ideal for a
single-user workstation. At the same time, Sun’s virtual memory
management works reasonably well in practice and is far superior to
UNIX implementations without virtual memory.

This section unavoidably introduces some hardware subjects
because memory is managed jointly by the Sun hardware and the
kernel. It is in no sense a complete description of the Sun-2 Memory
Management Unit.

The UNIX system defines the segment as the basic unit of memory
management. As mentioned earlier in this chapter, each process has
a code (or text) segment, a data segment, and a stack segment. All
processes running the same program share a single code segment,
but the dara and stack segments of each process are private.

The memory management units of various PDP-11 models
support the UNIX notion of segments well, allowing segments to
be protected and swapped. They do not support virtual memory,
however. Segment-based virtual memory is possible, but the
variable size of segments complicates finding places for them when
they are brought in from disk to memory. Consequently, most
current virtual memory computers, including Suns, define the
basic unit of memory management to be a fixed-size page.” A
Sun-2 page is 2 kilobytes long. Each Sun-2 UNIX process runs in a
private virtual address space of up to 8,192 pages or 16 megabytes,
with its segments made up of these pages. Figure 2.3 shows how a
process's segments are arranged in its virtual address space and its
segments are composed of pages. (The “break” and “stack limit”
references in the figure are explained toward the end of this section.)
In contrast to the large virtual address spaces of processes, the Sun-2
architecture defines a single physical address space of 8 megabytes; a
given workstation may have as little as one megabyte of physical
memory. The physical address space is conceptually divided into
page-size units called page frames. Because there may not be
enough page frames to hold all the pages of a large process (or

7. The Sun-2 hardware also defines a second memory unit, called a segment, which is distinct
from the UNIX notion of segment. A Sun-2 hardware segment is an aggregate of 16 pages
whose purpose is to keep the address translation tables manageably small; it can be ignored for
purposes of chis discussion.

Fig. 2.3

2.5.2

Process Segment
Layout

-

Data Structures

I e

The Kernel 21

Virtual Page NO'_I

0
1
= Code =)
— Data i
L (growsi) _
r————9 --Break
- H
- 4
Available Pages < = E
AT
F ~{--Stack Limit
- =
- -

Stack 8120
(growst) 8191

several small ones), at any instant many pages are likely to be held
temporarily on a disk, or part of a disk, known as the swap device.
Using data structures described in the next sections, the kernel
shuffles pages between the swap device and page frames in a manner
that is transparent to processes and, usually, to users.

The kernel maintains an entry for each process in its process table.
This table and other key memory management data structures are
illustrated in Figure 2.4. The process table contains minimal
information for each process, because the table is always kept in
memory. More detailed information is kept in the per-process user
page. A process’s user page contains the bookkeeping data the
kernel needs in order to suspend and resume execution of the
process; for example, the process’s register contents and file
descriptors. The user page also has a pointer to the process's page
table, the data structure that describes the current mapping
(correspondence) between a process’s pages and the workstation's
page frames.

The fork and exec system calls are intimately associated with the
memory management data structures. When a process forks, the
kernel:

O makes a new entry in its process table for the child process,
copying most of its contents from the parent’s entry.

O allocates a user page and a page table for the child, and fills
them by copying from the parent’s corresponding struc-
tures.

0O allocates page frames for the child’s page table entries and
copies the contents of the parent’s data and stack segments
to the child’s corresponding segments. The parent’s code

Fig. 2.4

Memory
Management
Data
Structures

THE UNIX SYSTEM

Kernel Process Address Space
Address Space
User Page Page Table Segments
Stack
Data

Code Page

Process Table l n
Process1 F N Page

W

-

-
-
Process n —]1 =
T

L

S

Kernel Accessible Process Accessible

segment is not copied, since the child initially executes the
same program as its parent.

O allocates space on the swap device for the child’s segments,
page table, and user page.

The vfork system call eliminates some of the copying by filling
the child’s page table with entries pointing to its parent’s page
frames. However, sharing writable segments in this manner limits
the behavior of both parent and child; such constraints are not
always acceptable. Another solution would be to introduce another
fork variant that marked the child’s page table entries as “copy on
write.” Then data and stack segment pages would be copied one at a
time from parent to child if, and when, the child attempted to
write into them. All other pages would be shared.

When a process issues an exec call, the kernel frees the
process’s swap space, page frames, and page table. It then allocates
new ones according to information contained in the object file the
process is execing. The process’s new segments can be loaded in
two ways. By default, the kernel takes no explicit action and simply
brings the pages in on demand, as described later in this section.
(The data pages come from the object file; code pages come from the
object file, unless they are already in memory or on the swap

2i5.0

2.3.4

Memory States

Address Mapping

The Kernel 23

device.) Alternatively, a program may be linked so that the kernel
loads its segments when it is execed; this method pays off for small
programs (under 32 Kbytes or so).

From the standpoint of memory management, a process can be
considered to be in one of three states:

Swapped A swapped process is completely resident on the
swap device; the kernel keeps the disk address of the process’s user
page in the process table; from information recorded in the user
page it can retrieve the page table and segments.

Resident A resident process has its user page and page table
in memory, and usually, some of its segment pages as well.

Mapped A mapped process is resident, and in addition, its
page table is loaded in the system page map. Only mapped
processes can run. The page map, which is described more fully
below, is actually a cache of 8 page tables that are likely to be
needed in the near future. Therefore, the mapped “state” is more
properly an optimization of the resident state.

The kernel changes the memory states of processes as neces-
sary. Basically, when there are few processes and little demand for
physical memory, all processes are mapped and memory manage-
ment overhead is minimal. As the number of processes exceeds the
number that can be mapped simultaneously, the kernel unmaps the
least active processes and changes the more active ones from resident
to mapped. Under conditions of high contention for memory, the
kernel must move some processes between the resident and
swapped states in order to maintain good performance. Later
sections describe these state changes in more detail.

A running process refers to memory with virtual addresses, which
essentially consist of a virtual page number and a byte offset into the
page. The hardware’s memory management unit (MMU) translates
the virtual page number into a page frame number, adds the offset
and sends the resulting physical address to memory. Note that
Direct Virtual Memory Access (DVMA)® transfers proceed by
generating virtual addresses that are translated by the MMU in
exactly the same way. Therefore, the following discussions of MMU
services, such as memory protection, apply equally to references
made by DMA devices as well as those made by the CPU.

The key to performing the virtual-to-physical address transla-
tion, or mapping, is the page map maintained by the kernel in the
MMU’s high-speed RAM. As mentioned earlier, each process has
its own page table, containing one entry for each of its pages; when
the process is running, its page table is loaded into the page map,
which has a similar format. Figure 2.5 shows a page map entry.
The fields in a page map entry are described below.

8. DVMA is a trademark of Sun Microsystems, Inc.

L |

Fig. 2.5

Page Map Entry

THE UNIX SYSTEM

20 bits
—
IV H]WIX R[WIX!A'MI Type I Page Frame Number _l
! ¥ " Modilied
. Super. User
M ——Accessed
? Protection

(Read, Write, Execute)

Valid

Modified The MMU sets a page’s modified bit whenever
the hardware writes to the page; the kernel clears the bit when it
updates the swapped copy of the page. Thus, the bit indicates
whether a current copy of the page exists on the swap device.

Accessed Whenever the hardware “touches” a page (that
is, reads it, writes it, or fetches an instruction from it), the MMU
sets the page’s accessed bit. By periodically clearing and checking
accessed bits, the kernel can identify infrequently used pages; these
are good candidates to page out to the swap device.

Valid The kernel clears the valid bit when it frees a page’s
page frame for reuse. An attempt to address an invalid page is
detected by the MMU, which invokes the kernel to map the page to
a page frame and restart the faulted instruction.

Protection The MMU checks every page access for confor-
mance to the page’s protection bits. For example, a bad pointer or
array index cannot cause a write into a code segment because code
segment pages are marked non-writable.” There are distinct
protection bits for both the process (user) and the kernel (supervi-
sor). These allow the kernel to store a process’s page table and user
page in the process’s address space and yet make them inaccessible
to the process. The storage occupied by the page table and the user
page slightly reduce the effective size of a process’s address space.

The protection bits keep a process from interfering with itself
(and with some of the kernel’s per-process data). The fact that each
process has its own non-overlapping (except for shared code
segments) page table prevents processes from interfering with each
other and with the kernel.

Type The Sun architecture actually defines four physical
address spaces: on-board memory, off-board memory, on-board
VO, and off-board I/O. The type field identifies the address space
associated with the page. Because /O registers, for example, are
mapped into pages, device drivers can address these registers
through the normal address translation mechanism. However, the
type field is of no concern to the great majority of programs.

9. Data pages are marked execurtable as well as readable and writable. Thus, although it is not
the usual case, the system does not prohibit programs, for example, that generate and execure
code on the fly; in such cases, instructions are fetched from the data segmenc rather than the
code segment.

23D

Paging

The Kernel 25

To obtain good performance, there is not one page map but 8,
one for each of 7 processes, or contexts, and one dedicated to the
kernel. An MMU register, called the context register and
maintained by the kernel, points to the map belonging to the
running process. Because there are 8 maps, the processor can be
switched among the 8 mapped processes by simply changing the
context register; only when the process to be run is not mapped,
must the overhead of loading its page table into a page map be
incurred. When the kernel must map a new process, it overwrites
the page map of the least-recently-run process, first updating the
accessed and modified bits in the process’s page table entries.

To speed response to interrupts and system calls, there are
actually two context registers; one selects the running process’s page
map and one selects the kernel’s page map. Which context register
is used as the page map pointer for a particular instruction depends
on the state of the processor, that is, whether it is running in
MC68010 “user state” or “supervisor state.” Normally the proces-
sor runs in user state; interrupts and system calls switch the
MC68010 to supervisor state; the corresponding “return” instruc-
tions switch it to user state. Thus, the kernel need never change the
context register in response to an interrupt or a system call; the
memory references of all instructions executed in supervisor state
are automatically mapped through the kernel’s page map.

When execution switches to kernel code, the kernel’s page
map is used, so the kernel has no access to user process pages. When
it needs access to a user page, as it must, for example, to execute a
read or write system call, the kernel copies the data with the
MC68010 Move Space instruction, which transfers bytes from one
address space to another. However, when more than 512 bytes
must be moved, the kernel temporarily adds the appropriate page(s)
to its own page map and then issues an ordinary Move instruction.

The process of replacing the contents of page frames with different
pages is called paging.'® Two structures, in addition to the page
tables, are central to paging, the free list and the loop. The free list
contains page frames that are eligible to be reused. Page frames are
added to the head of the free list when they are known to be no
longer needed. Conversely, page frames are added to the ta:/ of the
free list when they may be needed again. Consider, for example, the
termination of the last process executing a program (recall that code
segments are shared between processes). The kernel adds the
process’s stack, data, user page, and page table frames to the head of
the free list, since they can be of no use to another process. It adds
the frames containing code pages to the tail of the free list, because
it is possible that another process will execute the same program.
Should this happen, the kernel will reclaim the code pages from the
free list (if they are still there) rather than bringing them in from the

10. The kernel automatically locks a page that is the source or targer of a DVMA transfer so it is
not paged out during the transfer.

_—J

2.3.5.1

2.3.5.2

Page Replacement

Page Faults

THE UNIX SYSTEM

object file or the swap device. Page frames are allocated only from
the head of the free list so that the pages that may be needed again
stay associated with page frames as long as possible.

Page frames not on the free list are on the loop, a list that
contains all allocated page frames, sequenced by physical address.
However, frames containing kernel code and data are on neither the
loop nor the free list because the kernel is not subject to paging.

The pager is a system process whose job is to keep the free list
large enough to maintain good performance. It runs when the free
list drops below a lower threshold and continues until it has built
the list back up to an upper threshold. The pager’s replacement
policy is to release, on a system-wide basis, page frames containing
pages that have not recently been accessed.

To implement this policy, the pager maintains a frame
pointer that it cycles through the loop in the manner of a clock hand
sweeping the numbers on its dial. Given that this “hand” points to
a page frame, the pager examines the page’s accessed bit.!! If the
accessed bit is set, the pager simply clears it and proceeds to the
next frame in the loop. If the bit is clear (the page has not recently
been accessed), the pager marks the page invalid, adds the page
frame to the tail of the free list, and proceeds to the next frame. If
the not-recently-accessed page is also marked modified, the pager
arranges for the page’s swapped copy to be updated before adding
the frame to the free list. In sum, the pager cycles through the
allocated page frames freeing those that have not been accessed since
its previous cycle.

The MMU detects an attempt to access a page that the pager
has marked invalid. Such an attempt is called a page fault and
invokes the kernel’s page fault handler. An invalid page may be in
either of two places; the page fault handler takes a different action
depending on its location.

O If the page is on the free list, the page fault handler unlinks
the associated page frame from the free list, adds it to the
loop, marks it valid, and resumes the process. Reclaiming a

page frame from the free list in this manner does not block
the faulting process and is much faster than a disk read.

0O If the page is paged out (the frame it formerly occupied has
been allocated to another page), the page fault handler
blocks the faulting process and schedules a disk read to
retrieve the page from the swap device. Later, when the
page has been read, the kernel allocates a frame from the
head of the free list, adds it to the loop, updates the frame
address in the process’s page table, marks the page valid,
and unblocks the process.

The combined actions of the pager and the page fault handler tend
to keep frequently accessed pages associated with page frames,

11. The VAX has no accessed bit, so the standard Berkeley design uses the invalid bit to
simulate it with software. Asa result, the Berkeley design incurs more page faules thana Sun
system due to its “overloading” the meaning of the invalid bit.

The Kernel 27

while little-used pages tend to migrate to the swap device. The |
pager simple-mindedly moves not-recently-accessed page frames to i
the free list, so they can eventually be reallocated. Concurrently, |
page faults taken on these pages nullify the pager’s efforts. If a page

is very frequently accessed, the pager will never see it marked

not-accessed and will never add it to the free list. If a page is

accessed moderately often, it may be added to the free list, but will

be rapidly reclaimed by the page fault handler before it gets to the

head of the list. Only the least-used pages get to the head of the free

list and therefore have to be read from disk before they are used. The

free list thus serves both as a source of available page frames and a

cache of recently discarded pages that can be reclaimed quickly.

2356 Swapping The kernel cannot predict the memory reference patterns of an
arbitrary group of processes. Accordingly, physical memory can be
overcommitted; such an overcommittment is indicated when the
pager cannot keep the free list above its minimum threshold. To
forestall the possibility of thrashing (excessively high paging
activity), the kernel initiates a measure more drastic than paging: it
swaps whole processes to disk. Swapping processes out frees page
frames; in addition to its segments, a process’s page table and user
page are eligible for swapping. More importantly, swapping
reduces short-term contention for page frames (and CPU cycles).
With less contention, some resident processes should run to
completion, bringing the demand for physical memory back into

" the range that can be managed effectively with paging.

Swapping is the job of a kernel process called the swapper. It
attempts to select for swapping the user process whose progress will
be least impeded by losing memory residency. A process that has
been blocked for a long time is likely to remain so (often ir is
waiting for keyboard input); therefore, the swapper selects the
process that has been blocked the longest. If no resident process is
blocked, it selects the process that has been resident the longest.
This is an attempt to provide some measure of “fairness” among
processes and is an example of an artifact from timesharing that is
not ideal for a workstation, where a user may want to bias the
swapper'’s selection.

A swapped process is swapped in when it both becomes ready
and enough memory is available. After swapping a process in, the
kernel makes sure the process makes some minimal progress before
considering it for swapping out again.

2.3.7 Dynamic Allocation The UNIX kernel leaves the implementation of dynamic memory
management (for example, malloc and free in the C library, and
new and dispose in Pascal) up to system libraries and language
run-time systems. The kernel does provide, however, the mecha-
nisms to support such implementations; these are the sbrk and
brk system calls. sbrk extends a process’s data segment (see
Figure 2.3). The end of the data segment is called the break, and
the sbrk system call “sets the break” to a new location. It does this

|

2.3.8

2.4

2.4.1

Stack Extension

Input/Output

Byte Streams

THE UNIX SYSTEM

by adding the requested number of bytes, rounded up to a page
boundary, to the data segment and returning a pointer to the base
of the extension. brk can be used to shrink the data segment,
returning pages to the kernel.

In the Berkeley UNIX system each process has a maximum stack
depth called its stack limit. A process inherits its stack limit from
its parent; the limit can be changed by a C-Shell command or a
system call. The kernel initially creates a one page stack for a new
program. When, during execution, a data reference falls outside a
process's segments (see Figure 2.3) but within the bounds of its
stack limit, the kernel adds the referenced page, and any interven-
ing pages, to the stack segment and restarts the faulted instruction.
If the reference falls elsewhere, the kernel delivers a SIGSEGV
(segment violation) signal to the process. Unlike the data segment,
the stack segment cannot, at present, be shrunk during execution.

Compared to many operating systems UNIX system L/O is
exceptionally simple and uniform. It is simple because there are
only a few I/O system calls. It is uniform because operations on /O
devices of various kinds are interchangeable (constrained by the
capabilities of the underlying device); this in turn makes a single
program useful in a variety of situations.

UNIX I/O system calls work on byte streams.'? A byte stream is
simply a sequence of bytes. It has no other system-defined
structure: it contains no records, no blocks, and no extraneous data
(for example, keys or length fields or end-of-file markers). The byte
stream view of I/O minimizes storage requirements and simplifies
the operating system (there are no “access methods”), but its most
significant advantage is uniformity. For example, a program that
translates a stream to hexadecimal notation works on @zy stream,
whether it comes from a file, a terminal, or a communication line.
As will be shown later in the report, the UNIX utilities exploit the
stream-based nature of UNIX I/O to provide a very flexible set of
tools.

While the system takes an unstructured view of streams,
programs may interpret them according to a self-imposed discipline
if they need to. For example, the compilers produce binary streams
(object modules) that are structured for the convenience of the
linker. Further, many programs use or produce text streams,
streams of ASCII characters that are divided into lines by newline
(OA hexadecimal) characters. But it is ordinary programs that
establish these conventions when and if they are needed; the kernel

12. The phrase “byte stream” is not standard UNIX terminology, but is introduced here to
emphasize the unified nature of UNIX [O.

2.4.2

2.4.3

Descriptors

Files

The Kernel 29

dictates nothing.

There are just two basic I/O system calls, read and write
(notice that these are the same calls introduced earlier for pipes);
they transfer a segment of a stream from or to a data area (for
example, an array or structure) defined by a process. Where the
stream ultimately comes from (in the case of a read) or goes to (for
awrite) is immarerial to the process issuing the call. The stream
source or destination may be a file, a process on the same machine, a
process on a different machine, a terminal, a printer, a communica-
tion line...anything that can generate or accept a stream of bytes.

Each byte stream accessible to a process is identified by a descrip-
tor, that is, a descriptor is a handle on a byte scream. A process’s
descriptors are gathered in its descriptor table, one element of its
process environment. Entries in the descriptor table are indexed
from 0..n where » is a configuration parameter, typically 20. This
index value is used to specify the target descriptor in a read or
write call; that is, reading descriptor 4 obtains bytes from the
stream currently associated with that descriptor. Because the
descriptor table is part of a process’s environment, a child process
inherits access to all of its parent’s byte streams. However, because
the child's environment is a copy of the parent’s, the child can alter
its descriptor table without affecting its parent.

New descriptors are created differently according to the type
of object associated with the byte stream. As mentioned earlier in
this chapter, the pipe system call creates descriptors for the read
and write ends of a pipe. The open call creates a descriptor for a file
or a device, and the socket call makes a descriptor for a socket;
open is described later in this chapter. In all cases, open returns
the index value of the newly created descriptor which the process
uses in subsequent read or write calls.

A descripror table has a fixed capacity, limiting the number of
streams a process may work with at once. The close system call
notifies the system that no more 1/O is to be done on a stream and
frees its slot in the descriptor table for reuse. A process can also
manipulate descriptor table entries with the dup system call, which
makes a duplicate of a descriptor in the first available slot (that is, it
saves a copy of a descriptor). The original descriptor can then be
closed and a new descriptor created in the original position. To
restore the initial descriptor, it can be dup'd from its saved
location, after closing the new descriptor.

In the UNIX system an ordinary file is a byte stream that has a
name and is stored on disk." The kernel tracks the size of each file
and allocates space for files automatically and incrementally as they
grow. The maximum size of a file is 512 megabyrtes, and a file must
reside on one volume.

13. Afileon a tape is considered an attribute of a tape drive and is read or written as a device.

|

30

2.4.4

Directories

THE UNIX SYSTEM

The open call returns a descriptor for an existing file, or for a
new file.' open takes three parameters, name (file names are
discussed shortly), flags, and mode. The flags parameter tells the
system how the process intends to use the file. The basic flags are
read-only, write-only, and read-and-write, that is, update. Other
flags, which may be specified in addition to those just described, are
create (create a new file), append (start writing at the end of an
existing file), truncate (set an existing file’s length to zero,
effectively overwriting its contents), and exclusive (return an error
if the file exists). The mode parameter tells the system what
permissions to associate with a newly created file. Permissions are
the UNIX system’s file protection mechanism and are discussed
shortly.

Besides read and wri te, files respond to the 1seek system
call.” 1seek effects random access on any file; there is no concept
of a “random” vs. a “sequential” file in the UNIX system; every file
can be manipulated in either way. 1seek works as follows.
Associated with each file is an implicit I/O pointer, maintained by
the kernel, that indicates where in the stream bytes will next be
read or written. As read or wri te calls are executed, the system
moves the I/O pointer along by the number of bytes transferred. To
jump to an arbitrary byte in the file, all that is necessary is to update
the /O pointer, and that is just what 1seek does. Besides a
descriptor, the call takes arguments specifying an offset by which
the pointer should be moved, and the origin from which it should
be moved (the origin may be the beginning or end of the file, or the
current location).

To enable it to find a file when a process presents a file name, the
UNIX system records file names in directories. A directory is just
a file that happens to contain a set of file names and their associated
disk addresses.'® To maintain the integrity of the file system, the
kernel prevents users from writing into directories; otherwise, a
directory is indistinguishable from an ordinary file. This means that
programs can extract information from directories (for example, the
names of all files) by simply reading them — no special provisions
are required.'” Every user has a personal directory called a login
directory; directories subordinate to the login directory can be
created in an unlimited fashion. Since every user has a separate login

14. In older UNIX systems, open operates only on existing files, and a different call, ereat
(note spelling), is used to create a new file. The newer open call is upward-compatible with
the traditional open call; creat is also provided for comparibility.

15. 1seek means “long seek.” Early versions of the UNIX system had a seek system call that
was capable of moving only 64K bytes in a file; 1seek was added to permit repositioning
anywhere in a file wich a single call.

16. This is an oversimplification. A directory entry actually points not to the file itself but to a
record called an inode. The inode contains pointers to the disk blocks containing the actual
file. The level of indirection provided by inodes allows asingle copy of a file to be accessible
through multiple directories, each of which may give the file a different name. While a file
may have many names, it has only one ser of attributes (for example, access permissions,
discussed shortly) since these are recorded in its inode.

17. However, it is better practice to use library routines supplied with the system to extract
directory information. The library routines insulate a program from possible changes in the
format of directories,

Fig. 2.6

The Kernel 31

directory, the file names one user creates (subordinate to his/her
login directory) will not conflict with like-named files belonging to
other users.

By convention, users generally construct file names from
lower case letters and numerals, although upper case letters and
most special characters are legal. Again by convention, a file name
often ends with an extension (suffix) that indicates the file's
content. For example, . ¢ (as in binsearch.c), . f and . p are
the conventional extensions for C, FORTRAN 77 and Pascal source
files respectively. These conventions are established by users and by
programs that use the file system, not by the file system itself. In
many UNIX systems a file name is limited to 14 characters in
length; Berkeley extended the maximum to 256.

Directories are arranged in a hierarchy (see Figure 2.6 for an
example). The directory at the top of the hierarchy is called the
“root,” a reference to its position in the inverted tree. A file in the
hierarchy can be identified by either an absolute path name or a
relative path name. An absolute path name traces from the root
through any intervening directories to the file itself. For example,
/usr/terry/notes/apr22. txt is the absolute path name to
a file in Figure 2.6. The initial slash in the example stands for the
root and tells the system that this is an absolute path name;
subsequent slashes separate directory names.

bin
J
sort diff cc terr alex maude more files and directories
| T\“
profile mail notes .profile |mail| star stds
Liegend dec8) apr22. spec. code
txt | txtl ms
Directory /R
o 1
Ordinary File driver display [calec

File System Hierarchy

Le | o] Le

In practice, users cluster related files together in directories
and tend to work for extended periods with the files in one directory
(another example of the “locality of reference” principle). At any
time in its execution a process has a current or working directory
relative to which files can be named. The system interprets any path
name that does not begin with a slash as relative to the current
directory. If, for example, the current working directory of a

32 THE UNIX SYSTEM ‘

process is /usr/terry, then notes/apr22. txt refers to the
file used in the previous example; similarly, if the current directory
is /usr/terry/notes, then only apr22. txt is required to |
specify the same file. A number of system calls are available for
changing the working directory and otherwise “navigating” about |
the file system tree.

While it appears to be a single entity to a user, a UNIX file
system usually consists of several file systems, In other words, “the”
tree of files actually consists of several subtrees. Each file system has
a similar hierarchical structure; the individual file systems are
linked to each other to form “the” file system. One file system,
residing on the root device (a device predefined to the system at
initialization time), is designated to anchor the overall file system.
The subordinate file systems may reside on the same disk or on
different disks; however, an individual file system must reside on a
single disk. |

The privileged mount system call attaches one file system toa |
directory of another. (Normally the receiving directory is empty. |
Should it contain files or directories, they will be temporarily
inaccessible while the file system is mounted on the directory.) The
umount (note spelling) call does the reverse, logically detaching a
file system from the hierarchy. In this way multiple independent ‘
file systems, existing on one or more disk drives, can be integrated |
into a single hierarchy of files. The technique naturally supports |
removable disk packs, drives that must be taken offline, new drives,

. and so on. Moreover, Sun has extended the approach to allow file
systems to be shared across the network, that is, one workstation
may share a file system physically mounted on another workstation
by “mounting” it on its local file system. The Sun Network File
System is briefly described at the end of this section.

245 Permissions Associated with every UNIX file are three sets of three permission
bits (see Figure 2.7). The three bits define whether the file may be
read, written or executed (any combination is permissible). Each set
of permissions grants access rights to a different class of user. The
three classes are the file’s owner (initially its creator), users in the file
owner’s group, and the “general public” of users. A Berkeley
extension allows a user to belong to multiple groups. A user’s
groups are assigned when the user’s account is created on the
system. A user might set the permissions on a file containing a
program so that he/she can read, write, and execute it; members of
his/her group may be allowed to execute the file, and other users
may be granted no access to it at all.

Directories have the same nine permission bits, but they are
interpreted differently:

O “Read” permission grants the ability to read the directory
as a file, for example, to list the file names it contains.

O “Write” permission allows the addition and deletion of
directory entries, that is, grants the ability to add a file to,
or remove a file from, a directory.

==

Fig. 2.7

File Access
Permissions

The Kernel 33

'wx -X

L i L i L i

e ' o
L Public (no access)

Owner’s group (may
read and execute)

Owner (may read,

MNote: Permission bits are shown as write, andl execute)

displayed by 1s command.

O “Execute” permission means “traverse” — a program may
use the directory’s name in a path name, but cannot read
the directory’s contents directly.

To prevent their contamination or deletion, system files are owned
by the super-user. One might wonder why the concept of
super-user is useful for a workstation dedicated to a single user who
can login as root anytime. In face, it does provide a measure of
protection against a user’s own careless errors, as well as mistakes
made by colleagues borrowing a workstation. Everyone makes
mistakes, but a mistake made when logged in as root can be
catastrophic. For example, the command

rm-r %

recursively deletes all files in the current directory and all subordi-
nate directories. It is thus a quick means of pruning large branches
of the directory tree. Executing it while in the wrong directory,
however, can wipe out the wrong files, possibly in great numbers.
Two safeguards somewhat limit the damage when the command is
issued without privilege. First, the system will ask for confirmation
when it encounters a file that has only read permission (for this
reason, users often mark their own important files read-only and
edit copies of them). Second, the system will not remove a file
owned by another user, for example, the system files which are
owned by root. When root executes the

rm-r ¥

command, there are no safeguards; every subordinate file simply
disappears without notice. Thus, a user logged in without privilege
can shoot him/herself, but only in the foot; to inflict 2 headwound
requires root privileges.

Each file has a tenth bit called set-uid which adds an
important element of flexibility to the file protection system. There
are often files that broad groups of users should be able to update in
a tightly controlled fashion. Consider the system’s /ete/passwd
(password) file, for example. Any user should be able to change
his/her own password, but allowing unrestricted write access to the
file would constitute a gross breach of security. A running program

L—J

34

2.4.6

File Sharing

THE UNIX SYSTEM

whose set-uid bit is set can change its user -id from the user
who is running the program to the user who owns the program. It
then acquires the owner’s permissions with respect to the owner’s
files. Only the owner of a file can change the file’s set-uid bit.

Here is how the set-uid bit enables the password file to be
changed in a protected fashion. The password file is owned by
root (the super-user); its permissions allow anyone to read the file
(passwords are stored in an encrypted form), but only root has
permission to write into it. There is a program called passwd, also
owned by root, that any user can execute; passwd changes a
password in /etc/passwd. The passwd program is stored as a
file whose set-uid bit is on. When a user executes passwd, the
program issues a se tuid system call asking (in an argument to the
call) that its user-id be changed to root. In executing the call, the
kernel verifies that the program is owned by root and that its
set-uid bit is on; in response it changes what is called the
effective user-id of the process running passwd to the owner of
passwd, that is, to root. This allows the passwd program to
write into the password file. Note that passwd runs in its own
process and only that process’s effective user-id is affected by the
set-uid bit. At the same time, it is important to recognize that a
program like passwd that changes its effective user-id to
root must be a trusted program; because it runs with privilege, there
is essentially #0 check on its behavior.

The set-uid facility is not restricted to use by root; any
user can restrict access to his/her files to his/her own programs, yet
allow anyone (but not necessarily everyone) to execute such
programs. Again, such a program must be trusted, because it can
obtain access to @// of the owner’s files. A program that can set its
effective user-id to root can do other things besides updating files
owned by root; it can execute privileged system calls, such as
setpriority.

Closely related to set-uid is set-gid, which changes the
effective user-id not to the program’'s owner, but to the owner’s
group. Thus set-gid relaxes control over file access to programs
that belong to any member of the owner's group.

In the UNIX system it is perfectly possible for two processes to
open the same file; indeed, as mentioned earlier, a child process
inherits its parent’s open files. Further, any process that knows the
name of a file and has appropriate permissions can open it. Note:
processes that share files as a result of inheritance also share I/O
pointers; therefore a read by either process will change the other
process’s position in the file. Normally this does not cause
difficulties because the parent wants the child to take over the files
while the child runs. When the child terminates, the parent
resumes processing the files. Processes that share files as a result of
separate opens have separate I/O pointers. In either case, buffers
are shared system-wide, so a change made by one process will be
seen by the others sharing the file.

Fig. 2.8

Using a Lock File

The Kernel 35

If multiple processes wish to update a file in a consistent
fashion, they need to synchronize their accesses so the updates are
applied one at a time. The classic way to do this, and the only way
in many UNIX implementations, is to have the updating processes
atcempt to create a “lock file” before proceeding to change the
shared file. To do so, each process might execute code illustrated by
the psuedocode in Figure 2.8.

(% try to create the lock file *)
exclusive := open("lockfile", write only,
create_exclusive);

(k did it already exist; that is, did open fail? %)
if exclusive < 0
then
(% ...delay and try again...
someone else is updating *)
endif;

(* we have created the lock file,
giving us exclusive access to
the shared file %)

(% ...update the shared file... %)

(% delete the lock file
so someone else can create it ¥%)
close (exclusive);
unlink ("lockfile"); (% unlink deletes a file %)

Besides being clumsy, there are a few difficulties with the lock file
approach:

0 It is slow.

0O A system crash leaves lock files lying around; these must be
removed manually.

O It doesn’t work for privileged processes, which can always
create files.

The Sun UNIX system provides a better way, using a server
process. Two general approaches are possible. *® In the first approach
one server process is designated to update the file, with other client
processes sending it update requests via a socket. The alternative isa
server that serializes access to the file, but allows a process which has
been granted access to do its own updating.

18. The Berkeley flock system call is an alcernative that is an improvement over lock files but
has its own difficulties. Like a lock file, it is an advisery lock, which only works if all
updating processes observe the convention. More importantly, flock is only applicable to
local files, not to files shared across che nerwork.

- R RS e S s ———

36

2.4.7

File System
Implementation

THE UNIX SYSTEM

The UNIX file system completely hides the physical characteristics
of the underlying disk (for example, its block size), and is happy to
store or retrieve a single byte or 10,823 bytes; With such
generality, one might well question its ability to perform. And,
indeed, file system speed is probably the crucial factor affecting the
overall performance of a UNIX implementation.

All UNIX systems utilize a buffering-caching scheme to
minimize disk accesses and to overlap I/O with processing; both
ordinary files and directories are cached. One pool of buffers is
shared globally across all file systems and all processes using those
file systems. Each buffer is the size of a file system block. In
response to a read request, the system searches for a buffer that
already contains the block; if such a buffer exists, the kernel simply
moves the data to the process’s data area and returns, having
performed no physical I/O. If no buffer holds the sought-for block,
the system initiates a physical read into the least-recently-used
buffer; later, when the disk driver has filled the buffer, the system
copies the data from the buffer. The kernel recognizes sequential
access of a file, and pre-reads blocks to keep the buffers ahead of
process requests.

write system calls are handled similarly. The kernel looks
for the buffer into which the process’s data should be written; if the
buffer exists, the system copies the data into it and marks the buffer
“dirty” (needing to be written), but performs no I/O. A dirty buffer
is scheduled for writing when the system needs a buffer to hold a
new block and the buffer is the least-recently-used in the pool. Ifa
block into which data is to be written is not present in a buffer, it is
read in as described for a read call and then updated as described
here.

The principal upshot of this caching technique is that
frequently accessed blocks (for example, current directories) tend to
stay in memory, allowing read and wr i te calls to be completed
quickly without physical /O. On the other hand, the UNIX
system’s practice of delaying physical writes until a buffer is needed,
means that in the event of a system crash, data a process thought
was written may actually have been left in a buffer. (To reduce the
potential magnitude of this problem, the kernel executes the sync
system call every 30 seconds. This call writes all dirty buffers,
bringing the state of the disk into synchronization with the state of
the buffer pool.) Processes that must know that a wri te has really
updated the disk can issue the fsyne call, which works like sync
for a single file.

As mentioned, all UNIX systems utilize this
buffering-caching technique. However, much of the rest of the
usual file system implementation is too simple-minded to realize
high levels of performance. For example, after the system has been
running for a while, new disk blocks are allocated in essentially

19. The read-ahead algorithm is simple. When block » of a file is to be read, the system checks to
see if block n-1 was the previously read block of the file, If so, block n is read and /O is also
started for block 7+ 1. When the process subsequently requests block 1+ 1, it will already
be in memory or on its way in.

2.4.8

Devices

The Kernel 37

random locations over the disk, necessitating long seeks even for
sequentially accessed files. One of the major contributions of
4.2BSD is a redesign of the file system internals, while retaining
the familiar interface. The result is several times better perfor-
mance.

Here, very briefly, and highly simplified, are the 4.2BSD
alterations:

O File system blocks are 4K bytes and a block can be broken
into separately allocated fragments whose size is a multi-
ple of 1K bytes.?’ A file occupies 0 or more 4K blocks plus
a fragment, if needed, of 1K, 2K or 3K bytes. (For
example, an 11,000 byte file takes two whole blocks plus a
third block fragment of 3K; the 1K fragment remaining in
the third block is available for allocation). The larger block
size transfers more data per disk transaction and makes
fewer files subject to indirect access penalties.”' At the same
time, the smaller fragment keeps disk utilization roughly
on a par with the traditional file implementation (small
files tend to predominate in a UNIX system).

O The system knows about and exploits hardware characteris-
tics: processor speed, disk rotational speed, and so on.

O To the extent possible, file blocks are allocated on the same
cylinder in an optimal position for sequential access,
considering the rotational characteristics of the drive.

O Files in the same directory are located near each other to
speed operations that affect all files in a directory.

The 4.2BSD file system is also more robust than its predecessor.
The critical piece of information in any UNIX file system is called
the super-block. If the information in this block becomes unread-
able, the file system cannot be repaired after a system crash or
improper system shutdown. 4.2BSD replicates the super-block in
such a way that any single track, cylinder or platter can be lost and a
super-block will still be available. Moreover, the disk is updated in
well-defined stages so that a post-crash recovery program (called
f'sck, for file system check) can either complete unfinished updates
or back them out cleanly, leaving the file system internally
consistent.

Devices fit naturally into the simple UNIX model of stream I/O;
after all, just about any device can supply or accept a stream of bytes
(or both). For example:

20. Block and fragment sizes are actually configuration options and can be different for each file
system; these are the common values, however.

21. To keep inodes reasonably sized, only the first 12 blocks of a file are recorded in the inode
and are therefore directly accessible. For larger files, up to three additional inode entries
point to other structures that contain more block addresses. Thus, the larger the block size,
the larger the file that can be addressed without indirection.

_—J

THE UNIX SYSTEM

O A printer is a write-only stream.

0O A terminal keyboard is a read-only stream and its display is
a write-only stream.

O A tape drive is either a read-only or write-only stream (or a
read/write stream, if a tape file is being extended).

To make devices easy to deal with, they are in fact integrated into
the file system, where they are known as special files. Every UNIX
system has a directory called /dev which contains an entry for each
device in the system. A device name is identical to a file name and
may therefore be passed as a parameter anywhere a file name is
permitted. A particularly useful pseudo-device is /dev/null,
which corresponds to the “bit bucket” provided in many operating
systems. Reading from /dev/null produces an immediate
end-of-stream indication, while bytes written to this device simply
disappear.

To control access, file permission bits apply to devices as well.
In general, devices are owned by root, and permission to write
sensitive devices (for example, disks) is limited to root. When a
user logs in on a workstation or terminal, the system gives
ownership of the terminal or workstation to that person until he/she
logs out. By defaule, all the terminals on a system are publicly
writable, allowing messages to be sent among users via the wri te
command. Such messages, however, can be intrusive, especially
while editing a file.”” To stop such intrusions, the user has only to
alter the permissions on the terminal to make it unwritable to
group members and members of the public.

Devices are not completely identical with files, of course,
because many of them cannot fully mimic the disk drive that
underlies a file. For example, 1seek is really designed for files and
disk devices, not terminals. In a slightly different vein, aread toa
keyboard normally returns at the end of a line, so a program will
often receive fewer characters than it asked for (of course, a
well-written program should expect the same “short read” at the
end of a file, so compatibility between file and keyboard input is
really not an issue). Despite these minor, and inevitable, differ-
ences, the fundamental identity of files and devices (and pipes and
sockets) is extremely useful in practice. For example, the UNIX
sort utility sorts the lines in a text stream, writing the outpur to
another stream. It makes no difference whether the input comes
from a communication line, the keyboard, or a file, and the output
can similarly be a file or a device or a process (via a pipe). Yet this
versatility is obtained without a line of code in the program devoted
to the idiosyncracies of (present or future!) devices.

Some devices are capable of more operations than read and
wr i te; intelligent terminals and tape drives are the most common
examples. Each device, therefore, may support a number of

22, Actually, most people use the non-intrusive mail utility, described in a later chapter, to
communicate. This example just shows how the permission bits fit devices as well as files.

2.4.9 Terminal Database
2.4.10 Standard /O And
Redirection

g—J

The Kernel 30

device-specific operations via the ioctl system call; a parameter
identifies the particular control command to be executed. A block
containing device-related data can also be passed to the device
driver inan ioctl call. Programs that use ioetl calls, of course,
are device-dependent, as the ioctl commands available for one
device are not necessarily available on another.

Most users interact with the Sun UNIX system through a Sun
workstation. Character terminals, however, can be connected to
workstation serial ports to allow multiple users to share a
workstation. With the addition of multiplexer boards, moderate
numbers of terminals can be attached to a Sun system. Such
terminals can often underscore, blink, update part of a screen, and
so on. Unfortunately there are no universally adopted “escape
sequences” for invoking these operations — even though the
operations are in many cases identical. The Berkeley termcap file
brings a measure of order to this chaos by defining a set of generic
terminal operations and the code sequences that implement these
operations on scores of terminals. Since termcap is an ordinary
text file, new descriptions can be added simply by editing the file.
termcap has been adopted by many other UNIX implementa-
tions.

The UNIX system defines the streams associated with descriptors
0, 1 and 2 as a process’s standard input, standard output and
standard error respectively. Except when there is good reason not
to, programs read their input from the standard input, write their
output to the standard output, and write diagnostics to standard
error. Since a process inherits descriptors from its parent, its basic
I/O channels are already set up; it need only establish descriptors for
the auxiliary files and devices it needs. In addition to saving a small
amount of effort, using the standard descriprors gives a program a
large measure of universality automatically. Since files, devices,
pipes and sockets all work essentially the same, a program will work
with its standard descriptors hooked up to any of them. Thus, to
take a simple example, a program that counts words in a text
stream, writing the total to the standard output, works when the
input is taken from a terminal, from a file, from another process,
and likewise for the output. Programs that observe this simple
convention tend to work together without any additional design
effort by their programmers.

By default, the standard input is associated with the keyboard
of the user who ultimately invoked the process; the standard output
and standard error are associated with the user’s display. As a rule,
the standard error retains its association with the display, since error
messages that disappear down a pipe, for example, are not very
useful. Often, however, a new child process will redirect its
standard input and/or standard output, before execing a program.
(In this way the execed program need not be concerned with
where its input comes from or where its output goes.) The most

40

2.4.11

Non-blocking /O

THE UNIX SYSTEM

common example of this is the shell, which provides users with a
very convenient notation for asking that the standard input,
output, and error of a program be redirected before it is executed;
how this is done is described in the next chaprer.

The standard UNIX I/O intetface is synchronous to the caller; a
calling process is blocked until its request can be satisfied. Often, in
the case of files, the buffer cache makes this almost instantaneous.
There are situations, though, in which a process does not want to
block because of an /O operation that cannot be completed
immediately. Suppose, for example, that a process is monitoring
several communication lines and wishes to read data from any of
them. If it were to read a line on which no data was available, the
process would block until data arrived on that line — even though
data might be present on one or more of the other lines. To permit
the straightforward implementation of these kinds of processes,
Berkeley introduced the notion of non-blocking 1/0. To use this
facility, a process issues the fentl system call before it does any
I/O on the descriptor. (fent] stands for “file control” — a more
accurate description would be “descriptor control options.”) One of
the parameters passed to fentl tells it to mark the descriptor as
non-blocking.

Reading from a non-blocking descriptor produces an identify-
ing error code if the read cannot be satisfied immediately because
no data is available. Writing to a non-blocking descriptor transfers
as many bytes as possible without blocking; as usual, the call
returns the number of bytes actually written. If no bytes can be
written, a write to a non-blocking descriptor also returns an
identifying error code. Thus, where normal UNIX IO can be
thought of as unconditional, non-blocking /O is conditional — a
request on a non-blocking descriptor means “do it now if it is
possible, otherwise return an error.”

A process using non-blocking I/O can repeatedly poll (that is,
try to read or wri te) the descriptor(s) of interest. Such polling,
however, can waste a good deal of CPU time in some cases.
Alternatively, the process may ask to be signalled asynchronously
when a non-blocking descriptor becomes ready for I/O. This is also
done with the fentl system call. When invoked, the process’s
signal handler can issue the select call, described below, to find
out which descriptor has become ready.

The Berkeley select call provides an alternative method of
determining when I/O is possible on a descriptor; it can be used
with both blocking and non-blocking descriptors. Furthermore,
select has a multiplexing feature that makes it possible to find
out when I/O is possible on any of several descriptors. select
takes bit string arguments that specify the descriptors of interest; it
returns the total number of descriptors that are ready for VO.
select also returns bit strings that specify which descriptors are
ready to read and which are ready towr i te. select can be told
to return immediately, or to block the process until at least one

2.4.12

24.12.1

Network File
System Overview

Servers and Clients

The Kernel 41

descriptor is ready. A timeout argument can be specified to keep
the process from blocking forever, or to allow the process to
periodically do something else.

Most of the I/O facilities described in the previous sections are
available on any UNIX system implementation, and all of them are
provided in 4.2BSD implementations. 4.2BSD also provides
low-level network I/O facilities, such as sockets, which are beyond
the scope of this report. At a higher level, there are facilities in
4.2BSD for logging into a remote machine, copying files between
machines, and executing single commands on remote machines. To
these basic 4.2BSD network capabilities, Sun has added a network
disk (nd) protocol that permits a diskless workstation to use (part
of) the disk of another machine on the network. In this way,
diskless nodes can boot, page, and swap across the network,
eliminating the cost, noise, and space requirements of a local disk.
nd and the network are fast enough so that several diskless
workstations sharing a high-performance network disk exhibit
about the same performance as machines with local disks.

Where nd makes a single network d7sk appear to be locally
mounted, Sun’s Network File System (NFS) makes any number of
remote file systems appear to be mounted locally. In other words,
NES allows files to be accessed with standard UNIX /O calls,
independent of the location of the files. Users and programs see the
usual hierarchy of directories and files; they manipulate these files
and directories in the usual way, subject to normal permission
checks. The fact that parts of their file system may reside on various
machines around the network is invisible and of no concern.

As important as its funcrional capabilities is NFS'’s confor-
mance to Sun’s Network Services Architecture. This architecture is
designed to support the cooperative operation of heterogeneous
machines and operating systems on a common network. For
example, NFS can be implemented by other vendors, allowing files
to be shared transparently among Suns, mainframes,
supercomputers, database machines, personal computers, and so
on. These machines need not be based on any particular processor,
nor must they run the UNIX operating system. In addition to file
sharing, other network services may be provided by Sun and by
other manufacturers; such services may supplied by and used by any
machine on the network, independent of its architecture and its
operating system. To encourage the development and propogation
of network services, including NFS, to a wide range of machines,
Sun has placed the key network service building blocks in the
public domain. For the NFS service specifically, Sun is publishing a
specification of its protocol.

In the network services model, the computers on the network
are called nodes; each node has a different name. A given node may
act as a server or as a client or as both. A server provides a service to
processes or users on one or more clients. One such service is remote
file system access, the service provided by NFS. A typical NFS file

;L

2.4.12.2

2.4.12.3

Server Functions

Client Functions

THE UNIX SYSTEM

server is a dedicated machine with high-performance disks, but as
mentioned, any node can be a server, and a node may be both client
and server; that is, it may both supply and use network services. A
node “becomes” a client or a server by simply issuing appropriate
system calls and/or commands — no formal registration is required,
nor is there any fixed relationship berween clients and servers.
Adding a new client node to the network is simple; to use existing
network services, it must simply learn the names of the servers and
the interface they have defined to their services.

NES provides a set of operations that allow servers to export
file systems to the network and clients to import these file systems.
Like other operations that manipulate file systems, these are
privileged operations. Most often they will be executed as com-
mands from /ete/re. local (this file contains commands that
are automatically executed when a system is booted). However,
they can be executed at any time by a user or a program with root
privileges.

An NFS server initiates service by issuing a nfsd command.
nfsd starts a specified number of daemons (by default 4) on the
server; these daemons field incoming requests for service. To make a
file system available to clients, the server places the file system’s
name in a file called /etc/exports. Optional data in
/etc/exports enable the server to limit the nodes that may
import a file system. To withdraw a file system from the network,
the server simply removes the file system’s entry from
/ete/exports. Any subsequent client reference to a such an
“embargoed” file system is returned to the client just as if the server
had never exported the file.

To gain access to an exported file system, a client simply
mounts the file system as if it were recorded on a local disk pack.
Sun has added parameters to moun t thar tell NFS where to find the
file system on the network. A client can remove a network file
system from its file system tree by issuing an umount call in the
normal way.

Figure 2.9 shows some typical, if simplified, interactions of
three network nodes, one a server, one a client, and a third thart acts
as both server and client.

Having built a file system tree from some combination of
network and local file systems, a client can issue ordinary UNIX
/O calls on the files. The physical location of a file in the tree is
essentially transparent; not only do the normal file operations, such
as read, write and lseek, work normally, but so does
permission checking and so on. As a resulr, virtually all existing
UNIX applications operate properly with network files.

INFS does not totally emulate the UNIX file system, however.
For example, remote devices (such as modems and tape drives)
cannot be accessed via NFS as UNIX special files.” Remote special

23. They can, of course, be accessed by logging into the associated node,

Fig. 2.9

Exporting and
Mounting Network
Files

The Kernel 43

Node "alpha”

a, Initial Situation

fusrz

15

Jusr
demol demo2 demod exports{
N e

—_
Network ‘ l
Node “beta" Node “gamma”
/
fusr
exports |/proj
Node “alpha”

b. After Clients Mount
Metwork File Systems

demoldemo2 demo3 /usr
iR S exports Eus 2
H Network ‘
Node "beta” Node "gamma"
/!
demoldemo?2 demo3 MO ,’usr_
SISITYyNSESIes et foees
mount -t nfs alpha: mounit -t nfs alpha
Jusr/sre Jusr/src fusr/src fusr/src
mount -t nfs alpha: mount -t nfs alpha:
Jusrz jusrz /jusr2 /jusr2

mount -t nfs gamma
/usr/proj /usr/proj

files, and a few other UNIX file system details, have been sacrificed
in order to give NFS a stateless protocol, as explained below.
(Devices ate inherently stateful.) The result is a system that provides

44

2.4.12.4

NES
Implementation

THE UNIX SYSTEM

the most important file system operations at a higher level of
reliability than would be possible with complete emulation.

The Network File System has been carefully designed to
provide good performance, to be minimally affected by node
failures, and to conform to the open systems principle.

To eliminate task switching overhead, Sun has built NFS into
its UNIX system kernel. Servers are multithreaded and process
multiple requests concurrently. Shortcuts in the code bypass
processing in common cases. Both servers and clients perform
asynchronous read-ahead, and clients write behind.

NEFS allows users to make performance/space tradeoffs to
obtain the performance they need in their environments. For
example, shared file systems can be spread across mulriple servers to
gain the effect of multiprocessing. Frequently accessed read-only
files can be duplicated on multiple servers, again to distribute the
file processing load across multiple machines. Finally, clients with
local disks can choose which files to access over the network and
which to store locally.

Occasionally failing network nodes are a fact of life, and NFS
has been designed to operate robustly in the face of such failures.
The key o its robustness is a stateless protocol between the client and
server sides of NFS. Basically this means that a server can treat every
request from a client as brand new; it need remember nothing from
the client’s former transactions. As a result, the failure of a client
does not affect a server in any way; the server need not be notified of
the failure, since the server has kept no state information that must
be cleaned up. Ifa server fails, clients need only retry their requests;
when the server comes back up, they will be honored normally.

As mentioned, NFS is an example of a Sun nerwork service.
Inherent in the notion of network services is the idea of openness;
that is, the network and the services available on it are open to nodes
that are running non-Sun machines and operating systems. Such
nodes may be attached to the network and act as clients and servers
just as Sun worksrations do. For each service they wish to use or
supply, the node must implement the appropriate half of the
client/server protocol. To assist other manufacturers in making
their machines operate as NFS clients or servers, Sun is placing the
NES protocol in the public domain. As standard network services
such as NFS become widely available, networks will become
increasingly heterogeneous; users will be able to configure networks
with nodes specific to their own needs and desires.

NFS and all network services are based on the Remote
Procedure Call (RPC) and External Data Representation (XDR)
developed by Sun. RPC provides a standard way for programs
running on different operating systems to call each other, passing
arguments and returning results. Programs that use RPC are
shielded from the calling conventions of different operating sys-
tems; a client process calls RPC just as it would any local procedure;
it is blocked until the call completes. Meanwhile, RPC on the
client translates the call into a standard form and sends it across the

2.5

Timers

The Kernel 45

network to the appropriate server. RPC running on the server
receives the call data, translates it from the standard form into a
form that makes sense in the server’s environment, and invokes the
called procedure, passing it parameters. Results are returned by
retracing the same steps in reverse.

XDR is a standard way to represent data passed between
different machines. Programs use XDR to shield themselves from
the byte ordering and data structure packing that vary from one
machine and compiler to another. Because XDR and RPC provide
the basis for constructing all network services, Sun has placed their
code in the public domain.

A process can obtain the local time of day and Greenwich mean
time with the Berkeley gettimeofday system call. The value
returned is expressed in seconds and microseconds since midnight 1
January 1970. A privileged process may set the time with
settimeofday.

Each process has three interval timers that it can set and query
with the setitimer and geti timer system calls. These timers
count down from their settings to zero and issue signals when they
expire. One of the timers runs continuously, one runs only when
the process is executing its own code, and the third runs when the
process is executing its own code or kernel code.

The time and profil calls found in other UNIX system
implementations are also available.

The Shell

The UNIX system kernel essentially provides a file system and an
environment in which processes can execute. These processes are
initiated by users with the aid of a program called a shell. This
chapter describes a shell, in fact two of them. The discussion is
divided into three parts. The first describes how a shell works,
noting particularly its relationships with the kernel. The second
part shows how a shell can be used to execute commands
interactively. The last part describes shell programming, the
important property of a shell that distinguishes it from typical
command interpreters.

As mentioned, a shell is functionally equivalent to the
command interpreter found in other operating systems; users give
commands to a shell and the shell makes the proper system calls.
Unlike most command interpreters, a UNIX system shell is wholly
distinct from the kernel; not only is it a separate program, it is an
ordinary program. Why this separation? The answer is flexibility.
It 1s not easy to design a user interface that works really well for a
range of users — and even at a single site, users may range from
systems programmers to clerks to managers. Nevertheless, most
operating systems embed the user interface in the operating system,
dictating the style of user-system interaction, and also making it
very difficult to change. Because a shell is an ordinary program, a
UNIX site can replace it on a per-user basis. Further, the services
provided by a shell are available to other programs as well as users; a
process can simply fork a child process which execs a shell as it
would any program.

There are two standard shells, at least one of which is available
on every UNIX system; both are supplied with the Sun UNIX
system. The two shells are named sh and esh. sh stands for the
Bourne shell (written by S. R. Bourne at Bell Laboratories) and
csh stands for the C-Shell (so-called because its syntax resembles
that of C); esh was written at Berkeley. Both shells can be used as
interactive command interpreters and as programming languages.
However, the C-Shell is a little better for interactive work, while
many people prefer the Bourne shell for programming. (The
interactive part of the C-Shell is mostly a small superset of the
Bourne shell, making it easy for users to move berween them.)
Accordingly, many people use both shells, and the arrangement of
this chapter follows this widely observed convention: the C-Shell is
described as “the” interactive shell and the Bourne shell is described
as “the” programmable shell. First, though, a side trip to see how
either shell does its job.

s,

o

—

3.1 How the Shell
Works

3171 The Login/Logout
Cycle

The Shell 47

The bulk of this chapter describes the command and programming
interfaces the shell presents to the user. This section describes the
shell's other interface: its interaction with the kernel. Besides
exposing some of the shell’s inner workings, it provides a useful
review of the kernel, showing some of its facilities in action. As will
be seen, much of what the shell does for the user is implemented in
a remarkably simple fashion due to the design of the kernel.

When a UNIX system starts up, a primordial system process called
init is created. As shown in Figure 3.1, init consults a file
called /etc/ttys' to find the terminal lines that should be
opened. init then forks a process for each of these lines. Each
child process in turn opens its line (which may take some time if
the line is a dial-up) and execs a program called getty. getty
displays a login prompt on the terminal. When ge tty receives a
login-name from the terminal, it execs a program called login,
passing it the login-name. login then prompts for a password,
turning off echoing while the user types it. Consulting the system’s
/etc/passwd file, login finds the login-name, encrypts the
typed password and compares it to the stored password. If the
encrypted passwords martch, 1ogin looks up the name of the user’s
login shell (also in the password file), and execs this program.
If the login shell entry says /bin/csh, the C-Shell is started; if it
says /bin/sh, the Bourne shell is started; if it says
/usr/terry/ownshell, whatever program is stored in that file
is started. Thus, there may be several shells on a given UNIX
system, each presenting a command interface appropriate for a
particular user. For example, if for some reason, a user only writes
and executes BASIC programs, that user’s login shell entry might
be /bin/basic. Upon logging in, the user would be presented
with a BASIC interpreter.

Another entry in /etc/passwd identifies the user’s initial
working directory, called the home directory. The C-Shell looks
there for two files named . loginand . eshre.? These text files, if
present, contain shell commands that the user wishes to be executed
routinely. The . login commands are executed whenever the user
logs in and the . eshrc commands are executed whenever the user
starts a C-Shell.” A shell command frequently seen in . login and
.cshre files is set, which sets the value of one of the shell’s
built-in variables (it can also set user-defined variables). These
variables define such things as the directories the shell will search
when looking for a command, the type of terminal you are using,
and so on; several of them will be described in this chapter. When

1. “tty” is an abbreviation for teletypewriter, the dominant terminal at the time the UNIX
system was designed.

2. File names of the form .xxxxre are called “are-see” files; the letters “'rc”" stands for “run
H
command.” Several utilities use them to execute user-specific standard startup sequences.

3. Since a shell is an ordinary program, any process can start an instance of it. Some editors, for
example, have a command that permits the user to execute a shell command from the editor.
To implement this shell escape, as it is called, they simply fork a process that exees a shell. If
a C-Shell is started in this manner, it will begin by executing the commands in the user'’s
.eshre file. By the way, the equivalent of . login for the Bourne shell is a file called
.profile.

&

48

Fig. 3.1

Login/ Logout Cycle

THE UNIX SYSTEM

{startup}

S

ete/tiys

{terminal lines to open}

fork {oneinstance perterminal ling}

ogin-name
exec

exit

ete/
passwd

{password, login shell,

home directory} ;

{it command = logout}

the C-Shell has initialized itself, it displays a prompr (by default
hostname%, where hostname is the name of the machine the shell is
running on), indicating its readiness to accept a command from the
keyboard.

Having initialized itself, the shell basically executes an
infinite loop in which it does the following;

O get next command;
O fork child process to run command;

0O wait for child to terminate;

O repeat;
Later sections of this chapter elaborate on the shell’s “main loop.”

To stop the shell you type either the logout command or
Control-D. Control-D is the special character that signifies end-
of-stream from a keyboard — the shell interprets this as meaning
there will be no more commands, so it logs you out.® esh executes
a logout by terminating itself like any orher process: it issues an
exit system call. When ini t learns (via completion of its wait
system call) of its child’s termination, it starts the login cycle again
by forking another child that execs getty.

4. There are a number of programs besides the shell that stop when you indicate that you have no
more input for them by typing Control-D. It is fairly easy to make the mistake of thinking
you typing to one of these programs when you are actually typing to the shell. In such a
situarion typing Control-D will summarily log you off the system. This is a common ¢nough
occurrence that the C-shell has a built-in variable called ignoreeosf; when this variable is set,
the Cshell responds to a Control-D by displaying a message telling you to use the logout
command if you really want to logout.

|

The Shell 49 \‘

3.1.2 The Shell Recall from the discussion of the kernel that each process inherits a ‘
Environment process environment from its parent. This environment consists of

such things as the process’s base priority, its current directory, and
file descriptors. The process environment is maintained by the ._
kernel and can only be changed by system calls. When a process |
execs a program, the program is passed a second environment, an
environment derived from the shell. This shell environment
consists of a number of user-related variables such as: login-name,
shell name, home directory, command search path (explained
shortly), terminal type, and termecap entry. These variables
constitute a sort of “global argument list” that the user wishes to be
made available to all commands he or she runs. C-Shell environ-
ment variables can be changed with its se tenv command.

3.1.3 Commands To make the shell do something, you type a command. For
example, if you type

1s

the shell lists the contents of the current directory. If you type
cp oldfile newfile

the shell copies a file. Three types of commands can usefully be
distinguished.

1. Commands the shell must implement itself, These include
. commands that alter the shell environment, that control
the execution of multiple jobs, and that maintain and
modify the command history buffer (jobs and command
history are explained later in this chapter).

2. Commands that are implemented as utility programs
distinct from the shell; the majority of commands fall into
this class. When you type the name of one of these
utilities, the shell executes it by forking a child process
and execing the program — in other words, in exactly
the same way any UNIX program executes another in the
manner of a subroutine. Thus, any program may execute a
utility, and any program may be executed by the shell as a
command.

3. Commands that cox/d be implemented as utilities, but are
in fact built into the shell; there are only a few of these.
Built-in commands are short and very frequently executed.
Implementing them in the shell essentially saves the
overhead of creating another process, yielding a noticeable
performance improvement with the loss of some generali-
ty. In fact, the loss is not so great because most commands
built into the shell for performance reasons are also
implemented as utilities, making them accessible to other
programs.

When you type a command, you do not know or need to know how

g—i

50

Command
Execution

THE UNIX SYSTEM

the command is implemented. The point of the preceding discus-
sion is to show, that with a few necessary and pragmatic exceptions,
shell commands are just ordinary programs with no special status.
This means that new commands can added at will and that local
versions of commands can replace those provided with the system,
if necessary.

As ordinary programs,’ commands have ordinary file names and
may reside in any directory, although administration is simplified if
they are gathered in just a few. You can enter a command by typing
the command’s full path name. For example, to check a text file for
spelling errors you can type:

/usr/bin/spell file. txt

(bin conventionally stands for “binary” and often denotes a
direcrory containing object modules.) Typing path names, howev-
er, is a nuisance, so the shell allows you to type just the command’s
file name, as if all commands were in your current directory. That
is, to check the spelling in a file, you can just type:

spell file. txt

How, then does the shell find the file containing the command? It
could start its search at the top of the file system tree but
performance would be unacceptably slow. Alternatively, predefin-
ing a directory in which all commands were kept would place a
somewhat arbitrary restriction on users. Therefore, the shell
searches the directories listed in its path built-in variable. Every
user can set this variable as he or she pleases, although most of the
utilities that come with the system are located in two or three
directories.

To further speed performance, the C-Shell maintains a hash

table in memory that maps the short command names into absolute
path names. It builds this table when it starts up by scanning the
directories listed in the path variable for executable files. Given
that it has a way to find the program that implements a command,
the shell executes it just as any program executes another: it forks
a child process that in turn execs the program (after looking it up
in the hash table). Figure 3.2 shows, in pseudocode, a simplified
version of the C-Shell's “main loop.”
Of course, this represents the simplest case. However, subsequent
sections of this chapter will show how the design of the kernel
makes it simple for the shell to implement mechanisms like
background processing and I/O redirection.

5. This secrion only considers the execution of commands implemented as urilities — che
COMIMOn CASE,

The Shell 31

loop;
display (prompt) ;
get_next_command (cmd, arguments);
process_id := fork(); (* fork a child to run the command *)
if process_id = 0
then
(k child *) exec(lookup(cmd, hash_table), arguments);
exit();
else
(* parent %) process_id := wait(status);
endif;
(% parent--child has terminated %)
if status /= 0 (* if status not equal to 0 %)
then display(error_msg(status));
endloop;
Fig. 3.2 C-Shell Command |
Execution Logic |
5.2 Interacting with the This section describes the C-Shell’s command interpreting facili-
C-Shell ties. The basics of issuing commands from a terminal or
workstation, applying commands to groups of similarly named |
files, and giving names to frequently issued command lines are |
covered first. Described next are the two facilities, called history
and job control, that are the principal advantages of the C-Shell over
. the Bourne shell for interactive work. I/O redirection and pipelines,
which are essentially kernel services for which the shell provides
access and a convenient notation, round out the discussion.
2 Command Syntax Because commands reside in ordinary files and are executed by

typing their file names, they are easy to add to the UNIX system.
Over the years many different people have done so. Since the shell
imposes almost no constraints on command syntax, some inconsis-
tency between commands is inevitable. However, most commands
follow the conventions described below.
Two kinds of arguments typically follow a command name, a
list of options (sometimes called flags or switches) and a list of file
names. The option list comes first; it is separated from the |
command name by a blank, and it begins with a hyphen (“-”) j
character (the option character is commonly pronounced “minus” or "
“dash”). To illustrate, both of the following commands copy a file
called minutes. cur to another file called minutes. old:

cp minutes. cur minutes.old
cp -i minutes. cur minutes.old

Many commands, including cp, write files; by default, most such
commands create files that do not exist and write over files that do
exist. These default actions are a good example of the pervasive
UNIX notion that you know what you are doing when you enter a
command. The -i option in the second version above specifies
“interactive execution.” In response to this option, the command

h—i

32

3.2:2

File Name
Shorthand

THE UNIX SYSTEM

will ask for confirmation before writing over minutes. old if it
EXIStS.

The minus tells the cp command that an option list is
present; otherwise it would interpret the “i” in the above example as
a file name. (Notice that creating files whose names begin with *-’
and other special characters, while legal, complicates life unneces-
sarily.) For some commands, multiple options are elided together
after the minus; for example, the following command copies a
group of files with the “interactive” and “recursive” options:

cp -ir suntech suntech. backup

This form of the cp command recursively copies all files in the
suntech directory, and any subdirectories, to the
suntech. backup directory, interactively asking for confirma-
tion before overwriting any existing file. Other commands want
multiple options separated by blanks, each preceded by a minus; for
example,

diff -1 -r oldversions newversions

finds the differences in the files in two directories, recursively
descending any subdirectories they may contain, and generating
the “/ong” ourput format (that is, producing more detailed
information than the default “short” format).

Multiple commands may be strung together on a single line
by separating them with semicolons; the shell executes the com-
mands serially, displaying its prompt when the last command
terminates. The following command line changes to a new working
directory and lists its contents:

cd bookreviews; ls

As mentioned in the last section, many commands take a list of file
names. For example, to delete (“remove” in UNIX system vernacu-
lar) several sections of a manuscript, you could type:

rm secl. txt sec2. txt sec3. txt

Such repetitive typing, however, is both tedious and conducive to
error. It can be avoided using the shell’s shorthand facility for
applying a command to a set of files. The shorthand notation for a
set of files is a pattern that zero or more file names may match. The
pattern is constructed of ordinary characters and special characters
equivalent to the “wildcards” found in many operating systems.
There are a wealth of such special characters, but two of the most
frequently used are “?“and “*". ? matches any single character and
* matches any string of characters, including the null string. When
you type a shorthand file name, the shell finds all matching files
(this is sometimes called “file name expansion”) and passes their
names to the command as if you had typed them all in full.
Suppose, for example, your current directory contains three files,
secl. txt, sec2. txt, and sec3. txt. The following com-

The Shell 53

mands then are equivalent:

rm secl. txt sec2. txt sec3. txt
rm sec?. *

Note that if other file names in the current directory match the
pattern (for example, sec4. txt or sect.mss), the second
command will remove them as well.

Characters like ? and %, which have a special meaning to the
shell, are called metacharacters. Sometimes you may want the
shell to interpret one or more of these as ordinary characters with no
special meaning (for example, when a file name contains a special
character). If a metacharacter is preceded by the backslash (\)
metacharacter, the shell will not intrepret the character specially. If
a string of characters is surrounded by single-quote (')
metacharacters, the shell will interpret everything inside the quotes
as ordinary characters. Thus either of the following commands will
delete a file whose name, for some reason, is sec?. *:

rm sec\?. \¥
rm 'sec?. k'

While the shell’s file name shorthand facility is a great timesaver, it
is potentially dangerous. Specifying a pattern that is more general
than you intend can have surprising effects; these may be amusing
or disastrous (the shell has no “undo” command). For example, as
mentioned earlier, rm sec?.% will remove files named
sec4. txt and secl.backup, that is, any file in the working
directory whose name matches the pattern. The echo command
can be issued to “preview” the shell’s expansion of a shorthand file
name. echo is the UNIX system’s simplest command: it merely
displays its arguments. The shell passes all the file names it creates
from your shorthand pattern to echo and echo writes them back
to the terminal, having done no harm. By the way, the fact that file
name expansion is performed by the shell rather than by individual
commands, is an interesting point. The file name shorthand facility
is localized in a single program, and yet applies to all programs —
present and future — run via the shell with no effort on the part of
their programmers or their users.

3.2.3 Command Aliases The C-Shell has a simple string substitution facility that provides
another kind of shorthand. Called aliasing, it can also be used to
customize commands and to create what are effectively new ones.

Suppose you frequently update and print a table of sales
offices. To do so requires a rather long command that is a nuisance
to enter on a regular basis. The following alias command
(typically issued in your . eshre file):

alias ptab 'nice thl salestab.ms | nice troff -ms -t | lpr -t -P1 &'

allows you to print the table by simply typing:

o

54

3.2.4 Command History

THE UNIX SYSTEM

ptab

(The elements of this command are explained in later sections of
this report. The important thing to note is that aliases are a
convenient shorthand for long strings typed to the shell.)

Aliases are quite general; the shell will substitute any string
for a command. Suppose you always use the -1 option of the 1s
command. (This option lists the contents of a directory in “/ong”
form, providing such informarion as permissions, owner, and size.)
The following alias effectively redefines the 1s command to your

preferred mode of use:

alias ls 'ls -1

An alias can substitute a command line argument for a variable in a
substitution string. The earlier table printing example can be
generalized to print any table by changing the p tab alias to take a
file name argument. Here is how it is done:

alias ptab 'nice thl \!% | nice troff -ms -t | lpr -t -P1 &'

The characters \ ! * are a “placeholder” for the argument you type
after ptab. Thus, typing ptab salestab. txt produces the
same result as the previous example in which the file name was
hardwired into the alias.

Aliases are handy for making simple string substitutions in
command lines. Real command programming, though, is done with
shell scripts, the subject of the last part of this chapter.

One of the C-Shell’s built-in variables is called history: the
command:

set history=10

directs the shell to retain your last ten commands in a buffer. This
command history mechanism is very useful and is one of the
principal reasons why many people prefer the C-Shell to the Bourne
shell for interactive work. Using the history mechanism, with very
few keystrokes you can: repeat a previous command, obtain an
argument from a previous command, or correct a typo in a previous
command and reissue it. Note that the facilities offered by the
history mechanism are quite extensive; only the basics are outlined
here.

A previously issued command in the history buffer can be
referred to by its number. The shell assigns these sequence numbers
automatically; they can be displayed in either of two ways. The
history command lists the contents of the history buffer in this
format:

| R A ™

The Shell 55

1 cd suntech/unix
21s -1 ‘
3 cd programs |
4 cc testprog.c
5 history

You can also have the current command number displayed as part of
the shell’s prompt, allowing you to see recent command numbers
that are still on the screen. The shell’s prompt string is the value of
the built-in variable prompt. By default, this value is "bostname®’,
for the Sun C-Shell, where hostname is the name of the machine on
which the shell is running. To see how this works, suppose that
your machine is called sunstar, the last command issued was
number 94, and your . eshre or . login file contains:

set prompt 'sunstar \!%'

then the shell will prompt for the next command with:

sunstar 95%

Thus, the exclamation point (many UNIX system users pronounce

this character “bang”) in the prompt string directs the shell to insert

the current command number in its place. The exclamation point

must be “quoted” with a preceding backslash to prevent the shell

from interpreting it as a history command when it executes the
. commands in the file on startup.

To re-execute, say, command number 66 (assuming it is still
in the history buffer), you just type ! 66. Sometimes you won't
know a command’s number (it may have rolled off the screen), but
you will remember its name. In such a case you can re-run the
command by typing !string, where string contains enough charac-
ters of the command name to identify it. The shell searches
backward through the buffer and executes the first matching
command, that is, the one most recently issued. Using the example
history buffer shown above, typing ! ¢ would execute command
number 4; typing !cd would execute command number 3.
Command number 1 cannot be re-executed by name since it has the
same name as the more recently issued command number 3.

A previously issued command can also be re-executed with
modifications (for example, to correct a typo, to apply the
command to a different file, or to apply a different command to a
previously typed file). Suppose, for example, that you just mis-
spelled the word “programs” in the following command:

cd suntech/unix/pograms

It can be fixed up and re-executed by simply typing

‘po’pro”

This means “in the previous command, change the string ‘po’ to
‘pro’ and then execute the resulting command.” Here is a longer

&—J

56 THE UNIX SYSTEM

form of the same kind of “re-execute with substitution” command
that is useful when the target command is not the most-recently

issued:
!ed:s/po/pro/

The shell interprets this command as “find the most recent
command beginning with the characters cd, substitute the charac-
ters ‘pro’ for ‘po’, and execute the result.” The slashes used as
substitution string delimiters in this example can actually be almost
any character, a handy feature when the target string contains
slashes (for example, it is a path name).

The shell thinks of a command line as comprised of “words”
separated by spaces (or a few special characters such as semicolons).
Each word on a line has an implied number, the first word being
number (). Some of these words may be long path names; retyping
such a name is a nuisance and an invitation to err. The C-Shell
permits a word or sequence of words from a previous command to
be effectively copied from the history buffer into the current
command. To see how this works, suppose the history buffer looks
like this:

65 cd /usr/terry/project/newindow/notes
66 1s -1
67 cd

Typing
cp !65:1/apr22meeting tempnote

picks up word 1 from command 65, yielding the following
command:

cp /usr/terry/project/newindow/notes/apr22meeting tempnote

To pick up a series of words from a previous command, the same
general notation is used, with the starting and ending word
numbers separated by a hyphen as in: ¢p ! 68: 1-2.

3.4.9 Job Control The C-Shell considers each separately entered command, sequence
of commands (separated by semicolons), and pipeline® to be a job.
Users can freely create multiple jobs, move them berween fore-
ground and background, suspend them, and resume them. In
short, job control gives users access to the multiprocess capabilities
of the kernel. Along with command history, job control is one of
the principal advantages of the C-Shell over the Bourne shell for
Interactive use.

6. Pipelines are an extremely useful means of connecting simple commands to perform complex
operations. They are described in detail shorcly.

The Shell 7

The simplest job control command runs a job in the back-
ground. Consider, for example, the compilation of a large program
which may run for a long time. Rather than wait for such a
command to terminate, you can direct the C-shell to run it as a
background job as shown in the following example:

f77 anewprogram. f &

Here, £77 is the name of the FORTRAN 77 compiler,
anewprogram. f is the source file, and & is the metacharacter that
tells the shell to run the job in the background. After starting the
job, the shell reports the job id and the process id of each process it
forks to start the job, and then issues a prompt. You can then
enter more commands while the job runs along in parallel in the
background. When the job terminates, the shell notifies you with a
short message.’

You can find out what your jobs are doing with the jobs
command. The following is typical of its output:

[1] Running cc partl.c
[2] = Stopped cc part2.c
[31 + Stopped mail

Job ids are listed first. The current job is marked with a '+ and
the previous job is identified with a '-'; these are useful for
% shorthand versions of job control commands that are not described
here. The job's status and the command line that invoked it are also
shown. To refer to a job in a command, you can use a percent sign
followed by the job’s id or characters from the command line that
invoked it in a fashion that is analogous to the command history
facility. For example, job 3 above can be identified by either %3 ' or
%mail'.
The job control commands and a few refated commands and
special keys are shown in Table 3. 1. Note that you can change the I
mapping of special keys to functions with the stty command. '
Allowing several jobs to read from and write to your workstation or
terminal concurrently could be confusing. Therefore a background
job is automatically suspended when it tries to read input from the
keyboard. At your convenience you can bring it to the foreground,
give it the input it wants, and then return it to the background. If
you want to see a background command’s output on the terminal,
but do not want it interspersed with the output of foreground jobs,
you can issue the following command:

7. Implementation nore: Starting a job in the background is crivial for the shell. As usual, it
forks a child process, which in turn exees the command. The difference is chac the shell
doesn’t wait for its child to terminate — after displaying the new process’s ID, it goes ahead
and displays the next prompt. The kernel sends che shell a signal when the child terminares.

58 THE UNIX SYSTEM
|
Table 3.1 Job Control Command Function |
Commands stop Suspend background job I
bg Move suspended job to background and restart |
fg Bring background or suspended job to)
foreground and resume 1
kill Abort background job |
nice Run job at reduced base priority !
Control-Z Suspend foreground job and return to shell |
Contrel-C Abort foreground job
Control-\ Abort foreground job and dump memory to file
for post-mortem debugging
Control-S Suspend terminal output
Control-9 Resume terminal output
Controel-0 Discard terminal output

stty tostop '

This command suspends a background job if it tries to write to the
display. If you bring it to the foreground, it will be resumed and
you can see its output.

The preceding techniques are satisfactory when background
jobs do relatively little workstation I/O. The common practice
when running jobs that do a lot of standard I/O is to redirect the VO
to files. This topic will be taken up shortly.

Here are a few examples of using job control commands. |

O Suppose you erroneously start a long C compile in the
foreground by forgetting to end the command line with &.
% Just type Control-Z to stop the job, then give the shell the
bg command to put the compile in the background as you

originally intended.

O Suppose that in the midst of a long edit you need to find the
name of another file. Typing Control-Z suspends the edit
job and returns you to the shell. Now you can type
whatever commands you need to find the file name. When
found, type fg and you are right back in the editor exactly
where you left off.

O Suppose you want to run several background jobs while you
continue to work in the foreground. As described in the
kernel chapter, the scheduling algorithm will divide pro-
cessor time more or less fairly among all the processes,
favoring I/O-intensive processes, as your foreground work
is likely to be. Nevertheless, if there are enough back-
ground proceses, foreground response time can deteriorate
noticeably. “niceing” the background processes will bias
their base priorities so they get less favorable treatment
from the scheduler, thereby improving foreground
response. For example:

nice £77 erunch.f &

The Shell 39

3.2.6 /O Redirection In the absence of file name arguments, most commands read their |
input from the standard input and write their output to the |
standard output. Recall from the discussion of the kernel that one of
the things a newly spawned process may do before execing a new [
program is to redirect the program’s I/O. The shell provides a very |
convenient notation for redirecting a command'’s standard I/O
before executing it.* Suppose, for example, you want to save the
output of the 1s command in a file. The following is all that is
necessary:

Is -1 >dirlist

As usual in the UNIX system, if the file dirlist exists it is
overwritten. However, setting the C-Shell's noclobber built-in
variable changes its default action so that it will not overwrite an
existing file with redirected I/O unless explicitly directed to do so.
To append the output to an existing file, the following notation is

used:
ls -1 >>dirlist

If the file does not exist, it is created. The standard error can be
redirected to the same file as standard out by typing a command
like this:

1s -1 thisdir >& dirlist

To redirect the standard out and standard error to different files, use ‘
the following form:

(1s -1 thisdir > dirlist) >& errlist i

The shell can redirect a command’s standard input from the
keyboard to a file using a similar notation (the we command counts
words, lines and characters):

we < longlist

/O may be redirected from/to devices, as well as files, since for the
most part the UNIX system does not distinguish between them. A
particularly handy device (a pseudo-device, really) is /dev/null.
Any output written to this device is simply thrown away; reading
from /dev/null results in an immediate end-of-stream condi-
tion. Redirecting a program’s standard outpur to /dev/null isa
simple way to deal with commands that produce volumes of output
that are irrelevant to the context in which the command is being
invoked. For example, suppose you want to find out how long a

8. Implementation note: Before execing the program that implements the command, the child
shell examines the arguments typed by the user. If they indicate /O redirection, the child
shell simply closes the relevant descriptor and opens the file or device specified in the
command line. (Recall that open always returns the lowest-numbered available descripror.)
For example, if standard outpur is to be redirected to a file called dirlist, the child shell
closes descripror 1 and opens dirlist. Neither the parent shell (which has its own
descriprors) nor the program subsequently execuced have any idea that the redirection has
raken place.

B

60

3.2

Pipelines

THE UNIX SYSTEM

command takes to run. The time command reports the execution
time of another command whose name is passed to it as an
argument. For example:

time grep e longlist > /dev/null

will tell how long it takes to search a list for all occurrences of the
letter “e”, without bothering to display what may be thousands of
lines on the screen.

Suppose you want to find the files in a large directory that have the
suffix . txt, listing them in decreasing order of size. This is easy
using the 1s, grep, and sort commands as follows:

1s -1 bigdir > temp1
grep '\. txt' templ > temp2
sort +3nr temp2

(The size of each file is the third field in the lines produced by 1s
-1. The sort +3nr command sorts the lines into reverse
numerical order based on this field.) At the heart of this example are
the templ and temp2 files which hold intermediate results and
should be removed after executing the three commands. Instead of
having the processes communicate through temporary files, why
not just connect them with pipes? The shell makes it easy:

Is -1 bigdir | grep '\. txt' | sort +3nr

Besides saving typing (and remembering to remove the temporary
files), such pipelines have two additional advantages. First, unlike
files, there are no size constraints on pipes. Second, all the processes
in the pipeline run in parallel. The result is less elapsed running
time.”

Commands coupled in various ways with pipelines form an
amazingly versatile toolkit. Suppose, for example, that you want to
find out which users are consuming the most disk space. The
following pipeline does the job:

du -s /usr/* | sort -nr | head

(This example assumes that all home directories are themselves
located in the /usr directory.) The du command produces one line
per user that summarizes that person’s total disk usage. These lines
are piped to the sort utility, which sorts them numerically in
reverse order (so the largest consumers come out first). The sorted
lines are piped to the head utility which, without arguments, just

9. Implementation note: To execute a pipeline the parent shell first creates the number of pipes
entered as arguments on the command line. It then forks a child for each command in the
pipeline. Each child examines the arguments and uses the dup system call to replace a
standard descripror with a descripror representing the read (for standard input) or write (for
standard outpur) end of a pipe. Again, neither the parent shell nor the program to be executed
is affected by the redirection. If the pipeline is executed in the foreground, the parent shell
waits for the last process in the pipeline to terminate; if it is executed in the background, the
shell does not wait bur issues its next prompr,

The Sheil 61

displays the first ten lines. Quickly connecting simple commands
like this to solve problems that arise everyday is very characteristic '
of the programming style that has come to be associated with the
UNIX system. More examples will be found in the next chapter. I

3.3 Programming the The first part of this chapter emphasized that UNIX system

Bourne Shell commands are, in the main, ordinary programs executed as
processes by a shell; a shell is another ordinary program. It follows
from this that a shell should be able to execute a different shell or
another instance of itself as a command. Moreover, facilities such as
I/O redirection should apply to shells executed as commands just as
they do to other programs. In fact, all of this is true. Consider the
following three commands:

sh
sh < makedoc
sh makedoe

Assuming you are typing these commands to the C-Shell, here is
what happens. In the first case, the C-Shell forks an instance of
itself, passing the descriptors for your workstation or terminal, and
waits. The child C-shell then execs the Bourne shell (the Bourne
shell’s name is sh). The Bourne shell, running as a separate process, |
issues its prompt and executes the commands you type. When you
type Control-D, the child process running the Bourne shell exits.
This causes the parent C-Shell's wai t system call to return, and the
parent then writes another prompt on your workstation or terminal.
In the second case, the sequence is identical except that the child
C-Shell redirects its standard input to the file makedoc before
execing the Bourne shell. The Bourne shell then reads and
executes commands from this file, essentially unaware that it is not
connnected to a keyboard (the shell does not issue prompts,
however, when it executes commands from a file). When it reaches
the end of the file, the process running the Bourne shell exits, and
the C-Shell issues its next prompt as before. The final example
shows that the shell, like most utilities, follows the convention of
reading its input from a file (rather than the standard input) if one is
specified as an argument. The result is identical to the second
example; the only difference is that the child shell explicitly opens
the file makedoc instead of reading the standard input.

Many operating system command interpreters can execute
commands from a file. Two things distinguish the shell’s capabili-
ties in this area. First, reading commands from a file is not a special
feature built into the shell, but a natural consequence of the
mechanisms and conventions that apply to all UNIX programs: the
unity of devices and files, and the notions of standard I/O and
redirection. Second, the shell interprets more than a command
language, it interprets a real programming language with variables,

L—‘

62

3.5.1

Installing and
Running Shell
Scripts

THE UNIX SYSTEM

input/output, flow control, and debugging facilities. This lan-
guage is a remarkable tool for getting work done rapidly. The
following items help explain why shell programs can be developed
so quickly:

O The language is interpreted; you can test a fix immediately
without waiting for compilation and linking.

0 The C-shell’s job control facility makes switching between
program editing and program testing extremely fast; to test
a change, for example, you just type Control-Z to put your
editing session in the background and return you to the
C-shell. After running the program, you resume the edit
session by just typing fg.

O The UNIX system utilities described in the next chapter
form what amounts to a library of very high level subrou-
tines for shell programs. For that matter, shell programs
can call other shell programs or programs written in
conventional languages in exactly the same manner.

The rest of this chapter describes the most important elements of
the shell programming language and shows these elements in
action in a few simple programs.

A file used as input to a shell is variously known as a shell script, a
shell file, a shell program, or a shell procedure. Suppose you
have written, with any editor, a Bourne shell script called
multirep; this program performs a “global replace” operation
across multiple text files. You can execute this script from the
C-Shell just as you would execute any command, that is, by typing:

multirep from-string to-string file-1 file-2 file-n

To do so, however, requires a small amount of preparation. First,
the file containing the script must be placed in a directory that is in
your C-Shell's search path. (Private programs, including shell
programs, are often kept in a directory subordinate to a user’s home
directory called bin, but this is just a convention.) Second, the file
must be made executable. This can be done by simply typing

chmod +x multirep

meaning “add execute permission to the file mul tirep.” Third,
the first line of the script must be the following:

#! /bin/sh

This special notation tells the kernel which shell is to interpret the
rest of the script. A// executable files in the 4.2 BSD UNIX system,
whether shell scripts or object modules or awk programs (awk is a
utility described in the next chapter), are similarly self-identifying.
This means that a process wishing to execute a program in a child
process can do so without concern for whether the program contains
machine instructions, or must be interpreted by another program,

Fi2

Variables

The Shell 63

such as a shell. The kernel examines the file containing the program
and invokes the appropriate interpreter if necessary.

Note the importance of shell programs being executed just
like other commands. First, there is nothing new to learn to run a
shell program. Second, shell programs can be used in pipelines,
have their I/O redirected and so on, just like other commands.
Third, a new command may first be implemented as a shell
program, and later, when — and if — there is a demand for better
performance, it can be reimplemented as a compiled program. No
user of the shell program, whether a user or a program, will ever
know that the change has occurred. As a matter of fact, some
commands supplied with the UNIX system «re implemented as
shell programs.

All shell variables are of the same type, namely character string. To
declare a variable, you assign it a value. To obtain the value of a
variable, you mention its name preceded by a $ character. For
example:

FRUIT=apple
echo 'value of FRUIT is' $FRUIT

Note that blanks around the “ =" assignment operator are illegal. A
reference to a variable that has not been assigned a value returns a
null string. Many shell programmers use upper case names for
variables, as the example shows, but this is a convention, not an
edict of the shell. Another way to give a variable a value is to assign
it the output of a command. For example,

DIR="'pwd'

assigns the name of the current directory to the variable DIR. Note
that when assigning a variable the result of a command, the name of
the command is surrrounded by backguotes, not apostrophes.

The shell predefines a number of variables whose values can be
used in scripts. For example:

O Arguments typed on the command line that invoke a script
are available in variables named 1 (the first argument), 2,
and so on; the variable 0 contains the name of the command
that invoked the script.

O # contains the number of arguments.

O HOME contains the pathname of the invoker’s home directo-
ry.

0O PATH contains the list of directories that the shell searches
for commands.

O $ contains the id of the process that is interpreting the
script; this value is commonly used to generate a unique file
10
name.

Even though all variables contain character string values, they

&

64

Fig. 3.3

Form Letter Shell
Seript

THE UNIX SYSTEM

can be interpreted as numbers when they contain digit characters.
This is done with the expr command. expr evaluates its
arguments as an arithmetic expression and writes the result to the
standard output. It supports the normal four arithmetic operations
and the remainder operation. For example,

SUM="'expr $SUM + 1°'

(note the backquotes) increments the value of SUM. (This is another
example of a variable taking its value from the output of a
command.) expr also provides comparison, substring and regular
expression matching operations; regular expressions are explained
in the next chapter.

Now for an example. Suppose you regularly write letters that
go into window envelopes. After some tinkering you develop a
skeleton file that has the address positioned so it will show through
the window when the letter is properly folded. To make a new letter
you could always edit the skeleton file directly, bur it is safer to
make it read-only and edit a copy of it. The script shown in Figure
3.3 does the job. Note that the example shows line numbers to
simplify its explanation; line numbers are illegal in actual shell
sCripts.

#! /bin/sh

Make a letter for a window envelope
cd $HOME/letters

NAME="$1. getdate™"

cp window. form $NAME

chmod u+w $NAME

vi +/Date $NAME

Ipr -Plaser $NAME

G =1 & U1 e O e

If the script is stored in a file called window, you can produce a
letter to the Internal Revenue Service by typing:

window IRS

Line 1, as mentioned earlier, tells the kernel to interpret this script
with the Bourne shell. The “#" character in the first column of line
2 marks a comment line (a few implementations of the Bourne shell

10. The UNIX system recycles process ids when it starts up. Because of this a file name created
with the § builtin variable is not guaranteed to be unique. Consider a shell program that
creates a file in the current direcrory using the $ variable as follows:

mv 351 alpha. §%

Supposing the id of the process interpreting the shell program is 32778, this command
effectively renames the file passed in the first argument to alpa. 32778. It is possible that
before the system was last started up, this program (or another) ran with the same process id
and created the same file; chis file may still exist. To simpify the creation temporary files,
UNIX systems have a directory called / tmp that is intended for temporary files. The file
name /tmp/alpha. 3 is guaranteed to be unique since the system automarically removes
the files in /tmp when it starts up.

3.3.3

3.34

Input/Output

Flow Control

The Shell 65

define comments as beginning with a colon). Line 3 changes the
current directory to the letters subdirectory of your home
directory (“'hard wiring” the assumption that such a directory exists
and is where you want to keep copies of your letters would be a poor
practice in a script written for public use, burt it simplifies this
example). Line 4 sets the value of the variable NAME to a file name
created from the first comand argument (IRS, in this case)
concatenated with the output of a program called getdate.
getdate isa 12-line C program, not explained here, that picks up
the system date, formats it, and writes it to the standard output.
Thus, programs that you write can be invoked in shell scripts just
like system-supplied utilities. Line 5 copies the skeleton letter to
the file name contained in NAME. Line 6 adds write permission for
the user (owner) of the new file. In line 7, the script invokes the vi
(pronounced “vee-eye” and described in the next chapter) screen
editor on the file containing the letter, positioning the cursor at the
“Date” field in the skeleton. Now you type in the date, salutation
and body of the letter, using the strings you placed in the skeleton
(for example, “Addressee Line 1) as guides; when you exit vi, the
completed letter is saved and line 8 of the script spools it to a printer
called laser.

When it is invoked, the shell process interpreting a script normally
has its standard input, output, and error descriptors connected to
the workstation or terminal. The script can redirect the I/O of
commands that it issues to files and pipes. In general, it is good
practice to redirect diagnostic messages to descriptor 2 (standard
error) in case the script has been invoked with the standard output
redirected to a pipe. (Diagnostic messages that disappear down a
pipe are of little use.) An example of this follows:

echo 'File $FILE does not exist' >&2

A script can conduct a dialog with its invoking user by writing lines
with the echo command and reading lines with the read
command.

The window letter example shown in Figure 3.3 was just a list of
commands executed in straight line fashion. Shell programming
becomes more interesting when scripts make use of the shell’s flow
control constructs. The shell provides an if/then/else con-
struct for conditional branching and a case statement for
multiway branching. The if construct is terminated by a fi
statement while the end of a case is delimited by an esac
statement. The condition tested by an if statement is usually
implemented with the test command, described shortly. Howev-
er, any command may be used. The shell considers a command that
exits with status of 0 (that is, succeeds) to have returned a value of
“true” and a command that exits with a nonzero status to have
returned a value of “false.” The sense of an if-test is: “if the
following command returns true, execute the commands up to the

h———-‘

R

66

THE UNIX SYSTEM

else statement (or the £i statement if no else statement is
present); otherwise, execute the commands following the else
statement if one is present.”

The test command operates on files, variables, and literal
character strings. You can use it to find out if a file exists, is
readable, is writable, is longer than zero bytes, is or is not a
directory, and so on. You can test strings for equality, zero length,
null value, etc. Test conditions can be combined with and/or/not
operators and grouped with parentheses.

Another name for the test command is [, that is, the left
bracket character. The test command itself ignores an argument
that is the right bracket character. In combination, these make it
possible to test a variable called, say NFILES, for a value less than
three in either of the following ways.

if test $NFILES -1t 3
if [SNFILES -1t 3

The second form is more compact and more resembles other
programming languages, so it is commonly used.
Shell script loops can be controlled in three ways:

1. A while-do tests a condition (usually expressed by a
test command) at the top of the loop. If true, the
statements up to the loop-terminating done statement are
executed.

2. An until-do is identical except that the test is per-
formed at the bottom of the loop.

3. A for-do tests a condition at the top of the loop, and if
true, sets a variable to a new value and executes the
statements in the loop body.

The exi t statement terminates a shell program, optionally passing
a nonzero return code.

To see some simple flow control statements in action, refer to
Figure 3.4 which shows an implementation of the multirep
script described earlier. Typing:

multirep alpha beta chapterl. txt chapterl.art

will change all occurrences of the string “alpha” to “beta” in the
files chapterl. txt, and chapterl. art. The example also
illustrates some simple parameter checking and I/O redirection. As
in the previous example, the script lines are numbered for reference,
an illegal practice in actual scripts.

Line 5 shows a very common use of the test ([) command.
multirep must be called with at least from- and to-string
arguments and one filename; line 5 checks that the built-in variable
has a value of at least 3, that is, that the script was invoked with
at Jeast 3 arguments. If so, execution continues at line 10. If not,
the script writes a diagnostic message to the standard error (recall
that the built-in variable $0 holds the name by which the script was

——

Fig. 3.4

W 00 =3 T U o G DD

B2 B9 D DD bt e et et ek e ek el e ek
I SR — - RS - R L R]

24

25«

26

27

28

29

30
Global Replace Shell
Script

The Shell 67

#! /bin/sh

Global replace over multiple files.

#

If fewer than 3 arguments, quit.

if [$# -1t 3]

then
echo "Usage $0: from-string to-string files" >&2
exit 1

fi

#

Pick up from-string and to-string arguments.
FROM=$1; shift

TO=$1; shift

#

Do replacement for each remaining file argument.
until [$# -eq 0]

do
Make sure target file exists.
if [! -r $1]
then echo "no file $1" >&2; shift
Do replacement with stream editor,
writing result to temporary file.
else sed -e "s/$FROM/$TO/g" $1 > /tmp/$0%$
Replace orginal file with temporary.
mv /tmp/08 $1;
echo "changed file $1" >&2
shift
fi
done

invoked), and exits. In lines 12 and 13, the variables called FROM
and TO receive their values from the first two command line
arguments. The shift statement, not previously discussed,
moves the value of the variable 2 to 1, 3 to 2, and so on, and is very
useful for processing an unknown number of arguments, as will be
shown. The program’s “main loop” begins on line 16, where it .
checks to see if another file remains to be processed. The loop stops
when $# is reduced to zero as a result of shif t statements in the
loop body. Line 19 tests for the existence of the current file in the
argument list (the file whose name is represented by the 1 built-in
variable). The -r option of test means “exists and is readable,”
and the exclamation point negates the condition, returning true if
the file does not exist or is not readable. Presented with a
nonexistent (or non-readable) file, the program writes a diagnostic
and goes on to the next file argument.

68

3.5:5

Debugging

THE UNIX SYSTEM

The heart of the program is line 24. sed is a stream-oriented
(that is, noninteractive) editor, which is described in the next
chapter. Here it is told to globally substitute the string $TO for the
string $FROM in the file named $1. sed does not alter the original
file, but writes the updated version to the standard output. The
script redirects standard out to a temporary file that takes its name
from the command used to invoke the script and its process id. This
is likely to be a unique name, and is an easy name to find if
necessary when debugging the script. The rest is simple. The
original file is overwritten with the temporary file, a confirming
message is displayed, and the arguments are shifted to prepare to
process the next file,

Shell scripts tend to be easy to debug because they are largely
composed of commands that are themselves debugged and whose
operation you already understand. Shell scripts are also typically
rather short compared to their function because the commands are
often far more powerful than typical programming language
statements.

The shell gives reasonably good syntax error diagnostics as it
interprets a script, but it also has debugging options that can be
invoked with the set command. set -v causes a trace of each
statement as it is executed, while set -x traces statements and
prints variable values as well. These options can be turned off with
the set - statement. A script can be traced without modifying it
by invoking it as follows (assuming the name of the shell program is
seript):

sh -x seript

Of course, inserting echo commands at strategic points in the code
provides another way to selectively display what is going on during
execution.

4.1

The Basics

The Utilitzes

On the order of 220 utilities are supplied as part of the Sun UNIX
system. This chapter briefly describes those that are most widely
used. The level of detail varies considerably according to both the
importance of the utility and the expected familiarity of its
function. For example, the C language is covered more extensively
than FORTRAN.

For purposes of discussion, the utilities are divided into six
classes:

basics
editors
programming tools

filters

L R I o

formatrers
6. communication

At the end of the chapter are some examples showing how utilities
may be used together to solve problems they do not address
individually. Their cooperative nature is probably what most distin-
guishes UNIX system utilities from their counterparts in other
operating systems. By using the utilities as an extremely powerful
subroutine library, short, simple shell programs can very often be
substituted for time-consuming, error-prone conventional pro-
gramming.

Table4.1 summarizes the functions provided by the most basic
UNIX system utilities. Note that a few of these are built into the
shell and therefore can only be invoked from it. The great majority
of them, however, and all the urilities described in the rest of the
chapter, are implemented as ordinary programs that any process can
execute as a child process.

70
Table 4.1 Basic Shell Commands
4.2 Editors
4.2.1 ed

THE UNIX SYSTEM

Command Function
pwd Print working directory
cd Change working directory*
pushd Push directory on stack and change
to new working directory*
popd Pop directory from stack,
changing to new working directory*
dirs Display directories on stack”
1s List directory contents
mkdir Make new directory
rmdir Remove directory
my Move (rename) file
cp Copy file
rm Remove file
cat Concatenate streams
tee Copy standard input to standard cutput
and one or more files
more Display stream in screenfuls
head Display first lines of stream
tail Display last lines of stream
od Display stream in octal, hexadecimal, etc.
we Count words, lines, characters in stream
cmp Compare streams
diff Display differences between streams
uniq Display unique lines in a stream
lpr Spool stream to printer
chmod Change file access mode (permissions)
find Search for files meeting criteria
echo Display arguments
at Execute shell script at specified time
test Evaluate expression

* Built info shell, not executable as a program

ed is a line-oriented editor notable for its very terse user interface. '
Because there are much better alternatives, ed is rarely used on Sun
workstations. However, ed 75 universally available on UNIX
systems, and so provides a common denominator. Moreover, it is
historically significant. Other more advanced editors, which are
discussed in this section, are derived from ed. In addition, the
UNIX system'’s notion of a regular expression originated in ed;
regular expressions are prominent not only in UNIX system editors
but in the frequently used class of utilities known as filters.
Regular expressions are similar to the file name shorthand
facility provided by the shell. A regular expression is a string of
characters that specifies a pattern that may be used to find matching
character strings. For example, 'chapter [1-4]$' is a regular
expression that would match all the following strings: 'chapter 1,
‘chapter 2, "chapter 3, and 'chapter 4’ with the added constraint

1. For example, ed has exactly one error message, namely "?". Such terseness, which seems
excessive today, made more sense when ed was developed — the teletypewriter was the
dominant verminal.

4.2.2

ex And vi

The Utilities 71

(specified by the '$’) that the string falls at the end of a line. Thus, a
regular expression is a convenient notation for indicating that an
operation is to be applied to a whole c/ass of character strings. Inan
editor, a regular expression provides, for example, a quick way to
change all instances of a particular class of string (for example,
changing chapters 1-4 to sections 1-4, without changing chapters
5-10).

To remedy the weaknesses of ed and exploit the increasing
availability of intelligent display terminals, Berkeley created two
editors that have gained wide acceptance in the UNIX community.
Like ed, ex is a line-oriented editor. It is 2 major enhancement of
ed that preserves ed’s commands, making it easy for experienced
ed users to become ex users. Besides having more capabilities, ex
is substantially easier to use than ed.

vi, pronounced “vee-eye,” is a screen-oriented (“zisual”)
editor. It is fast, very powerful and somewhat difficule to master. In
practice, most Sun users edit with vi, reserving ex primarily for
use on 300 baud dial-up lines (vi works fairly well at 1200 baud).
There are, however, some notable exceptions to this dichoromy,
exceptions that are made possible by vi’s ability to interpret ex
commands.” In particular, block moves and global substitutions are
easier to do with ex commands than vi commands.

Functionally, vi is similar to other powerful screen editors so
its more pedestrian features are not described here. Here are some of
its more unusual facilities:

O The cursor can be moved by words, lines, sentences,
paragraphs, parentheses, brackets, and braces; these objects
can also be replaced or deleted as units.

O The previous command can be “undone” and the previous
nine deletions can be recovered.

O The edit buffer is periodically saved in a file that can be
recovered in case of a system crash, a dropped telephone
line, or other interruption. The recovered file is normally
within a few commands of completely up-to-date.

0O Multiple buffers are available for holding temporary infor-

mation.

O Search and replace operations may incorporate regular
expressions; they may be case-sensitive or not, as desired.

O Automatic word wrap at the right margin and autoindent
at the left margin are both available.

O A single command can be passed to a shell at any time; it is
also possible to escape to a shell for an extended period and
return to vi with the editor in the same state.’

2. In fact, vi and ex are a single program, but most people think of chem as two.

-]

72

4.3

4.3.1

Fig. 4.1

4.3.1.1

Programming Tools

Program Translation

THE UNIX SYSTEM

O vi provides modest assistance for LISP, C, and troff
(discussed later in this chapter) source files. It can check for
balanced parentheses, brackets and braces.

O Terminal keys can be mapped to arbitrary character
strings, allowing, for example, function keys to invoke
long command strings (rare in vi) or insert frequently used
text strings.

O Filters, such as sort and unigq, can be applied to the
contents of the edit buffer.

The UNIX system comes with standard software development aids
like compilers, an assembler, a linker, and debuggers. Other tools
are more unusual. These include utilities for managing software, for
monitoring program performance, and even for building new
translators. But before describing these, an overview of the program
translation sequence is in order.

Figure 4.1 shows how a source file flows through the utilities that
transform it to an executable program. The translation steps are
usually invisible to the programmer since a single command can
invoke the entire sequence of utilities. For example, typing

cedriver.c

passes a C language source file called driver. ¢ through the usual
stages, producing an executable object program. Adding the -0
option to this command line invokes the optimizer step.

Source
- repr
File Preprocess

. Exe-
Link cutable
File

Compile

ol

™| Assemble 1 ocal Optimiz

Program Translation
Stages
Preprocessor

The C compiler automatically invokes the preprocessor, while
the FORTRAN and Pascal compilers invoke it if told to do so with
a command line option. Assembly language programmers can run
it as a separate program (it is called cpp), passing its output to the
assembler. The preprocessor is independent of any language and can

3. These shells are children forked by vi. To temporarily escape to the shell char forked vi,
just type Control-Z (thar is, use the C-Shell’s job control facilicy.)

The Utilities 73

be used to define symbolic constants, insert other files into the
source stream, expand macros, and conditionally compile segments
of code.

The preprocessor looks for lines beginning with #; it writes all
other lines directly to the standard output. Figure 4.2 shows some
typical preprocessor directives, interspersed with descriptive com-
ments that do not correspond to any particular language.

(¥ define some symbolic constants %)

(* Note that uppercase names are a convention only %)
#define TRUE 1

#define CLEAR_SCREEN "\014"

#define MAX 1200

(* use a symbolic constant to declare the size
of an integer array in C %)
int table[MAX];

(* a #include directive is replaced by the file it names %)
(* note that an included file may contain #includes %)
#include "declarations.c"

(¥ define a macro to square a number in C %)
#define sqr(x) ((x)*(x))

(¥ invoke the macro ¥)

b = sqr(diagonal +2);

(¥ conditionally compile one C statement or
another, depending on whether the symbolic
constant CLEAR SCREEN has been defined %)
#ifdef CLEAR SCREEN

putchar (CLEAR_SCREEN) ;

#else
clearscreen();
#endif
Fig. 4.2 Preprocessor Examples
Although cpp is the most widely used preprocessor, another, called l

m4, is also available on UNIX systems. m4 is a powerful,
general-purpose macro processor that includes capabilities for
macro arguments, conditional macro expansion, arithmetic, file
manipulation and string processing.

4.3.1.2 Compilers Three compilers are supplied with the Sun workstation; these
translate the FORTRAN 77, Pascal and C languages. The compil-
ers have a good deal in common:

O They rely on the preprocessor for macro facilities.

O They share a common code generator; assembly language
output can be obtained, if desired.

O They observe a common set of run-time conventions, so
routines written in different languages can call each other.

&———i

74

4.3.1.3

4.3.1.4

4.3.1.5

Assembler

Local Optimizer

Linker

THE UNIX SYSTEM

O They are compatible with a single set of debuggers and
execution profilers.

The compilers also take a common approach to the code they
generate for floating point arithmetic. A particular Sun may or may
not have floating point hardware; the compilers address this
dichotomy as follows. By default, the compilers produce code that
runs on either configuration, automatically using the floating point
hardware if it is present. Alternatively, a compiler can be directed,
via a command line option, to assume that floating point hardware
is present; the resulting code runs somewhat faster than the code
generated by default. However, such a program terminates abnor-
mally if run on a system that does not have the supporting
hardware.” Thus, users can make the tradeoff between portability
and performance to fit a given situation.

Assembly language is sometimes used in UNIX systems to
implement critical bottleneck routines. (It is also used in the kernel
in the rare cases where particular machine instructions must be
issued, for example, to disable interrupts.) The Sun UNIX
assembler generates MCG68010 machine instructions. It is a
full-featured assembler, except that it has no built-in macro or
conditional assembly facility, relying instead on the capabilities of
the preprocessor.

Invoked by a compiler option, the local optimizer performs a
“peephole optimization” of short segments of compiler-generated
assembly language. It basically eliminates unnecessary instructions
and replaces sequences of instructions with instructions that exploit
the MC68010 more effectively. As an example of the former,
consider the following (pseudocode):

a:=h;
c:=a;

A compiler might generate a store from a register into a for the first
statement followed by a load from a for the second. The optimizer
can eliminate the load by noticing that the value of a is still loaded.

The local optimizer also rearranges “if” statements, removing
unnecessary branches.

The linker does what linkers (sometimes called linkage editors
or binders or loaders) normally do: it combines separately compiled
files, resolves intermodule references, and searches libraries for
unresolved references (typically language run-time support rou-
tines). A linked file may be subsequently linked with other object
files.

4. The mechanism works as follows. The compiler inserts instructions into the program that
probe for the presence of the floating point hardware when the program stares. Floating point
operations are implemented as subroutine calls that, depending on the resule of the earlier
probe, either use the hardware or perform the compuration in software. When the compiler is
told to assume the hardware is present, it emits inline code thar uses the hardware to perform
computations, eliminating the overhead of the initial probe and the subroutine calls. This
code will fail, however, if the expected hardware is not presenc.

4.3.2
4.3.2.1

4.3.2.2

Languages
FORTRAN 77

Pascal

The Utilities 75

The FORTRAN 77 compiler is called £77; it fits cleanly into the
UNIX system environment. Most library routines callable from C
are callable from FORTRAN as well, so FORTRAN programs can
create processes, traverse directories and so on. FORTRAN units 5,
6 and 0 are by default connected to the standard input, output and
error streams, respectively, and a FORTRAN program'’s standard
I/O may be redirected via the shell as usual.

The following summarizes those aspects of £77 that may
differ from other FORTRAN 77 implementations.

Options £77 compiler options include run-time checking
of array subscripts, flagging of undeclared variables, and identifica-
tion of constructs that are not compatible with FORTRAN 66.

Violations The implementation violates the ANSI X.63
standard in eight instances, none of which is serious to the vast
majority of programs.

Extensions Some of the more important extensions (which,
if used, make a program nonportable) include recursive subroutine
and function calls, automatically allocated local variables, bit fields
and Boolean operators, relaxed input format, and 16-bit integer
and double complex data types.

A FORTRAN preprocessor, called RATFOR (“rational
FORTRAN?") is also available. This preprocessor adds structured
programming constructs to FORTRAN, making FORTRAN
appear rather similar to C. RATFOR was more important before
the advent of FORTRAN 77, which considerably “modernized”
the language definition. However, it is still useful to sites that have
substantial investments in RATFOR programs.

pc is the Berkeley Pascal compiler, as enhanced by Sun. This
compiler conforms very closely to the ISO Pascal standard. The
following summarizes those aspects of Sun Pascal that may differ
from other implementations.

Options Run-time checking of subrange and array bounds
may be disabled; nonstandard usages can be flagged.

Violations The compiler does not conform to the standard
in a few minor instances. For example:

1. Operands of binary set operators are required to have
identical types rather than just compatible types.

2. nmod m produces an incorrect result for m < 0.

Extensions The most important extension is separate com-
pilation of modules with intermodule type checking. Enumerated
types may be read and written. Functions are not limited to
returning scalars, but can return structures of arbitrary size.
Built-in procedures have been added to integrate the language into
the UNIX system environment, for example, to pick up command
line arguments and to gain access to the system clock. Other
extensions support 32- and 64-bit reals and make Pascal more

76

4.3.2.3

THE UNIX SYSTEM

suitable for system programming.

A utility called pxref produces a cross-reference list of
program identifiers.

The C language’ is closely identified with the UNIX system.
Virtually all system programming, and a good deal of application
programming, in UNIX systems is done in the C language. Cisa
somewhat controversial language, with many supporters and a few
detractors. To appraise the language in a balanced fashion, it is
important to understand what a system programming language
must provide, and to compare the language to the alternatives.

A system programming language must provide access to basic
machine facilities such as addresses and bit fields. It must also
provide a way to manipulate data as “just bytes”; that is, as of no
particular type. Modern system programming languages, such as
Modula-2 and Ada® recognize these minimum requirements. So, of
course, do assembly languages, and the many system programming
languages designed and used internally by computer manufactur-
ers. Standard Pascal,” FORTRAN, and most other high-level
languages do not.

Compared to assembly language, C is a great advance. C
programs are easier to write and debug, and both programs and
programmers can move with comparative ease to new machines. C
programs are reasonably efficient, although this is highly
compiler-, machine-, and application-dependent. Size and speed
penalties are typically 20-409% over good assembly language code.
(At the same time, C also preserves some of the “fun” of assembly
language programming, for example, address arichmetic.)

If compared to a more modern system programming lan-
guage, C may appear deficient; its syntax is somewhat irregular and
can lead to cryptic (and compact) programs. Its general lack of
restrictions (“permissiveness” or “flexibility,” depending on how
you look at it) can lead to subtle and hard-to-find bugs. There is no
run-time checking (for example, subscript ranges), and exhaustive
compile-time checks are delegated to a separate urility that
programmers can ignore. Finally, C does not have the kind of
constructs (for example, abstract data types and concurrency) that
can make some classes of programs easier to write and maintain.

However, no modern system programming language has
arrained the acceptance of C. Ada, Modula-2, LISP, and so on, will
have to gain much wider followings to assert themselves as practical
rivals. For the next several years, millions of lines of system code
will be written in C and thousands of programmers will learn to

5. ANSI committee X3]11 is drafting a C standard. For the present, compilers are sometimes
informally compared to Brian W. Kernighan and Dennis M. Ritchie's book The €
Programming Language, published by Prentice-Hall in 1978. Sun's C implementation is based
closely on this definition, allowing for the book's ambiguities (it was never intended as a
standard), and includes several standard extensions (such as void) which have appeared since
the book was published.

6. Ada is a trademark of the U. $. Department of Defense.

7. Computer manufacturers who use Pascal as their system programming language have all
extended the language to make it snitable for the purpose.

- = ——‘

The Utilities 77

write it. C, for all its faults, is a very effective system programming
language and is likely to be the dominant such language for at least
several years.

Table 4.2 summarizes the language’s principal constructs as
implemented by Sun. To give some sense of the “flavor” of a C
program, Figure 4.3 implements a function that performs a binary
search on an array of arbitrary size.® Each item in the array consists
of an integer key (the search key) followed by a character string.

Table 4.2 Sun C Language
Elements

Data Types character, integer (8-, 16-, and 32-bit); unsigned
integer (8-, 16- and 32-bit); real (32- and 64-bit); bit field;
array, structure (record); enumeration; pointer; union
{multiply defined storage area); programmer-defined.
Storage Classes automatic; static; register.

Initialization static and automatic data, except for structures.

Operators assignment; standard arithmetic; increment/decrement; logical,
address comparison and arithmetic; bit manipulation: type
coercion.

Control if-else; switch (case); while (top-of-loop test); do

(bottom-of-loop test); for (indexed loop); break (escape from
loop or switch); continue (skip to loop test); goto.
Subprograms functions; parameters are passed by value except for
arrays which are passed by reference; functions can accept a
variable number of arguments and can be called recursively,
O Library read and write variable-size blocks; read
and write formatted data, including control characters;
reposition in file to effect random access.
. Other Libraries string processing; dynamic storage
allocation; mathematical functions.

The C compiler is oriented more toward rapid compilation than to
extensive compile-time checking. Another UNIX system utility,
called lint, is dedicated to “picking bits of fluff’ (this is
apparently the source of the name) from C programs. 1int flags
constructs that are likely to be unportable, checks parameters and
arguments for consistency (even across independently compiled
modules), and locates uninitialized variables, unreferenced vari-
ables, and unreferenced statements. In effect, it gives C many of the
advantages of 2 modern strongly typed language, but lets program-
mers choose whether the extra processing time required to make the
checks is worth it.

43.3 Debuggers Two source-level debuggers are commonly found on UNIX sys-
tems, sdb from Bell Labs and dbx from Berkeley. Sun supplies the
latter because it has better facilities for controlling execution and for
displaying complex data structure elements. (With dbx’s com-
mand aliasing facility, sdb users can, if they desire, make its syntax
almost identical to sdb’s.) Sun has enhanced dbx so it works with
any of the Sun programming languages and has added a number of
useful features to it.

8. This funcrion is from A.R. Feuer and N.H. Gehani, "A Comparison of the Programming
Languages C and PASCAL,” Computing Surveys, Vol. 14., No. 1, March 1982,

L———i

78

Fig. 4.3

Sample C Program

THE UNIX SYSTEM

#include <stdio.h>
#define FAILURE (-1)

typedef struct {
int key;
char #%value;
} item;
int BinarySearch(A, n, k)
/#return index of item in A with key k,
return FAILURE if k is not in A%/

item A[];
int n, k;
{

int low = 0, high = n - 1, mid;
while(low <= high) {
mid = (low + high) / 2;
if (k < A[mid].key)
high = mid - 1;
else if (k > A[mid].key)
low = mid + 1;
else
return(mid) ;

}
return (FAILURE) ;

dbx is a source-level debugger that can be used to monitor
and control any program compiled with the -g option (this option
directs the compiler to include symbolic information, mainly
variable names and types, in the object file). dbx includes the
facilities usually associated with symbolic debuggers: starting and
stopping program execution, setting and removing breakpoints,
single-stepping, displaying variable values, tracing statements as
they are executed, tracing variable values as they change, and so on.
dbx can also break when a variable changes value, or takes a
particular value, and lets the user call functions and procedures
interactively. dbx is very adept at displaying data, for example:

print x (% prints elements of x if x is a structure %)

print array[x+y] (* evaluates x+y and prints the corresponding
element in array #)

print ptr’ (* prints what ptr points to %)

dbx also provides a set of machine-level facilities that allow
displaying memory locations and registers, and tracing, break-
pointing, and single-stepping by machine instructions rather than
high-level language statements.

— =

|
|
:
The Utilities 79 ‘

called dbxtool. One in the series of Suntools, dbxtool makes
dbx extremely easy to use. For example, when a program is
running under dbxtool, its output is displayed in one window,
while the source text is scrolled automatically in another as the
point of execution changes.

The alternative to dbx is adb, an assembly-level interactive
debugger found in many UNIX systems. Its low level of function
and cryptic syntax do not make adb the debugger of choice, but it
can do some things that dbx cannot. First, adb does not need a
symbol table to run, so it can be used with programs not compiled
with a symbol table option. (adb can use the symbol table
produced by the -go compiler option.) Second, it can be used to |
patch code in memory or in a file. Finally, adb is a good general |
tool for interactively examining binary files of any sort.

Sun also supplies a window/mouse-based interface to dbx ‘
|
|

4.3.4 Profilers When a program is compiled with the -pg option, the compilers
add extra code to the object module thar “instruments” the
program at the procedure/function/subroutine level. Two things
happen when such an instrumented program is subsequently
executed. Every time a routine is called, a counter, which records
the number of times that routine has been called, is incremented. A
second counter, which tabulates the number of time this routine
has been called by every other routine, is also incremented. Every
clock tick (20 ms.) the routine containing the address of the

. machine’s program counter is “charged” for consumption of the
previous tick. When the program terminates, the raw data
gathered by the instruments is written to a file.

The gprof utility tabulates the raw data into a report that
lists the time used by the routines in the program. For each routine,
gprof reports how many times the routine was called and how
much processor time it consumed.’ gprof also produces a call
graph that identifies the run-time relationships between routines.
The information contained in the call graph report is comprehen-
sive and detailed, but it essentially apportions each routine’s call
count and time consumption data among its callers. The result is
particularly illuminating for recursive routines.

A second profiler, provided by Sun and called tcov, exposes
test case coverage rather than execution characteristics. Compiling a
program with the -a option invokes a preprocessor that instru-
ments a program for test coverage analysis. When the instrumented
program is run, test coverage data is produced. The tcov utility
analyzes this data and produces reports that show which parts of the
program were exercised in the run and which remain to be tested.

9. This is the same informartion provided by gprof's predecessor prof, the execution profiler
found in many UNIX systems. gprof was developed at Berkeley to both emulate and extend
prof’s capabilities.

4.3.5

4.3.6

Management

Compiler
Construction

THE UNIX SYSTEM

It is good practice to break large programs into modules that are
small enough to be individually manageable. Eventually, however,
the number of these units and their interrelationships may become
another problem, particularly as the program evolves. The UNIX
system includes two important utilities for managing the configu-
ration of software products. While these may not be the ideal tools,
they are extremely valuable; as one indication, every software group
within Sun uses them heavily. The utilities may be applied to
documentation projects as well as to software.

The first is called SCCS for “Source Code Control System.”
SCCS is a kind of source code custodian, whose job is to track the
successive versions of modules (more generally, of text files). Oncea
file has been placed in SCCS’s custody, it is normally only retrieved,
modified, or updated through SCCS commands. For each version of
each file, SCCS maintains change information that indicates what,
when, why, and by whom the changes were made. SCCS does not
store each version as a separate file, but rather stores a base file and,
separately, its changes. This approach conserves storage and still
allows SCCS to reconstruct any version of a file by simply applying
the appropriate sequence of changes to the base file. Authorized
users can “check out” a version of a file to update it, and SCCS will
prevent another user from also checking out the file, eliminating
the possibility of multiple uncoordinated updates.

make is a utility that automatically recompiles the modules of
a program that are affected by changes. To do this, make relies on a
file called a makefile that describes the interdependencies of
modules, and the commands that must be executed to create a
consistent version of the program. The UNIX system timestamps
each file whenever it is written. When make is invoked, it
examines these timestamps to determine which files must be
recompiled (a file must be recompiled if a file it depends on has a
later timestamp). make recompiles the minimum number of files
and relinks the program. make can simplify the management of
documentation as well. For example, a manual may have 10
chapters, stored as separate manuscript files. The manual is printed
by passing the chapters through a formatting program (such at
troff, discussed later in this chapter) to produce the files that go
to the printer. Amakefile can be set up to reflect the dependency
of each printer file on its corresponding manuscript file. Now
suppose changes are made to chapters 2 and 8 only. make-ing the
manual will run only chapters 2 and 8 through the formatter,
because only their printer files are out of date. (This example
assumes that the manual has chapter-relative page numbering.)

Two UNIX system utilities are of interest to users contemplating
the implementation of new languages for UNIX systems. yacc
(“yet another compiler-compiler”) is a utility that generates a parser
from a grammatical description of a language. (Many UNIX system
utilities, including dbx and the C compiler, are based on yace.)
Similarly, 1ex generates a lexical analyzer from a description of a

4.4

Table 4.3

4.4.1

Filters

Minor Filters

grep

The Utilities 81

language’s lexical rules. Both programs produce C code.

A substantial number of UNIX system utilities are classified as
filters. A filter reads its standard input, transforms the data in some
way and writes the result to its standard output. The idea behind
the name is clearer when one visualizes how filters are commonly
employed. A common construction is several filters joined in a
pipeline, as shown below:

filterl < input-file | filter2 | filter3 > output-file

Bytes flow from the input file to the output file through the pipe.
The filters are interposed in the pipeline; the first filter might
translate certain values, the second filter might rearrange the lines
(typically by sorting), and the third might eliminate duplicate
lines. Thus, each filter performs a relatively small, specialized
function. When used in combination they perform a more complex
function — and the number of possible combinations is, of course,
very large. The last section of this chapter is devoted to examples of
filters, and other utilities, combined in various ways.

Some of the minor filters are described briefly in Table 4.3;
the remainder of this section covers some of the more interesting
examples of the class. Note that each of the utilities described in
this section is significantly more powerful than the very limited
description presented here suggests.

Filter Function

crypt Encrypt/decrypt a stream

compact Compress stream by Huffman coding
uncompact Expand Huffman-coded stream

tr Translate characters

colrm Remove columns

expand Expand tabs to spaces

unexpand Compress spaces to tabs

fold Fold long lines into fixed length

join Join lines in two files that have identical fields
rev Reverse characters in every line

tee Copy standard input to standard output and additional files
uniq Count and remove duplicate lines

we Count characters, words and lines

grep (the name will be explained shortly) selects lines from a file,
based on matching a pattern. The pattern is commonly just a
simple string. For example, the following searches all C source files
in the current directory for references to the function
BinarySearch:

82

4.4.2

4.4.3

awk

THE UNIX SYSTEM

grep BinarySearch %.c

Useful options to grep can select lines that do 7o match the
pattern, can print the number of each matching line, and can make
a lower-case pattern match on uppercase as well.

grep can also search for a pattern specified by a regular
expression — and this is the source of the program’s name.'’
Regular expressions allow the concise specification of complex
matching criteria, such as “lines that beginfend with pattern,” “a
line containing the nth occurrence of pattern,” “lines containing
pattern] followed by pattern2,” and so on.

fgrep and egrep are similar to grep. fgrep can search for
multiple patterns in parallel, but can only search for fixed strings,
not regular expressions. egrep is faster than grep under some
circumstances and generalizes the notion of regular expression.
egrep can, for example, extract lines containing any of several
alternate regular expressions; in other words, the logical OR of
several regular expressions.

sed is a stream-oriented version of ed. It applies a list of editor
commands to each line in one or more files, writing the resulting
modified lines to standard output. The lines to be edited can be
selected by regular expressions as described above.

sed is a very convenient tool for removing unwanted fields,
transforming all occurrences of one string to another string, or
adding a new field to each line. As a very simple example, the
following shell script indents the lines in a file by inserting a tab at
the beginning of each line:

sed 's/"/<tab>/' $%

(In the above example, the tab character is represented by the string
<tab> in order to make the tab’s location visible on this page.)

awk rtakes its name from its Bell Labs authors, Aho, Weinberger,
and Kernighan. It is a pattern matching programming language
whose syntax is modeled after C. It is often used as a report
generator. Like grep, awk’s basic action is to select lines from its
standard input. Several selection criteria can be specified; all are
applied in a single pass over the input stream. However, it has
substantially more power than grep; this power is a consequence of
the actions awk can perform on selected data. The simplest action is
to merely write the selected line to the standard output, like grep;
however, it is wasteful to use awk like this because grep can do the
same thing faster.

Having selected a line, an awk program specifies the action to
be performed; each selection criterion may have a different action.

10. The name is actually a coatraction of ed's g/ rgular-egpression/p command, which glabally
applies a regular expresson to & file and prines the resule, where printing means writing to
standard outpur.

The Utilities 83

Action statements can operate on fields (by default delimited with
spaces and tabs) in the selected line and on variables you declare.
Actions include arithmetic, conditional tests, and string process-
ing. Fields, modified fields, constants, and variables can be written
to the standard output. Special actions can be taken at the
beginning and end of the input stream, for example, to write totals.
The power of awk is probably underappreciated and underutilized
at most UNIX system installations; to fully describe it would
require a short book.

4.4.4 sort The UNIX sort utility sorts the lines in a file. The lines may
contain any bytes and may be considered as being composed of
fields separated by blanks or other characters, for example, semico-
lons or slashes. Options to sor t permit sorting on multiple fields,
on specific bytes within fields, into ascending or descending order,
ignoring case or white space (blanks and tabs), and so on. Besides
sorting, sort can merge sorted files, optionally eliminating
duplicate lines — a handy feature for mailing lists, for example.

4.5 Formatters From its beginning, the UNIX system has emphasized text
formatting tools nearly as much as program development tools. (Of
course, many tools, notably the editors and filters, apply equally to

. both kinds of work.) The key text processing tools are the nroff
(pronounced “en-roff’) and troff (“tee-roff’) formatters. Note
that a formatter is not a word processor — it translates a stream
containing ordinary text and commands into a formatted docu-
ment. The process of creating documents with formatters is
essentially analogous to the process of developing programs with
compilers.

troff and nroff are input-compatible; they differ in the
output devices for which they are designed. troff generates
output for a typesetter or a device, such as a laser printer, that can
emulate a typesetter. nroff works with simpler output devices
such as line printers, daisywheel printers, and terminals. nroff
achieves compatibility with the more complex troff by simply
ignoring troff commands, such as “change to 12 point type,”
that are not meaningful for the devices it drives. Therefore,
everything said in this section about troff applies to nroff as
well; a document formatted by either of them will produce the same
result, within the limitations imposed by the relevant output
devices.

troff means roughly “runoff for typesetter,” and is one of
the many offspring of a fairly ancient and well-known program

‘ called “runoff” written at MIT. troff processes an input stream

containing the text to be formatted, interspersed with commands

specifying how it is to be formatted. Figure 4.4 shows an example;
lines beginning with periods are troff commands, as are strings

.. o oummient . |

84

Fig. 4.4

THE UNIX SYSTEM

beginning with backslashes.

troff - Input -
Excample

.ce
Chapter 1
.Sp 3
Lt1 +2m '
If you really want to hear about it, the
first thing you'll probably want to know is where I was born, and
what my lousy childhood was like, and how my parents were
occupied and all before they had me, and all that David
Copperfield kind of crap, but I don't feel like going into
it.
In the first place, that stuff bores me, and in the second
place my parents would have about two haemorrhages apiece if I
told anything personal about them.
They're quite touchy about
anything like that, especially my father.
They 're
A |
nice
ft R
and all\ (emI'm not saying that\ (embut they're also touchy as
1 .
hell. -

Chapter 1

If you really want to hear about it, the first thing you'll
probably want to know is where I was born, and what my lousy
childhood was like, and how my parents were occupied and all
before they had me, and all that David Copperfield kind of crap,
but I don’t feel like going into it. In the first place, that stuff
bores me, and in the second place my parents would have about
two haemorrhages apiece if I told anything personal about them.
They’re quite touchy about anything like that, especially my fa-
ther. They're nice and all—I'm not saying that—but they’re also
touchy as hell.

troff shows its age; like so much of the UNIX system it
reflects an era when the teletypewriter was the principal terminal.
Its rigid, abbreviated syntax and low level of function make it
effectively an assembly language for a typesetter. Much like
assembly language programming, it is possible to do just about any
formatting task with troff commands, but it is difficult to do
even simple things (for example, running headers and footers).
Fortunately, one of troff’s facilities is the ability to define macro

11. J. D. Salinger, The Catcher In The Rye, Hamish Hamilton, Great Britain, 1951

Table 4.4

Fig. 4.5

Basic ms Commands

The Utilities 85

packages; and, in fact, most people rely on a macro package to do
most of their formatting, dropping down to direct troff com-
mands only when necessary to create a special effect. The most
widely used macro package is called ms. ms understands
higher-level document constructs such as chapters, sections, para-

graphs, footnotes, and so on. Its basic commands are shown in
Table 4.4.

Command Function

B Start boldface

i | Start italics

.R Start roman

.DS/.DE Start/end display (literal text)

.F8/.FE Start/end footnote

.KS/.KE Start/end text to keep together on same page

KF/.KE Start/end text to keep together; float to
next page permitted

.PP New paragraph

.Lp New left-justified paragraph

. IP string New indented paragraph with string in
margin

.NH » New »-th level numbered heading

Other, less important, text processing utilities are provided
with the UNIX system. spell finds spelling errors in a text
stream. deroff strips troff commands from a stream. man is a
macro package that produces pages formatted like the UNIX
system command documentation. It is useful for documenting
locally developed utilities in a form recognized throughout the
UNIX community.

More interesting are the tb1 and eqn preprocessors. These
are formatting languages especially oriented toward producing
tabular and mathematical constructs, respectively. Both accept
streams containing their own commands interspersed with troff
and/or ms commands. Passing through commands that do not
concern them, the preprocessors convert their own commands into
low-level troff commands and insert the result into the output
stream. Thus, to process a complex document containing tables,
equations and text, you run it through a pipeline as shown in Figure
4.5. Figures 4.6 and 4.7 show examples of tb1 and egn input
files and formatted results.

¥

A troff Pipeline To file,
Input thl = egn troff —wdisplayor
File printing device

Fig. 4.6

Fig. 4.7

4.6

4.6.1

tbl Example

eqn Example

Communication

THE UNIX SYSTEM

TS - Input -

center box;

cB | cB | cB

cB | ¢cB | cB

¢c | n | n

Partition Contents Partition Size Partition Size

(42 MB Disk) (Larger Disks)

root filesystem (/) 8 MB 8 MB
Iswap space] 8 MB 16 MB
user filesystem (/usr) 26 MB 40 MB +
.TE
= Output -
Partition Contents | Partition Size Partition Size
(42 MB Disk) | (Larger Disks)
root, filesystem (/) 8 MB 8 MB
[swap space] 8 MB 16 MB
user filesystem (/usr) 26 MB 40 MB +
- Input -
.EQ

f(zeta) =" 1 over {2 pi i} int from C
f(z) over {z - zeta} dz
.EN
- Output -

10= gl L%

2y 2—¢

Included in the UNIX system are utilities for sending electronic
mail to users on the same machine, to users on other machines
which are members of the UNIX User’s Network, called USENET,
and to users on other networks, such as ARPANET and CSNET,
that are connected to USENET. Berkeley extended the mail facility
to apply to machines on the local network as well. The tip
(terminal interface program) utility provides an alternate means of
transfering data between computers.

Mail may be sent to users on the same machine, on different
machines in a local network, or on machines connected to
USENET. Sending mail is a simple matter of invoking the mail
utility with an argument designating the address to which the mail
is to be sent. The mail utility accepts the text of the message,
terminated by a Control-D, the normal terminal end-of-
stream indicator. Having captured the message text, the mail
utility adds the message to the queue of the local machine’s
sendmail daemon, wakes up the daemon, and terminates.

The Utilities 87

sendmail’s job is to deliver mail. sendmail is awakened
by mail whenever a new message is to be sent. It is also awakened
periodically to attempt redelivery of outstanding messages, for
example, a message addressed to a machine that was down when
delivery was originally attempted.'? Delivering a message means
appending it to a file, called a mailbox, associated with the
addressee. Delivery can be straightforward or somewhat involved,
depending on where the addressee’s mailbox is located relative to
the sender. There are three basic locations: on the same machine, on
the local network, or on the USENET network. Corresponding to
these locations are three address formats, examples of which are
shown below as arguments to the mail command:

mail jacque
mail terry@polaris
mail decwrl!sci!rob

Common to each of these is the addressee’s login-name
(jacque, terry and rob, in the example). (The mail system’s
alias facility, which permits other forms of address, is discussed
shortly.) No other information is necessary when the addressee’s
mailbox is on the same machine as the sender: sendmai 1 looks up
(in a file kept for the purpose) the name of the addressee’s mailbox
file and appends the message to the mailbox. If the login-name
is invalid, sendmail returns the mail, with an explanation, to the
originator’s mailbox.

An address argument such as terry@polaris means that
terry's mailbox is on a machine called polaris. To deliver this
mail the sendmail daemon on the originating machine needs to
| forward the message to the sendmail daemon on the destination
‘ machine. It does this with the aid of a file called /e te/hosts and

the Sun network communication facilities. /e te/hosts contains
the name and internet address of every machine (host) on the local
‘ network. On each machine is a socket (recall thar a socket is an
interprocess communication mechanism) that has been established
as the mail service connection. The sendmail daemon listens on
this socket for mail service requests. Having established a connec-
tion via the socket, the two daemons conduct a conversation,
checking each other’s identities and the login-name of the
addressee. If everything is valid, the message is transmitted over the
net and the receiving daemon delivers it just as if it had come from
its queue instead of another machine. If the login-name is
invalid, the originating sendmail daemon returns the message to
! its sender. If the destination host is down, so that the attempt to
establish a connection fails, the originating sendmail daemon
attempts redelivery later; after a configurable number of days of
redelivery attempts, it also returns the message to its sender.

12. Implementation note: sendmail does not deliver messages directly, but_forks an instaqce
of irself to handle each message. This technique insures that t!1e mail system remains
operational even if an instance of sendmail hangs during its delivery attempr.

-

88 THE UNIX SYSTEM

It is clearly inconvenient for users to have to remember or look
up login-names and hostnames to send mail over a network
that might consist of hundreds of machines and users. The nuisance
can be eliminated with a simple convention and the mail system’s
alias facility. The idea is to establish a uniform naming convention
for people, and a single machine on which an up-to-date alias file is
maintained. For example, suppose people are named by first initial
concatenated with last name, and the machine with the alias file is
called po (for post office). Then, to send mail to Alfred Newman,
whose login-name and hos tname are unknown (or may have
changed), the following suffices:

mail anewman@po

e’ i . el R 1 | i s M e S e

The message is delivered first to po, where the sendmail daemon
looks up anewman’s 1ogin-name and hos tname in the alias file
and then forwards the message to its final destination. As it
happens, aliases are quite versatile. They can also be used for mail
distribution lists, allowing, for example,

mail marketing@po

to send a message to all persons aliased to marketing. An alias
need not point to a login-name and hos tname but may instead
specify a program designated to print that person’s mail in hardcopy
form; in this way individuals who do not have terminals can receive
mail.

When sendmail does not recognize a hostname, (for
example, a new machine)” or an address format (as it would not
recognize, for example, decwrl!sci!rob), sendmail for-
wards the mail to the system designated as mailhost in its
/etc/hosts file. Besides having the most current version of
/etc/hosts, the sendmail daemon on this machine has access
to a file that describes more than just the local network environ-
ment. (The information is localized in one machine to simplify
maintenance and to establish a control point which can help to
prevent reissuing of login-names, for example.) In particular, it
understands foreign address formats, other networks to which it
may serve as a gateway, and machines that are its adjacent USENET
nodes. Mail transmission over USENET is the subject of the next
section.

So much for sending mail; how do you receive it? When you
log into a UNIX system, the system checks your mailbox and
notifies you if new mail has arrived since your last login. In
addition, the shell can, at your request, automatically check for new
mail after executing each command and notify you when new mail
arrives. To be notified asynchronously when mail arrives (for

13. Keeping the /etc/hosts files of all machines on the network reasonably up to date is
simple. One publicly known machine’s file (the machine corresponding to pe would be a
logical candidare) is updared manually, and the other machines periodically, say nightly,
run a shell scripe thac copies chis file.

. =

4.6.2

4.6.3

USENET

news

The Utilities 89

example, when you are expecting an important message during a
long editing session), you can issue the biff command. To read
mail, you just type mail with no address argument. The mail
utility displays a summary line for each message in your mailbox.
These messages may be read, saved, edited, deleted, replied to, and
s0 on, using the mail utility’s interactive commands.

Many UNIX system sites (around 2,000 in 1984) are members of a
voluntary cooperative network called USENET. Some USENET
nodes provide access to other networks such as ARPANET and
CSNET. The network is implemented with dial-up telephone lines
and a transfer program called UUCP (UNIX-to-UNIX ep, that is,
copy). UUCP employs a transfer protocol that is highly optimized
for telephone line transmission.

Each node on the network maintains a list of (usually nearby)
sites to which it has agreed to periodically transfer data. It also
maintains accounts for the sites from which it has agreed to receive
data. Data is transferred when one site calls another, logs in, and
executes the UUCP utility which copies files from one system to the
other.

To send mail to a user at another USENET site, you must
specify a path to the user’s site. For example,

mail decwrl!sci!rob

means that the message goes first to the site known as decwrl,
then to the site known as sci where rob is a user. How long the
message takes to traverse the “hops” in its path to its ultimate
destination depends on how frequently the sites in the path call each
other up. The network is organized with a number of long-haul
links that make it possible send a message to most sites in North
America, Europe, Australia, and Asia in a half-dozen or fewer hops.
Other networks, reachable through sites serving as gateways from
USENET, have their own address formats which are interpreted
when a message arrives at a gateway.

A second class of information, known as news, also travels over
USENET. News is functionally similar to an electronic bulletin
board, but it is implemented in a decentralized fashion. News
articles are organized into categories called newsgroups. There are
presently on the order of 250 newsgroups covering such diverse
subjects as workstations, graphics, languages, networks, architec-
ture, bugs, and conference announcements (not to mention wine,
music, books, rumors, motorcycles, philosophy, and birds). News
moves around the net in basically the same fashion as mail.
However, each article is tagged with its newsgroup and a unique
identifier (derived from the originating site’s name) to obtain a
reasonable degree of efficiency. Each site subscribes to a set of
newsgroups known to the sites from which it may receive news.
When a connection is established, the sending site transfers all
articles in the categories the receiving site wishes to receive, and the

_

90

4.6.4

4.7

4.7.1

tip

Putting Utilities
Together

Disk Space
Consumers

THE UNIX SYSTEM

receiver discards (using the article identifier) any articles it has
already received from another machine.

To submit a new article you run the pos tnews utility. This
program prompts for the newsgroup and subject and then forks
you into an editor so you can compose your article. When you exit
the editor, pos tnews queues the article for transmission onto the
net.

The readnews utility lets you read articles. You can specify
the newsgroups you want to read routinely in a file called
.newsrc. readnews updates this file so that each time you run
readnews you only see articles that you have not already read. For
each article, readnews displays a header showing the subject,
author, and length of the article. You can then read the article or
skip it. There are many other commands as well, one of which
allows you to mail a reply to an article’s author. Each site sets its
own rules for dropping old articles, but they are typically kept for
about two weeks.

tip isa terminal interface program that makes a process appear to
another computer as a terminal. tip supports selected autodialing
modems so you can pass a telephone number as an argument and
tip will make the call for you. tip can send and receive ASCII
files and can run a program on the other computer, connnecting its
output to the communication line. Binary files can be sent or
received with the aid of a utility called uuencode.

As mentioned at the start of this chapter, the UNIX system utilities
are individually substantially more powerful than the simplified
descriptions provided here. What is more important, however, is to
appreciate the really remarkable power of utilities used in combina-
tion, with shell code (including pipes) binding them together.
Given the power of the utilities, it is good practice, when faced
with a new problem, to resist the urge to code. Rather, you should
review your existing tools — utilities supplied with the UNIX
system as well as those developed locally — to see if there is a way to
look at the problem that will make it yield to a combination of
existing, debugged tools.

This section includes a few examples that show how utilities
can work together. Underlying all these examples is an approach
that sees a problem as being composed of subproblems to which
utilities can be fruitfully applied. Then the utilities are connected in
a pipeline or shell script to solve the problem as a whole.

Here is a2 command that a system administrator might routinely
employ to find out which users are consuming the most disk space:

The Utilities 91

alias dhog 'du -s /usr/* | sort -nr | more'

It is implemented here as a C-Shell alias, but could as well be a shell
script. The du (disk usage) urility scans a list of directories, looking
at the space occupied by the files in those directories, including files
in their subdirectories (and their subdirectories, and so on). The
example assumes that each user files are stored in subdirectories of
/usr; for example, the files of user gage are all stored in
/usr/gage and its subdirectories. The -s option tells du to
prepare only “summary” information — to write one line per
directory totaling the kilobytes consumed by that directory and its
descendants. Piping du’s output to sort -nr orders the lines
numerically, in reverse order, so the largest consumption figures
come out on top. The output is then piped to more so it is
displayed one screenful at a time. The result looks something like
this:

14256 /usr/gage

12300 /usr/bille

996 /usr/carl

4.7.2 Frequently Used Suppose — this example is not so much practical as illustrative —
Words that you want to know the ten most frequently used words in a file
or set of files. Think about this problem for a moment; it is just the
sort of program that you think you can crank out in half an hour and
ends up taking two days. Here is a shell script that does the job. "

#! /bin/sh

cat $% |

tr -sc A-Za-z '\012" |
sort |

uniq -c |

sort -n |

tail

The cat step concatenates all the files passed as arguments. The tr
step eliminates case distinctions and compresses runs of nonletters
into newlines, producing one line per word. Then the words are
sorted to bring duplicate words together. The uniq utility
eliminates the duplicates, writing one line per distinct word that
includes the word and a count of its occurrences. The result is sorted
numerically so the most frequent words come out last; tail picks
off the last ten words.

14. The example comes from Kernighan and Pike, The UNIX Programming Envirgnment,
Prentice-Hall, 1984.

-

4.7.4

Fig. 4.8

A Primitive
Rhyming
Dictionary

Finding CPU
Gluttons

CPU Utslization
Skell Seript

THE UNIX SYSTEM

Another example, again more illustrative than practical, produces a
simple-minded rhyming dictionary:

rev /usr/dict/words | sort | rev

(The rhyming dictionary is simple-minded because it equates
thyming with similar spelling — “through” and “rough” will
thyme according to this dictionary.) /usr/dict/words is a file
distributed with the UNIX system that contains about 25,000
words, arranged one word per line. rev is a utility that reverses the
order of the characters in a line, thus turning a line containing
“tree” into “eert.” Sorting rev’s output brings together all of the
words ending in “a,” and so on. To make the list readable, though,
the letters in each word need to be reversed again, hence the last
step.

A UNIX system will commonly run several, even dozens, of
processes concurrently. Figure 4.8 is a shell script that finds the
processes that are using the most CPU time.

#! /bin/sh
echo -n " ot date; echo "
ps axgeu |
awk ' ($3>=1.0 || $3="%CPU") \
&& substr ($0,44,5)>=" 0:05" \
&& $NF!="CSH"' |
sort -r +.14 -.25

The script begins by displaying the system date and time followed
by a blank line. It then executes the ps (process status) utility
which generates one line of darta for every running process in the
system. The data produced by ps includes process id, login name,
percentage of CPU time and memory used, and the name of the
command that the process is running. To highlight only the large
consumers, an awk program selects a subset of the lines produced
by ps, namely those that have used more than 1% of the CPU,
have been running for more than five seconds and are not C-Shells.
It also selects the column header line produced by ps. Finally, the
selected lines are sorted in reverse order based on CPU and memory
consumption so that the largest consumers are displayed first.

5.1

5.1.1

Using SunWindows

The Display and
the Mouse

The SunWindows System

This chapter describes the SunWindows user interface through
which Sun workstation users interact with the computer and the
network. The discussion is divided into two parts; they describe the
SunWindows system from a user’s point of view and from a
programmer’s point of view. Because this report’s principal topic is
the UNIX system, the SunWindows interface is only introduced
here. Readers who take the time to become more fully acquainted
with the Sunwindows system will find it richer and more flexible
than described here.

The SunWindows interface is based on concepts pioneered
and proved at the XEROX Palo Alto Research Center in the 1970s.
These concepts have been popularized, in a simplified form, by the
Macintosh' personal computer. This style of interface requires
comparatively abundant CPU cycles, memory, and display
bandwidth. A Sun workstation has exactly these attributes, but the
minicomputers and terminals on which the UNIX system has been
traditionally run do not. This lack of suitable hardware is one reason
the often-criticized UNIX system user interface has persisted for so
long.

When a Sun workstation is booted, it comes up as described in
Chapter 3. The screen image looks like a that of a large character
terminal displaying the prompt:

login:

After logging in, one of the first commands most users issue is
suntools. suntools is the utility that starts up the
SunWindows user interface. Guided by a file of user-specified
parameters, suntools radically transforms the appearance of the
workstation screen, making it look more or less (depending on user
parameters) like Figure 5.1. This section describes the objects
shown in that figure and how you can manipulate them.

The SunWindows system is based on the Sun high-resolution
bit-mapped display and the “pointing device” known as the
mouse. The Sun display is a remarkably versatile medium for
presenting information. Software can “paint” arbitrary combina-
tions of text (in various sizes and typefaces), lines, curves, and

1. Macintosh is a trademark of Apple Computer, Inc.

_

THE UNIX SYSTEM

Fig. 5.1 Typical SunWindows
Display

* Meader pedpanadsd te sach a.out File

fruct exoc

* Fundumenta) constanis af the
* BE ELSEWHERE (Wt SMOULD GO AMA)
L7

1824
PAGEIT
&

: T2 2B48
it ine SEG51E BxGuRg
0 mf e

Ll

shading on the Sun display. Because the display is bit-mapped,
software can update one part of the display without altering other |
areas by simply changing the bits in the frame buffer (bit map) that |
correspond to the screen locations of interest. The color displays of
some Sun models are even more versatile and are especially adept ar
presenting complex information.

Steering a traditional cursor around a large bit-mapped
display with “arrow keys” is not a satisfying experience. The cursor
can only be moved in two axes, movements are slow, and
positioning is crude, with resolution limited to one “standard”
character. Accordingly, Sun workstations are supplied with a
three-button mouse (see Figure 5.2). Moving the mouse on its pad
causes a mouse cursor, by default a bold arrow pointing at 300
degrees, to move on the screen. The mouse cursor can be moved
very rapidly in any direction and positioned very precisely; many
users can pick out a single pixel with it.” The mouse buttons are
used to select objects on the display and to enter predefined
commands, in the manner of conventional function keys. Sun’s
mouse has three buttons, making it a little harder to learn than a
one- or two-button mouse, but ultimately more powerful.

5.1.2 Windows The Sun display is roughly twice as large as a typical character
terminal. This workspace is large enough to be usefully divided into
smaller areas, each corresponding to a different work activity. These
rectangular areas are called windows.

Associated with each window is an application, or tool,
consisting of one or more UNIX processes. The tool controls the

2. A pixel, or picture elemene, isasingle dot on the screen. For monochrome displays, a pixel is
represented by one bit in the system’s frame buffer memory. About 70 pixels per inch are
displayed on a Sun monitor.

_ i ji

Fig. 5.2 Mouse Pointing Device

The SunWindows System 95

TN

window, displaying data in it and interpreting mouse and keyboard
input directed to it. (Input is directed to a tool when the mouse
cursor is in the tool's window.) Figure 5.1 illustrates a few standard
tools that are supplied with the SunWindows system:

O shelltool, which emulates a character terminal run-
ning a UNIX system shell, thereby providing a traditional
UNIX system interface in a window;

0O graphiestool, which allows an existing graphics pro-
gram to draw inside a window;

0 clocktool, which simply displays the time of day.

These tools and other standard tools are described more fully later in
this section. Users can also write their own tools, as described in the
second half of this chapter.

Several windows may be displayed on the screen simulta-
neously; each window represents an activity in progress. For
example, in one shell tool window you may be running tip,
transfering a file over telephone lines to a remote computer; in a
second shelltool window an editor may be waiting for your
next command; in a third shelltool window the file you have
just changed with the editor may be compiling; finally, in a
graphicstool window you may be examining a chart drawn by

- |

06

THE UNIX SYSTEM

a graphics program. All of the activities represented by these
windows may run concurrently, since they are embodied in the
system as different processes.

At any time you may switch your attention from one window
to another by moving the mouse cursor. For example, if the
compilation mentioned above uncovers a syntax error, you can
move to the edit window and make the fix; the editor will be exactly
as you left it. After saving the updated file, you can return to the
compile window and recompile. (Each shelltool runs a separate
instance of the shell.) Thus, a window always preserves the context
of the tool running in it. When you return to a window, not only is
the tool’s state exactly as you left it, but you see the evidence of that
state.

Using the mouse, there are many ways to arrange and alter
windows; for example, they can be moved and resized at any time.
Windows need not occupy discrete areas of the screen; they can
overlap one another like pieces of paper on a desk. For example,
when you create a new window, it will typically appear near the
center of the screen, hiding all or parts of windows in the same
vicinity. A hidden window is temporarily removed from view, but
is not otherwise affected; any processes running in it continue to
run. At any time you can expose a hidden window (bring it from
the bottom of the pile to the top), or hide the top window to expose
the one underneath.

Switching berween windows and opening new windows as
needed lets you work with the computer the way you might work
with papers on your desk. Consider a case in which your writing is
interrupted by a phone call, and the phone call is interrupted by a
visit from a colleague. You respond by shuffling the papers on your
desk, placing items of immediate interest on top, perhaps tempo-
rarily hiding your previous work. As you finish with each interrup-
tion, you remove some of the top papers exposing your earlier work;
eventually the paper you were writing resurfaces.

Besides their resemblance to the arrangement of work on a
desk top, windows have analogies in operating systems. For
example, the overlapping nature of windows enlarges your effective
workspace in somewhat the same way that virtual memory enlarges
a process’s workspace. You can also think of windows as analogous
to processes and yourself as playing the role of the operating system
scheduler. Like the operating system you generally have more than
one activity underway at a time. You multiplex your attention
among the various activities according to their priorities, their
“readiness,” and in response to external events represented by
interrupts. Thus, in addition to being based on multitasking, the
SunWindows system brings the underlying operating system’s
multitasking capabilities out to your work surface, making them
directly accessible and visible.

5.1.3

Fig. 5.3

Subwindows

Namestripe

Border

Subwindows

i) Se e
lcon - aaa

Anatomy of a
Window

The SunWindows System 97

A tool’s window is framed by a double-lined border and a thick
namestripe at the top (see Figure 5.3). Besides identifying the tool
and visually distinguishing window boundaries, the frame provides
a common set of commands that apply to all windows. These
commands are invoked by placing the mouse cursor anywhere on
the frame and holding down the right mouse button.’ These
commands allow you to move, change the size of, hide, or expose
any window, regardless of the tool running in it. The commands
are implemented not by the tools themselves, but by a
SunWindows facility called the tool manager.* In effect, the tool
manager owns all the window frames, while each tool owns what is
inside its frame.

gfxtoole por fmon®
alobeframes/ shelltool@
igcontoal® sphg rofdens ®
Jumpeeeng ® !

il i yeowidihonts . oo lplag
i e amedemn * panaton]®
fermgra 1t spheresdens

FEEE

e
o e

A

preree
e
R e

e

e
-

e

Inside the frame is a collection of one or more subwindows; these
are where a tool really does its work. Subwindows group related tool
functions into visually distinct units. For example, in Figure 5.3,
you can type commands to the tool in the upper subwindow, while
the lower subwindow is the “canvas” upon which the tool draws
pictures. Many other subwindow examples are illustrated later in
this section.

Unlike windows, subwindows do not overlap; they are “tiled”
over the area of a window. Subwindows move as a unit with their
window and, if necessary, adjust their shapes in the window when
you change the window’s size.

3. Holding down the right mouse button “pops up” a menu of commands; pop-up menus are
discussed shorcly.

4. The tool manager mighe be better called the “window manager” since it really manages
windows. As will be described in the second half of the chapter, tools manage themselves.

—

5.1.4

Fig. 5.4

Icons

Teons

dbxtool
icontool
shelltool
clocktool

THE UNIX SYSTEM

While their overlapping nature allows you to “pile up” windows to
arbitrary depths, you can reduce workscreen clutter by closing
windows that are temporarily unneeded. A closed window changes
into a small icon, a picture that symbolizes the tool associated with
the window (see Figure 5.4). An icon occupies less space than a
window while allowing you to quickly transform it back into a
window when you need to. Icons can be moved around just like
windows, and, of course, can be opened. Both open and close
are tool manager commands. A tool may place its icon wherever it
wishes on the screen; by default the tool manager lines up icons row
along the bottom of the screen, keeping the center area clear for
open windows. Note that any process running in a window
continues to run when the window is closed and that a newly
opened window looks just as it did when it was closed (allowing for
any changes a running process may have made in the interval).

ST

e

s
i

5

S
i
i
5

it
-
i
i
-

S
T e

B

R e e
matnet e g s
R

When a tool is no longer needed, you exit the tool via an operation
it provides, or you can use the standard qui t command provided
by the tool manager. In either case all resources associated with the
tool are released. (By the way, you can start a tool in several ways. If
you enter the tool's name in a file called . suntools, the
suntools program will start it automatically when it brings up
the SunWindows environment. Entering the tool’s name in a file
called . rootmenu allows you to select the tool from the root
menu, the menu that pops up from the gray background that
underlies the windows. You can also start a tool by typing its name
to a shelltool as you would an ordinary urility.)

3:1.5

Fig. 5.5

Menus

Tool Manager Meny

The SunWindows System 99

Tools can accept commands in several ways. A tool mighe, for
example, let you type commands into a subwindow as you type
commands to the shell. This approach requires you to both
remember the commands and be able and willing to type.
Alternatively, a tool can provide a pop-up menu of commands you
can select with the mouse. Thus, instead of having to type a
command from memory, you can select an item from a visible array
of choices. Pop-up menus have the advantage of occupying no
screen space when you are not using them.

Popping up menus and selecting items from them is a natural
and fast action. If you position the mouse cursor anywhere on a
window frame and hold down the right mouse button, you pop up
the tool manager menu shown in Figure 5.5.” When you pop up a
menu the mouse cursor is automatically re-oriented to point to the
first item in the menu, which is also highlighted in reverse video.
As you move the mouse cursor down the menu (while still holding
down the right button), the next item is highlighted. To select a
highlighted item you click (press and release) the left mouse
button. When you release the right mouse button the menu
disappears and the mouse cursor returns to its former position and
orientation. Note that having popped up a menu, you can “choose
not to choose” any of the commands displayed. To do so, you
simply move the cursor away from the menu and release the right
button.

ifndef lint

tic char scc Jigfetonl.c 2.2 84/88/89 SMI";
branched from 4./84/84 =/
Expose

Hide
>
include {suntool Rebisplay]

include <suntoolfQuit
include <stdio.h7 T source of NULL =/

define global data */
include “gf<tool.icon”
pr_static(gfxic_mpr, G4, G4, 1, icoﬂ_uata);
static struct icon icon = {B4, B4, (Btruct pixrect *)NULL, B, B, 64, 64,
&gfxic_mpr, @, 8, 8, B, (char *JNULL, (struct pixfont *)NULL,
ICON_BKGROGRY]};

lsratic siguinchcatcher(), sigchldeatcher(), sigtermcatcher]);
Istatic struct teool *toel;
gtatic struct toolsw “tiysw;

lafxtool_main{arge, argv)
int argc;

char argv,

/* declare local variables */
char *toolname = “Graphics Tool 1.2";
struct toolsw “emptysw;

3-?z-ax“§§§§§§§
R e e e

A few more notes on menus:

5. The o0l manager menu also pops up when you hold che right burton down with the mouse
cursor over an icon. The close command shown in Figure 5.5 is replaced by an open
command, however.

_

THE UNIX SYSTEM

O The menu that appears when you press the right mouse
button depends on the location of the mouse cursor, that is,
whether it is on a window frame, or in a subwindow, or on
the gray background. Each subwindow can present a
different menu in addition to the standard tool manager
menu available in the window frames and the root menu
available in the background.

0O When a subwindow offers many commands, it can pop up
a menu stack rather than a single menu. With the mouse
you can quickly select one of the menus in the stack and
then an item in the menu.

O As you become familiar with a tool, popping up a menu
can become a bit of a nuisance. In cases where you know in
advance what you want to do, you could save 2 little time
by short-circuiting the menu item selection procedure.
Accelerators let you do just that; they effectively make
mouse buttons behave like conventional function keys. The
tool manager provides two accelerators. Clicking the left
mouse button exposes a hidden window or opens a closed
one. Holding down the middle button moves a window.
Subwindows may provide their own accelerators. |

5.1.6 Panels A panel is a permanently visible alternative to a menu. It presents a
monitoring/controlling surface like an aircraft or automobile instru-
ment panel, or the front panel of a (perhaps elderly) computer. Like
a menu, a panel displays an array of items; an item can be labeled
with either a character string or a picture. You select an item by
positioning the mouse cursor over it and clicking the left mouse
button. (Recall that a pop-up menu item is selected in the same
way.) This simple paradigm is made extremely versatile by the
number of different kinds of items that may be displayed on a
panel.

Among the items that a panel can display are buttons (for

invoking commands), choices (typically a list of permissable
parameters or available options), toggles (a toggle has two states,
selecting it switches its state), text (for filling in variable data such
as file names), cycles (a list of values that selection makes “roll over”
in the manner of an odometer), and sliders (for picking a value
from a continuous range). Figure 5.6 shows the panel displayed by
icontoel; its items are explained later in this section.
Panels can comfortably coexist with pop-up menus; for example,
frequently used commands may be permanently displayed on a
panel, while less-used commands are provided in a pop-up menu.
Menus may also be used to explain the items in panels. Tool
programmers can use both panels and menus according to applica-
tion needs and preferences.

The SunWindows System 101

R
S
ST

Fig. 5.6 A Panel : S

@ paint B ciear B unuo
Patnts: Pick points 1o paint ar clear.

i File; QJ'pa‘ﬂl.llluHh:md.pr‘
()
Stze: » loon Cursor

egrad:] » @
S|
T

e 3

s
de
o

i

e

a

it s

SE

’o{l

Panel e — F111: horger

F111: border
Fins:

Fi11: Proot:

R
SR
S

3. 1.7 Standard Tools While many users will write their own tools, all will use some of the
standard tools that are supplied with the SunWindows system.
These standard tools are described in this section.
o8 clocktool The simplest tool, clocktool consists of a single
subwindow that displays the time of day each minute or each
second. When its window is open, clocktool mimics a digital
watch; conversely, clocktool’s icon is an analog dial, with an
optional sweep second hand. Most icons are static images;
clocktool’s, though, is dynamic: the clock hands advance with
time. Many users keep a clocktool icon in a corner of their
screen.
5.L.7.2 shelltool shelltool consists of a single subwindow that emulates a
character terminal running a shell. The emulated terminal is
“smart” in that it supports escape sequences for operations such as
highlighting text. The keystrokes you type when the mouse cursor
is in a shelltool window are simply passed to the program
running there — the shell or the utility you started with the shell.
Users often have several shelltool windows on their screen at
the same time. For example, in one window you may be running an
editor, in another a compile may be under way, while in a third you
are composing an electronic mail message. You can even have a
shelltool window that is remotely logged in to another
machine; in this way you can execute a command (tip, which
needs a modem that your machine may not have, is a good example)
on another machine simply by moving the mouse cursor to the
window and typing.

shelltool provides a pop-up menu whose commands are
select and stuff. These commands work like the “cut and
paste” operations provided by many editors except that they copy
text rather than moving it. They let you, in a limited but useful
way, edit a shell session with the mouse. Suppose, for example, you

—

want to browse through a file with the more utility, bur you don't
remember the exact name of the file. You can get the name of the
file displayed on the screen with the 1s command; then you can
type more; then you can select the file name from screen and
stuff it next to your more command and press the return key.
Importantly, you can select text from one shell tool window
and stuff the selection into another shelltool window.
3.1.7:5 graphicstool By emulating a character terminal, shelltool allows a
UNIX application that has been written with no knowledge of the
SunWindows system to nevertheless run in a window.
graphicstool does the same for existing graphics programs. As
Figure 5.7 shows, a graphicstool window consists of two
subwindows. The upper window works like a shell tool win-
dow; you start the graphics program by typing its name and
arguments as a command to the shell. The program's graphical
output is automatically directed to the lower window.

102 THE UNIX SYSTEM ‘
i
|

Fip..5.7 graphicstool

Wiﬂm EenEra s GLringart

, oy g ; |
5.1.7.4 icontool By default, a tool’s icon is simply a square with the tool’s |

name on it. icontool (see Figure 5.8) is a bit map editor that you |
can use to design a custom icon that symbolizes the tool.

icontool can also be used to design custom mouse cursors and

pictorial labels for panel items. |
icontool’s subwindows are described below:

Instruction Using a combination of graphics and text, the
upper left subwindow gives instructions for painting with the
mouse in the currently selected the painting mode.

Message The upper right window displays status and error '
messages; for example, trying to load an non-existent icon file will
produce an error message in this window.

Control The control subwindow on the right is a panel that

__

Fig. 5.8

icontool Window

Message Subwindow

Instruction Subwindow

Painting Subwindow

Control Subwindow

Proof Subwindow

The SunW indows System 103

@ paint @ crear B undo
Points: Pick points te patnt or clear. Image loaded.

File: sgs/chesstool 1eon

size: » Icon Cursor
Grid: » [] B
(e¥ear) (A7) ([@rvece)

O X F111: vorder

i
O ¥i11: border

abe FiT1:

Load: Fi11: FProof:
BrG BrE BrE

DpgEmm

you use to select icontool options and operations. At the top of
the panel is a text item into which you type the name of the file you
want to edit. Under this are buttons for loading and storing this file
and for quitting the tool. The next two items let you choose the size
of the image you wish to paint (either icon size, 64x64 pixels, or
cursor size, 16x16 pixels), and whether you want to paint on a plain
or gridded canvas. Buttons are provided for clearing, filling, or
inverting all the pixels on the canvas. icontool has five painting
modes: point (pixel), line, box, circle, and text. The painting hand
image marks the current choice; selecting a different item moves
the hand and displays new instructions in the instruction
subwindow. The choices at the bottom of the panel allow you to
perform raster operations on your image. (Raster operations are
bit-mapped graphics functions that allow you to create new images
from the logical combination (for example, AND, OR, or XOR) of
other images.) This facility is very useful when you are creating a
cursor, since it lets you see how the cursor will look when it 1s
moved over different backgrounds, and which raster operation will
give the cursor the best contrast.

Painting To the left of the control subwindow is the
painting subwindow in which you change pixels with the mouse.
In point mode, for example, you paint a new pixel by clicking the
lefc mouse button and you clear a painted pixel by clicking the
middle mouse button. You can undo errors or experiments by
clicking the right mouse button.

Proof The painting subwindow magnifies your canvas so
you can manipulate individual pixels. The proof subwindow shows
the image you are drawing at its actual display size and resolution.

| 104
2 R
Fig. 5.9

fonttool

fonttool Windmw

Message Subwindow

Control Subwindow

Echo Subwindow

Edit Subwindow

THE UNIX SYSTEM

fonttool is another bit map editor that lets you create your
own fixed-width bit-mapped font for display on the Sun screen.
Figure 5.9 shows a typical fonttoel window. Within it are four
subwindows, described below:

Message fonttool writes prompts, warning messages
(such as when you quit the tool without first saving an updated
font), and so on, in this window.

Control In this panel, you specify font attributes, the font
file you want to edit, the kind of drawing operations you wish to
perform, and so on.

Echo Typing into this subwindow shows how font charac-
ters look when strung together.

Edit This is the window where you do your real work. Eight
edit buttons show eight adjacent font characters. On each button is
displayed the hexadecimal position of the character and its ASCII
representation, if there is one (a font may contain up to 255
characters, but there are ASCII representations for only the first
126). Each button also shows the character’s bit map displayed at
screen resolution.

A different segment of the font can be displayed in the edit
buttons by moving (with the mouse) the slider below them. The
width of the slider bar represents the complete set of 255 characters;
the current position of the slider is shown by the black box. The
relative locations of key reference points, namely the numbers and
the capital and lower case letters, are shown on the slider bar to
make it easier to find the section of the font you want to work with
next.

Below the slider bar are the edit pads. You make an edit pad
for a character by clicking a mouse button on the corresponding edit
button. (In response, the edit button’s border is changed from a

o Trw_:m (Savn) (Exin) Font n ar /1 i Honts Al aeav idthfonts/ga) lant r.18
: (Max Widih: = Hax Height: 2o
S fcaps Hoight: 15 - A-mehghtt 0 Baselline: 15 (Agmly}
= fpecation: { Sirgto o IQEENEE (e Rect Cut Copy Paste)
“#The quick brown fox jumped over the lazy dog. .
s
Gi:m £2:b &3¢ L H] £5in 5514 B1ig [Z 5. : iﬁ‘?
a b c d e 3 2 éig“%\g.
i .gg
-
-
R -— (e
I [B | B
_—] =
e T — A YR R W Ve BT £ e
B - o = ;«gﬁﬁw
el 1| T s =
Lo 5 ¥ v e
. W » " -
LR 0 T i S
. e i ENEE .. e
"e»ge?*?'@”' - e
] e = = = .
L " ; : : o
Lermem) S
i : =
R ' -
| us -
Gt 7 i :
g&m&&z_} b - g L= w@.@.@%%@
i i 3 G
¥ : e ﬁ%‘-
i ; o
s . 4 " 3 seniina
e ! oLl v BL] Wﬁ% -
Sy T SR S A BTG T3 W RNCE TN] i 1
E Dot
;_;gfx.i‘%_ | 4 m&§¢§§ﬁ?
L " = e

5.1.7.6

Fig. 5.10

dbxtool

dbxtool Window

Status Subwindow

Scroll Bar

Bubble

Source Subwindow

Buttons Subwindow

Command Subwindow

Display Subwindow

The SunWindows System 105

solid bold line to a double line.) Next to the edit pad are a proof
window, which shows the character at screen resolution as you have
edited it, and three control buttons. By clicking a mouse button on
these you can undo your last operation, save the edited bit map into
the font file, and quit editing the character, which makes the edit
pad disappear.

In the edit pad, each bit of the character is shown by a black
cell. You can paint new black cells and change black cells to white
in several modes, as specified in the “operation” section of the
control subwindow. You can also change drawing modes by
popping up a menu in the edit window; this menu has the same
operations shown in the control window. In Figure 5.9 the “point
wipe” operation has been selected; within an edit pad pressing a
mouse button down will draw a black cell and will draw more black
cells as you move the mouse cursor with the button held down.

Sliders on the edges of the edit pad labeled “R,” “B,” and
“A.” can be moved to change the right edge, bottom edge, and
horizontal advance of the character respectively. For fixed-width
fonts these are normally identical for every character.

dbxtool is a window-based interface to the dbx debugger
described in the utilities chapter. An outstanding tool in its own
right, dbxtool also illustrates how the SunWindows system can
be used to add new graphical interfaces to existing software.

Figure 5. 10 shows a typical dbxtool window. It is divided
into five functionally specialized subwindows. These subwindows
are all adjustable in size. They come up in a default configuration or
you can make them come up as you wish by placing instructions in
a .dbxinit file in your current or home directory. The
subwindows are described below.

pped a1 File: Jprivate tmpinancy/1.e TR
File Digplayed: J/peivatefusr/imp/inancy/l.c Lings: 26-45
AN BrgE, Argy)
arge;
faegvl L

int guick_Tlag;
.o!1p|.:1:+_f'Iig-quir_'h”‘ﬁ‘larw..lrgv?.
get_view surfacelour. surface, argv);
i Tinitialize_corel DYMAMICE, SYNCHRONOUS, THREED)) exitil);
1t {initialize view surfacel our_surface, PALSEX) exitil);
¢ initial Vzo_devicw| REVEDARD, L};
select view surfacel our_surface))

set_viewport 3 8., L., 8B, 74y
et window| B., 1823, 2e@. ., 1823),
sel_output_clippingl TRUE);

create_retained seguent(PROGUCT SEGMENT):
ent_charpracisiont CRARACTER);
dras_baoxasl);
print_text{};

close reteined seghanti}:

{ SLop N masn
1) stop dm main
“(dbxtoal) stop at 35

[2) stop at "1.c™:35
Cidbetoend) run

Bunning: /privatelusr/wmpdnancyfone
Sidbwtool} display quick_tlag

o ool)
Wi cbstool)

106 THE UNIX SYSTEM

Status A panel subwindow whose items show the file being
debugged, the function in the file that is displayed, the line
numbers shown in source subwindow, and so on.

Source Tracks the source code being debugged, showing
locations of breakpoints (“stop signs” in Figure 5. 10), and the point
where execution is stopped (hollow arrow). As the program runs,
the text in this window keeps step automatically.

Buttons A panel subwindow whose button items are
frequently used dbx commands. You can add and delete buttons as
you like, according to the commands you use most; dbxtool
rearranges the buttons automatically in the subwindow. You
execute a command by selecting an item in the source subwindow (a
line, a variable name, or the like) and then selecting the appropriate
command button. For example, suppose you want to see the value
of a variable called index. To start the selection you move the
mouse cursor to the i and click the left mouse button. As you move
the mouse cursor to the right, dbxtool highlights characters
showing you what you are selecting. At the x you terminate the
selection by clicking the middle button.® Having selected the text,
you then select the “print” button on the screen by placing the
mouse cursor over it and clicking the left mouse button.

Command Displays command and program output and
supplements the buttons subwindow by accepting all dbx com-
mands. Provides a select and stuff menu functionally similar to

« shelltool’s.

Display Displays the values of selected variables whenever
execution stops.

The source, command and display subwindows are equipped
with scroll bars. In each scroll bar is a dark grey “bubble” that
shows the relative position and extent of the file segment displayed
in the subwindow. For example, in Figure 5.10, the bubble in the
source subwindow shows that about one-quarter of the file is
displayed, and that the segment displayed is near the middle of the
file. You manipulate a scroll bar by placing the mouse cursor over it
and clicking a mouse button. The left button scrolls forward in the
file; the line next to the mouse cursor is brought to the top of the
subwindow. The right button scrolls backwards; it brings the top
line down to a position next to the cursor. The middle button
scrolls to an absolute location anywhere in the file; it considers the
mouse cursor’s position as locating a line in the file and it brings
that line to the top of the subwindow. For example, to go to the
middle of the file, you place the mouse cursor halfway down the
scroll bar and click the middle button. Note thar for scrolling, the
text in the display and command subwindows is treated as if it were
a file, so you can review previously entered commands or results at

6. Actually, dbxtool les you be a little “sloppier” when selecting a simple name like this. If
you select any rwo points in the string dbxteool will “expand” the selection to the full word.

.

The SunWindows System 107

any time.
5.2 Programming with To the programmer, the SunWindows system is a versatile “parts
the SunWindows kit” from which many different kinds of user interfaces can be
System constructed. Most people, though, use the SunWindows system to

write tools like those described in the first part of this chapter, so
this section describes the SunWindows system as it appears to a tool
programmer.

The SunWindows system fully supports the capabilities of
color workstations. However, to simplify the discussion, this
section only describes the facilities for monochrome displays. In
general, tools written for color workstations produce acceptable
results on monochrome workstations and vice versa.

3.2.1 SunWindows The SunWindows facilities are embodied in libraries of procedures |
Structure and (technically C functions),” plus supporting data structure declara- |
Facilities tions and macros. The libraries are arranged in three levels as

illustrated in Figure5.11. As shown in the figure, each of the
higher levels builds on the facilities provided by the lower levels. A
tool is free to use the facilities of all levels, though most of its calls
will be to suntool procedures. | |

Fig. 5.11 SunWindows Facility, i
Structure [Tool Programs J 1

[suntool Services J |
|

(sunwindow Services j ':'
i

(pixrect Services ’

Adding to the flexibility of the system, many of the facilities |
provided at each level can be extended or replaced. You could, for

example, replace the entire suntool level with an equivalent that

supported tools with tiled, rather than overlapping, windows. You

can also integrate your own display or your own pointing device

into the SunWindows system.

7. Presently, tools must be written in the C language.

#

108

5.2:1.1

3.2.1.2

3.2.1.3

pixrects Level

sunwindow Level

suntool Level

THE UNIX SYSTEM

Where the UNIX system provides device-independent /O
operations on streams, the SunWindows pixrects level provides
device-independent operations on pixels grouped into rectangles
called pixrects. The notion of a rectangle of pixels is very versatile:
a pixrect may represent a single character, an image such as a cursor
or an icon, or the entire display screen. Importantly, pixrect
operations work identically on all pixrects, whether they are
currently displayed or are structures in memory. Similarly, the
pixels in a pixrect are addressed in exactly the same way, regardless
of the addressing convention employed by the underlying display or
memory. For example, display locations are typically addressed as
X-Y displacements from an origin, while memory is addressed as a
linear array; pixrects hide these differences from your software. The
uniformity of pixrects makes it easy to build and save display
images in memory and simplifies the job of integrating a new
display device into the SunWindows system. Pixrect operations
include single pixel access; color map access; drawing of patterns,
polygons, curve bounded regions, text and vectors; and basic raster
operations involving two and three pixrects. (Raster operations
combine pixrects using logical operations such as AND, OR, and
XOR.)

From the simple rectangles supported by the pixrects
level, the sunwindow level builds a system of multiple
overlapping windows. These windows may be read and written
concurrently by multiple processes; the sunwindow level coordi-
nates their interaction so that each process can proceed without
interfering with the others. The sunwindow level also maintains a
record of the areas of a window that are hidden and automatically
clips any output destined for a hidden area to prevent overwriting
the hiding window.

The sunwindow level tracks the mouse with a cursor. It
defines mouse movements, button pushes, and keystrokes as
events. It captures these events as they occur and combines them
into a single input stream that reflects the sequence in which the
events occurred. Each event is timestamped so a tool can compute
the time between events.

sunwindow services allow you to determine a window's
current size and to write rectangles, vectors, text, and so on, into a
window without concern for clipping. It also lets you determine
where the cursor is, move it, and change its image.

As the sunwindow level built windows from pixrects, the
suntool level, in combination with your code, turns windows
into tools — complete applications with window-based user
interfaces. In the suntool level is the tool manager, the executive
framework into which you fit your application. The tool manager
provides the border, namestripe, and icon for your tool, lays out
subwindows within the frame, displays the tool manager menu on
request, and implements its commands. It provides packages you
can use to create pop-up menus and standard and user-defined
subwindows. You can also use its facilities to obtain access to the

5.2.2

Fig. 5.12

5.2:2.1

Anatomy of a Tool

Tool Program
Anatomy and Control
Flow

Getting Started

The SunWindows System 109

full screen when necessary, and to select data from one window and
stuff it into another.

Although tools vary widely in their function and their operation, all
conform to the basic organization shown in Figure 5.12. A tool is
an ordinary program that observes conventions defined by the
suntool level and calls upon services provided by that level and
possibly the lower levels. Within this framework a tool is much like
any other UNIX program: it can spawn child processes, pipe data
to and from utilities, and so on. However, a tool is inherently
dependent on the mouse and keyboard for input and upon the
screen for output; therefore, the UNIX system standard I/O
conventions do not apply to a tool, (except for writing messages to
the standard error if the tool cannot start).

funix System{———Tool Program——1—8unW|nd0ws System—]

Global Declarations

—| Main——
v
Create frame and icon

Createand
initialize subwindows

Install tool

Start select loop
tool_select

Destroy too] =———

=8
oL |

-— | exit g’: T
by
EI

—a] Lk

SIGWINCH Catcher _—_
-
[Select Handlers | O

(1 per user-defined subwindow)

Notify Procedures !
(1 per panel item)

[SIGWINCHHandlers |
(1 per user-defined subwindow)

Before a tool is invoked, the suntools program, which
initializes the SunWindows environment, must be running. As
discussed earlier in the chapter, a tool can be invoked automatically
by suntools, from the root menu, or by typing its name to 2
shelltool. However it is invoked, control enters at the tool’s
main procedure. Like any utility, the tool can accept command line
arguments, can look in a predefined file for startup parameters, and
can read shell environment variables.

110

2.2.2.2

3.2.2.3

Building the
Window Frame

Building
Subwindows

THE UNIX SYSTEM

Having completed its startup housekeeping, the tool program
proceeds to define the objects that will represent it on the screen. It
does so by calling suntool procedures (for simplicity these are not
shown in Figure 5.12). First the tool defines its window frame and
its icon by calling tool_make. This procedure takes as parameters
a list of attributes that modify the default attributes of a window
frame and its icon. Some of these attributes include the size of the
frame, the text in the namestripe, and whether the tool is to come
up with its window open or closed. For example, if you do nor
supply an icon for the tool, the default icon (a square with the tool’s
name inside) is used.

Next the tool identifies and initializes its subwindows.
Supplied with the SunWindows system are standard subwindow
packages, described shortly. If a standard subwindow does not
provide the functions you need, you can create a user-defined
subwindow. To create a user-defined subwindow, you call
tool_createsubwindow.

To create an instance of a standard subwindow, you
call a procedure dedicated to creating that subwindow (for
example, msgsw_createtoolsubwindow to create a mes-
sage subwindow). This procedure in twmn calls
tool_createsubwindow.

The most frequently used standard subwindows are described
below:

Message A message subwindow simply displays a text
string. When you create the subwindow, you specify the font in
which to display messages and the initial text string. Later you can
write a different string into the window by calling
msgsw_setstring.

Terminal Emulator This subwindow emulates the basic
Sun character terminal. An associated SunWindows service called
ttysw_fork allows you to fork a process that runs a program in
the subwindow, connnecting its standard input, output, and error
streams to the subwindow. Often the program run in this fashion is
a shell, providing a conventional UNIX system interface inside a
subwindow.

Graphics A graphics subwindow provides an environment
for a graphics program in somewhat the same way that a terminal
emulator provides an environment for a program accustomed to
running with a display terminal.

Panel Panels were described earlier in the chapter. For each
item you define in a panel, you can name a notification procedure
(described more fully shortly) that you want called when the user
selects the item. The subwindow software takes care of correlating
mouse position with item locations and providing appropriate
visual feedback for selections.

5.2.2.4 Installing the
Window

5.2:2.3 Responding to
Events

e

The SunWindows System 111

You can place subwindows where you wish in your tool’s
window, or you can let the system tile them over the available area.
Starting with the first subwindow defined, the tiling algorithm
places each successive subwindow as high and as left as it will go. In
this way the subwindows are laid out in the customary English
reading sequence.

With the window frame and its subwindows defined, the tool
is ready to have its window painted on the display and to begin
normal processing. To do this the tool calls tool_install
which adds the window to the database of windows presently being
managed. One of the things tool_install does is send a
SIGWINCH signal (described shortly) to the tool, telling it to
draw itself on the screen. When tool_install returns, the tool
is ready to begin normal processing.

Normal tool operation commences when the tool’s main
procedure calls tool_select. This procedure takes its name
from the 4.2BSD select system call described earlier in this
report. It is tool_select and the select call that make a tool
event-driven: that is, the tool is quiescent until the user directs
input to it with the mouse or keyboard.® The tool responds to the
event and then returns to its dormant state.

tool_select essentially runs in a loop that does not
terminate until the user quits the tool, typically via the tool
manager's quit command. This loop uses the select call to wait
for an event directed to the tool’s window. If no event is available,
the routine (and thus the process running the tool) blocks until
input becomes available. A tool can set masks to filter out events of
no interest; for example, a tool thar does not use the keyboard can
cause all keystrokes made in its window to be ignored. When
select returns, tool_select identifies the subwindow in
which the event occurred and calls the select handler you named
when you created the subwindow. Standard subwindows have their
own select handlers so you need to write select handlers only for
user-defined subwindows.

Of course, what a select handler does when invoked is entirely
application-specific. In general, it will call input_readevent to
get the event that caused it to be called and based on this event take
the appropriate action and return to tool_select.

Many SunWindows facilities are provided to assist select
handlers. One of them is the pop-up menu package. To define
pop-up menu for a subwindow, the select handler declares a
structure containing the menu items. Having been selected, the
handler calls input_readevent. If the event returned is “right
mouse button down,” the select handler calls menu_display,
passing the menu structure. This procedure pops up the menu on
the screen, and highlights items as the user moves the mouse cursor
up or down the menu. When the user releases the right button,
menu_display makes the menu disappear and returns, identify-

8. The expiration of a timer can also be designated as an event.

THE UNIX SYSTEM |

(=
[y
b

ing the item selected, ifany. Now the handler can execute the user’s |
command and return to tool_select.
3.2.2.6 Handling Panel A panel item’s notify procedure is similar to a select handler,
Notifications but simpler because of the work done by the panel software. At
entry to your notification procedure you know that the user has
selected a panel item, and you have only to provide the appropriate
response. If, instead of using a panel, you build an equivalent witha
user-defined subwindow, your select handler must query the mouse
position, compute the item selected, highlight the selection, and so
on.
5.2.2.7 Handling Window At any time a user may stretch the tool’s window, open its
Changes icon, or expose a portion of the window that had been hidden by an
overlapping window. In each of these cases, some portion of the
window’s image must be regenerated and redisplayed. Such an area
is called damage. Damage does not occur when the user hides all or
part of a window. The SunWindows system automatically clips the
window image so that only the unhidden portion is displayed.

Damage inherently occurs asynchronously to the execution of
the tool’s process, since it is instigated by the user, whose actions
are unpredictable. Since damage occurs asynchronously, the
SunWindows system notifies a tool asynchronously, by sending the
tool a UNIX signal, called SIGWINCH (window change).

As with any signal, the tool catches a SIGWINCH with a
signal handler (or catcher), a procedure the operating system
invokes in the manner of an interrupt handler. While the tool must

« eventually repair the damage to its window, the SIGWINCH
catcher is not the place to do it. Because the SIGWINCH catcher is
invoked asynchronously, it cannot, as a rule, assume that the
window is in a consistent state. For example, the tool’s own code
may have been updating the window when the damage was
inflicted. Therefore the SIGWINCH handler does nothing but set a
flag in tool_select by calling tool_sigwinched.

Besides invoking the tool’s SIGWINCH catcher, occurrence
of a SIGWINCH terminates tool_select’s select call if it is
blocked on such a call. At that time tool_select notices that its
sigwinchpending flag is set. In response, it calls all the
subwindow SIGWINCH handlers; it is these procedures that
actually effect the repairs. If, when a SIGWINCH occurs,
tool_select is not blocked on a select (typically meaning
that one of the select handlers is running) it acts on the flag before it
issues the next select. The result is that asynchronously occur-
ring damage is repaired synchronously with normal processing.

SIGWINCH handlers are supplied with the standard
subwindows, making them self-repairing.” You provide a
SIGWINCH handler for any user-defined subwindows you create.
A rtypical SIGWINCH handler makes calls to the sunwindow
level to set clipping information and regenerates the full
subwindow area from the current values of its variables. The

sunwindow level redisplays only the damaged area to minimize
display flash.

b——‘

The SunWindows System 113

5.2.2.8 Cleaning Up Normal operation ends when the user quits the tool, typically
by selecting the quit command from the tool manager menu.
When this happens, tool_select returns to the tool’s main
procedure. The tool then cleans up, calls tool_destroy to
remove its window from the display and free the associated
resources, and finally exits in the normal way.

9. A graphics subwindow is a special case. Like a user-defined subwindow, the SunWin_cIows
system has no idea of what should be displayed in a graphics window, so it cannot repair the
subwindow. However, the tool may ask that an exact image of the graphics Subwind?w be
continuously retained and updated in memory, allowing damage to be repaired by simply
calling pw_repairretained.

e

Content

Layout and
Style

Technical
Errors

Typographical
Errors

Sun Microsystems, Inc.

Reader Comments

We at Sun Microsystems wish to provide the best possible
information on our UNIX environment. We therefore encourage
your comments and suggestions by asking you to complete the
questions below.

Were your expectations met? If not, please indicate what you
think should be added or deleted.

Did you find the information well-organized and easy to follow?
If not, please indicate how it may be improved.

Please list errors of fact by page number and actual text of the
error.

Please list typographical errors by page number and actual text
of the error.

MName Date
Title Depr.
Company Division
Address M/S
City, State Zip
Telephone () Ext.

