106

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

TX-2 USERS HANDBOOK

ALEXANDER VANDERBURGH, Jr. (Ed.)

LINCOLN MANUAL NO.45

JULY 1961

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U.S. Army, Navy and Air Force under Air

Force Contract AF 19(604)-7400.

LEXINGTON MASSACHUSETTS

Note to TX-2 Users -

The TX-2 Users Handbook will be printed in several installments - you
now have the first. There will be seven chapters - they are listed below in

order of (expected) appearance:

Chapter 4 - In-Out System - Sections 46 and 74k (Mag. Tape and
Plotter) to come later.
" 7 - Charts
i 6 - My Utility System Summer '61
" 5 - Lights and Buttons
" 3 - Operation Code - Fall '61
" 2 - Functional Description Who knows?
" 1 - Introduction

Your comments, criticisms, and (unfortunately,) corrections, are

reguested.

A. Vanderburgh'

July 1961

Note to TX-2 Users:

BEHCLD ::!}

You now have Chapters 3, 4%, 6, and 7.

Chapter 5 - Lights and Buttons - is typed and awaits final proofreading.
A draft of Chapter 1 - Introduction - is available.

Chapter 2 - Functional Description - is being written at last.

And, Chapter 4 - In-Out - is being rewritten. (Time marches on, you know.)

Please report any mistakes or criticisms quietly and discreetly, and I will

try to disseminate the required word with dispatch.

Qe Yeorrbewia ko

A. Vanderburgh

August 1963

—— So here is Chapter 5 — Lights & Buttons ——

Many TX-2 users have asked for this chapter. Now that it is out, I hope
it teaches them a lesson.
The next installment will be a re-issue of the second part of Chapter 4

(IN-OUT). In the past two years, nearly all the IN-OUT units have been

modified or replaced, and a few new ones have heen added to the system.

Please do not stand on one foot waiting for Chapters 1 and 2. There

may be some delay there.

A, Vanderburg'

This techniecal documentary report is approved for distribution.

.

£/ y o
F ot C e e go

Franklin C. Hudson, Deputy Chief
Air Force Lincoln Laboratory Office

November 1963

3-1 BRIEF GUIDE TO THE ABBREVIATIONS .

TX-2 USERS HANDBOOK

CHAPTER 3 - OFERATION COLE

TABLE OF CONTENTS

P

3-2 OP CODE DESCRIPTIONS - (For In Out, See Chapter 4.)

3-2.1

3-2.2

3-2.3

3-2.4

August 1963

LOAD-STORE CLASS . .

LDA, LDB, LDC, ILDD, (IDE) = LOAD = « « &+ « & & «

STA, STB, STC, STD, (STE) - STORE - .+ + + + . .

EXA - EXCHANGE -

INDEX REGISTER CLASS .

REX
DFX
EXX

AUTX

JEX

JHX

Reset Index
Deposit Index
Exchange Index
Augment Index
Add Index

Skip on Index
Jump on Positive

Jump on Negative

JUMP-SKIP CLASS

JMP

JPA

JHA

JOV

SKM

SED

INAEF o« wiw s % & w owuE v B o s

ngexX « « s & « % & %% ¥ ¥

Jump (with variations)

Jump on Positive Accumlator . .

Jump on Negative Accumulator . .

Jump on Overflow .

Skip on Bit

Skip if E Differs

SCALE, NORMALIZE CYCLE

SCA, SCB, SAB - Scale

NOA, NAB - Normalize

CYA, CYB, CAB - Cycle

O I

3=1

Page
3-3
3-5
3-5

3-8

3-10

3-13
3-14
3-16
3-18
3-20
3-22
3-2L
3-26
3-26
3-29
3-30
3-32
3-32
3-32
3-34
3-36
3-37
3-38
3-40
3-h2

3-3

3-2.5

3-2.6

3-2.7

OPERATION
3-3.1
3-3.2

A=

LOGIC, INSERT, COMPLEMENT/PERMUTE . .

ITA, UNA, DSA, ITE - Logic . . .
INS - Insert
COM - Complement/Permute
CONFIGURATION MEMORY CLASS
8FF, SFG - Specify . . « « « o«
FLF, FLG - File

ARITHMETIC CLASS R

ADD, SUB .o .
MUL v o o 5 o« o o o 5 8 o o o &
DIV « « SR W G A e ¥
TLX wo% o m % & @i o & & & @0 s

CODE CHART (Wesley A. Clark)
NUMBER SYSTEMS .« « + « + « « & &
GLOSSARY OF TERMS .

OFERATION CODE CHART

NOTES CN THE CODING CHART . . .

3-4 CHAPTER 3 INDEX (Alphabetical and Numerical)

Gt n s s e m e s osoa e w s e s s 360

3-67

...... 3-68
3-68

A - . 1

« o« e+ 3-73

3-T7

August 1963

3-1 BEBRIEF GUIDE TO THE ABEREVIATIONS

Examples:

)

8q3(A)

X Memory Register "j"

Contents of X Memory Register j

STUV memory address "T" (STUV memory is "S", "T", "U", and "V" memories)
T4 []{J]

Contents of STUV Memory Register TJ
F memory register o

Contents of F memory register «

[TJ] Configured as specified by o
Quarter

Left Half

Right Half

Sign of

Sign Extended (i.e. "With Sign Extension")

Is copied into (Goes into)

==> A The configured contents of STUV memory register T goes into the
accumulator.

== qls The sign of quarter 3 of A is copied into all of quarter 4 of the
accumulator.

==> L(T) The contents of X memory register J goes into the left half of STUV

register T.
== XJ The left half of STUV register T goes into X register j.
==> FO: Quarter one of the contents of STUV memory ’I'3 is copied into F

memory reglster o.

The notation below is borrowed from the Mb Utility system. (See Chapter 6.)

{w)

*

A,B,C,D,E

August 1963

Register Containing w
Deferred address
The AE addresses: 377604, 377605, 377606, 3ITT60T, and 377610

The current location - i.e. the location of the instruction being performed.

3-2 Op Code Descriptions

3-2.1 LOAD, STORE, EXCHANGE

August 1963

3-5

LOAD AE (24-27)
LOAD E REGISTER (20)

%rpa .

Mo,) == 2

LOAD means copy into the AE from STUV memory-

Extension, and permutation are used.

[Tj] ==> E.

STUV memory is not changed.

LDA, 24 LDA
LDB, 25 aly
LDC, 26
LDD, 27
LDE, 20

Activity, Sign

ALL load instructions except LDE perform the standard

EXAMPLES: #**(Standard F memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
| — T, Since all four quarters
J [T,] ==>4 ; ord &
l l l l J are active, su w? orm
Lo LA Tj [1.] => E is immeterial. “CLDA or
V2L A J oA would ve equivalent.
: TJ The left half of A is
1 R[Tj] ==> R(4) not changed.
2. LDA Tj l 4
[7.] ==>E
[V7774 A d
fresstm—r o R[T,] ==> R(4) The 18 bit word from
J J
5 1 o l l SR[T,] ==> L(A) STUV is "expanded" to
- J e rr, J 36 bits through "sign
[r] = 1% | EZZZZIIIIIA A [1,] =>= ——
: TJ A "Right Half Load" -
2 S L[T;] == R(A) the left half of A is
L. “LDA T,
3 | — | [T] = T not affected.
[Vi A J

*%A11 examples apply directly to LDA, LDB, LDC, and LDD.

the final M to E copy is omitted.

3-6

LDE is essentially the same - only

August 1963

LDA, 24 LDA
LDB, 25 2l
LDC, 26
LDD, 27
LDE, 20

The left half of A is
The right

half becomes the same as

unchanged.

A B
i [0 (serore)| 1Al > () | e left: Ina sintler
LDA A \ manner, ~ LDA A sets the
i i [A] == E left equal to the right.
N—////////, (};}_ter) *2Im would clear the
left half word through
sign extension.
C____—1 TJ qh[TJ] ==> gl(a) The nine bit number in
16LDA Tj “\\H\\\\ﬁh th[TJ] —=> q2,3,k(A) quarter b4 of 23 is
L y expanded to 36 bits in A.
[F,¢] = 163 wiri [r,] == E
B (Tk),j ()] " This is double indexing.
R(T).] ==> RIA
1oa {Tk}}f l l k'J (Tk)j = T+[xk]+[xj].
; ; [(Tk}'] e B (It is not elways faster
L V7 A J because the defer cycle

takes time also.)

August 1963

3=T

STORE AE (34-37)
STORE E (30)

STORE is & non-destructive copy from AE to STUV memory.
it becomes a partial store.

a7

J

o1

[A] == T

STA, 3k STA
STB, 35 3h
STC, 36
8ID, 37
STE, 30

With a partially active configuration

Subword form is meaningless - only active pathways are used. The

E register is set from the memory word after the store operation (except for STE which does not

change E).

EXAMPLES: ##(Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
Wm B X T, is set from A, A is
[A] =5, ! :
J not changed. Since all
e L Tj T 1 T 1 ok quarters are active, all
[:::::::::::J are copied into Tj'
W Since there is no sign
: R[R] ==>'R(TJ) extension, llSTA would
5 1
2. STA Tj I I have the same affect.
[b
[F),]=1%
lgSTA would be exactly
/7 AR HPE) .
5 = 3 the same.
3. STA T, ‘\\::\\\ ”
J * [FLE] = 142
This sets the left equal
i] ; —
. R[A] == L(A) ;; the right (as does
b, “8TA A \\ LDA A). Since there is
i no sign extension on STA,
EE—— _
12STA would do the same.

[FEE] =232

¥¥ After the store operation is complete, the new content of Tj is copied into E except for

the STE instruction which does not change E.

Angust 1963

STA, 34 STA

STB, 35 3L
sTC, 36
STD, 37
STE, 30
V] TJ. l[A] sl TS Quarter 1 is copied into
= 9 J gquarter 3 of TJ_. The
5,
7 o TJ \ i rest of Tj is unchanged.
[F5] = 762 C——1 a
Stores in the right half
7777 Tj only - useful for setting
6. YorE o, 1 1 R[E] ==> L(TJ,) address sections - (For
(Store E) — example, at start of sub-
E routines entered wvia hJPQ).
777777777 (Tk)j EAT et) Double indexing -
=> MV’ (1) = T+x J+[x,]
T. STA [‘.I:‘k]*_i'
dJ i
O
A

August 1963

EXCHANGE A (54)

EXCHANGE A is a combination of STA and LDA.

the exchange of data.

“Exa T,

%Al == T

Q[Tj] ==> A

Subword form, Activity, and permutation are all used.

2

Sign extension, if any, occurs only in A and after

The E register is set equal to the STUV memory word used.

EXAMPLES :
CONFIGURATION ABBREVIATED
NO. | INSTRUCTION DIAGRAM DESCRIFPTION COMMENT
0077 Y
1 EXA T 1 I t 1 =
] [A] == T,
77777770 d
2
I 3 RlTJ] => R(A)
2 lgxa v 1 I e
[) R[A] ==> R(T.)
2 J
—777 R SR[TJ_] ==> L(A) Sign extension occurs in
. A, but not in T..
R = A j
3 i — A i 1 [TJ.] > R(A) e Y
[F..] = 140 777778 R[A] ==> R(T)
11
T-{
lrizad J L[T,] ==> R(A)
k. °Exa T \\ i o
J L L) R[A] ==>L(T.)
I /7 J

** The two copy operations that perform an exchange take place simultaneously. Remember also

that E is changed - it is set equal to the final contents of the STUV memory word.

3-10

August 1963

”
-

. i
77 J o_3[Tj] ==> qlA
9 5EE(A T. \ E
J o I8 ai[a] ==>q3(1,)
[F5] = 762 I 7777, A
When "A" is used as the
A address section, EXA has
> vz R (Before) the same affect as STA.
6 2 A \\\ o exchange is made, and
R[A] e L(A} there is no sign extension
/7, 4
(After)
777777777777 (Tl:)j [(T)] " Double indexing:
15 (T,) 5 = P+{x, J[x,]
7. EXA {Tk}*j* 1 I I)
w7777 B [a] => (%),
Allgu.s‘t 1963 3_11

3-2.2 Index Register Class

RSX
DPX
EXX
AUX
ADX
SKX — "'REX, SEX
JPX INX
TN DEX
S5XD
SXL
SXG
RXF
RDX
RFD

##% Supernumerary Mnemonics for SKX.

August 1963 3-13

RESET INDEX (RSX, 11)

Yesx. T

T] == X

J

RSX
11

RESET is a non-destructive copy from STUV memory into X memory.

Subword form, Activity, and Permutation are used.

The E register is set equal to the STUV memory word used.

(Usually "T", but see example T.)

EXAMPLES: (Standard Configurations - Chart 7-2)
CONFIGURATION ABEREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
o]
T RSX would do the same.
1) R[T] => X,
1
Ti RSK, T | | (] 5
| S AL |
A X,
T laRSX would do the same.
I L[] => X,
; 2 \\
2. RSK, T
J [7] ==> E [F,] = 12
= i ql[’l‘] > R(Xj) The right half of le is
3 set from T. The left nine
3. RSKJ_ * -L [T] ==>E bits are not changed.
V3 x
L) ql[T] ==> R(xj) Sign of quarter 1 of T is
CIT 1T 11
Sql(T) ==> L{)CJ) extended throughout the
L. 13Rsx_ T left half of X,. The right
PN R |
d 7 (1] =>E 33
o A X half is set as above, RSX
[FlB] -4 would do the same. [FBB] = 320
B L Nothing happens (other than
21 changing E).
5. RSX, T l l [T] ==>E
J !
_ T x
[F21] = 230
3-1h August 1963

REX

11
Ll This time Xj is cleared
S
aESXj T Sqli(T) ==> X,j because of sign extension.
3 3z
[Fa] = 030 =" [T] == E
77783
I_:] Tk With a deferred address,
. R[Tk] == }\{‘1 RSX is indexable. Note
7. R, (T,] i l l l i
J k [Tk‘] S B that E is set from Tk this
A X,j time.
Nothing happens because X
& register O cannot be changed.
¢ RSXO * [T] =>E [X0] = 0 permanently.

August 1963 L5

DEPOSIT INDEX

(DPX, 16)

%P:-:J T

] > 1

DEX
16

DEPOSIT is a non-destructive copy from X memory into STUV memory.

Activity and Permutation are used.

The X memory word is expanded to a full 36 bit subword by extending bit 2.9 (the X register

sign bit) but only active quarters are used.

The E register is set equal to the STUV memory used.

(The subword form is immaterial.)

(Usually "T", but see examples 8 and 10.)

EXAMPLES: (Standard F Memory - Chart 7-2)
CONFIGURATION ARBREVIATED
no. INSTRUCTION DIAGRAM EXPLANATION COMMENT
T Only the right half of T
is changed.
1
1. DPX, T X.| = R(T
s ot k] r@
— 1 %
3
T Only the left half of T
5 is changed.
2. DPX, T E{J] = L(T)
J
X
—
N P ig . 5
SN, 1y E(] = R(T) A1l of T is used. Note
’ ? * f J that DPX, T (or DPX T)
3 DPXj - SKj = L(T) is a handy clear instruc-
e s 9 tion. ([%,] = 40 and can-
not be changed.)
C——— T3 r Only quarter 1L of T is
changed.
L. 313ij T t R[xj] = ql(T)
) %
J
]« Only quarter L is changed
16 for only one path is active,
5. DPX, T R[}(j] = ql(7)
[F ¢l = 163 e %

3-16

August 1963

All of T is affected.

TR T, ij => R(T)
6. Lippx, T %
gl
[F,.] = 202 S
VAl Surprisingly enough, this
o1 does do scmething. (See
b DPKJ 7 t 1 ij => L(T) example 5, RSX.)
DT i—
[FQ:L] = 230
[V77 [X] _ T}; Deposit is indexable with
1 *® J deferred addressing.
B REE, (T T T [1] =F
E—l
YAV S, —s g3(z) | Wote that bit 2.9 of X,
33 T T - is used even though guarter
2 DPK.J' B [KJ] = q1(T) 2 is not active.
[F..] = 320 S —
33
] [xj] == R(E) V memory, except the A, B,
10. DPX 377720 T T T 1 C; D, and E registers can
S}(J_ —=> L(E) not be changed by any instruc-
A tion. Note that E is set to

"what-would-have-gone-into-

t
Ly

August 1963

EXCHANGE INDEX (EXX, 1b)

1

EX{ i3 a combination of RSX and DPX. Except for sign extension, it does just what its name

implies - i.e. it will interchange words between X memory and STUV memory.

Subword Form, Activity, and Permutation are used.

memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2.)

The E register is set equal to the STUV

CONFIGURATION ABBREVIATED
o. | INSTRUCTION DIAGRAM EXPLANATION COMMENT
T
A7, R(T] ==>X,
1 ek, T t t [XJ1 ==> R(T)
d —_ [T] ==2E
o Xj
] L[T] ==>X,
2 ZEXX, T [x,] ==>L(T)
d [M——— [T] ==>E
T K.j
T R[T] ==>x Note that left half of T
LA
[x.] =>Rr(T) is cleared.
3 mj ¥ t 1 1 1 s(x.) ==>1L(T)
RO 777777 HJ 7] ==>E
7 T ql[7] ==> R(I{J) Nine bit exchange.
3 ’ R[Xj] ==> q1(T)
b EKXJ ¥ t [1] ==>&
Xy
T Rlx.] ==>ql(T) Sign is extended in X,
J
16 gl T] ==>R(X.) but not in T.
[~ m -
A iRy ¥ . Sl (T) ==> LE)
[F,] = 163 220 X (1] ==>E

3-18

August 1963

EXX

3-19

1k
T [%.] ==san) Sign of X, is extended
NN\, J d
17 L(r] ==> X, into the right half of T.
6. EXX, T %§:< 5(x,) ==>R(1)
[Fl'?] = 202 77, X, [T] == &
21
e T Same ag DPX, T.
21
s EXX, T t
J T1:1 Izl =E
 — Xy
[Fal] = 230 J
7 Tk R[Tk] - xj EXX is indexable if a
.] i }* I 1 {le ::>R(Tk) deferred address is used.
: J T [.] ==>E
ZZ x, k
Sqi[T] ==> L(X,) ; ;
: T dJ Note that bit 2. d
v] e S ote that bi 9 is use
J for sign extension (not 1.9).
9. 333&9{3 T t | R[XJ] ==> q1(T)
e BX.) e
oo | B x, (%) =>as(n)
337 7 [T] = E
p
— TSS R[377720] ==> X, Same as R:::Cj 377720. (Tog-
[}(] o R%E) gle registers must be changed
40> lm 377720 1 l I | J by hand. DNote that E is set
d L[377720] ==> L(E)
Lz % 5 to what would have gone into
T.)
August 1963

AUZMENT INDEX (AUX, 10) AUX
10

Aux, T [x,] +) =X,

AUX forms an 18 bit ring sum in xJ. There is no overflow detection. All of Xj is affected.

STUV memory is not affected.

Activity and permutation are used. Sign extension applies to the operand taken from STUV mem-

ory. If quarters 1 and 2 are active, subword form is immaterial.

If one quarter of the STUV memory operand is inactive (as in standard configuration #3; for
example), +0 is used for that quarter.

The E register is seb equal to the STUV memory word. (This is "T" except when a deferred

address is used. See example 6.)

EXAMPLES: (Standard F Memory - Chart 7-2.)

CONFIGURATTON ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
hitd Standard configurations
=1
1 [XJ] + R[T] ==> }(J f#o, 11, 20, and 30 would
& MKJ * l l ['1‘] SR do the same.
A X _ _
3 [Fll 140 [F20] 200
= 60
[F30] 0
m T Standard configuration
- [x] +1[r] ==> Xj #12 would do the same.
2. AUK, T \\\ J
J < [T] ==>E
LA =
J [F12] = 12
R T Standard configuration
== but
. N L [Xj] + ql[T]SE >X;j #33 would do the same (bu
=+ i NOT #3! s t yexck
iy],]_ 3 77777 (7] ==>E #31) (See note gn ne
1§ = X‘j page.)
= 32
[F3] = 320
. T This has sign extension
== L Th
i aAUx‘j i ‘ [Kj] + qE[TISE >XJ to the righ (There is
’ itable standard con-
(] i 7 ['I']==>E no suitable standard c
al T Xj figuration.)

3-20 August 1963

AUX
10

21

|

U —
-

|
|

N
\
N

Register T is ignored, and
Xj is not changed. Except
for E, this instruction is

innocuous.

N /A

3

L

N\
\

[xj] + Rz,]

(z,]

Same as example 1, bub
indexed via a deferred

address.

NOTE: E is cleared and then loaded as if by “LDE. The sum of R[E] and [X,] then goes into X
(circuitously) and E is set equal to the STUV register used (ie.[T] or [Tk] if & deferred

address was used).

Xj is always set.

Note - If either quarter 1 or 2 is not part of

an active subword, (as, for example, with standard configuration #3) one operand of the

sum is not completely specified and 40 will be used as that part of the operand.

August 1963

3-21

ADD INDEX (ADX, 15)

ADX, T

Q
[xj] + [T] ==>T

15

ADX forms an 18 bit ring sum usually in STUV memory although only the active quarters are stored.

There is no overflow detection.
other from STUV memory.
has both guarters active, or is an extended 9 bit subword.

inactive gquarter of the cperand is set to +0.

Activity and Permutation are used.

The operands are always 18 bit words - one from X memory the

A configuration should be chosen such that the word from STUV memory

to the operand taken from STUV memory.

The E register is set equal to the STUV memory word used.

If only one quarter is active, the

Only active quarters are stored, but sign extension applies

(This is "I" except when a defer is

involved. See example 6.)
EXAMPLES: (Standard F Memory - Chart 7-2)
CONFIGURATION ABBREVIATED
NQ. INSTRUCTION DIAGRAM EXPLANATTON COMMENT
T Left half of T is not
777/, [x,] + R[7] ==> RD)
1 changed. The sum is
1. ADKJ T ? 1 (7] ==>® standard 18 bit ring
— Xj sum, also called "ones
complement sum."
. Right half of T i t
i T [Xﬁ] + L[T] ==> LT ight half o is no
5 ¢ changed.
2. ADK, T \\\
L [2] ==>E
L1 X,
7 T [xjj 3 q-l[T]gE ==> q1(T) This gives a 9 bit ring
sum. Configuration 33
lS.HDX T T
3- 3 [7] ==> E would do the same, #3
[F) 4] = 160 1 X, would not. See note next
page. The subword
length should be 18 bits.

3-22

Angust 1963

15

NOTE: In example 3, the 9 bit result is an honest 9 bit ring sum only when XJ. contains an

extended 9 bit word.

(See RSX, example k4.)

ADX cannot be used to add a 9 bit word to

an 18 bit word. Use AUX.
Essentially the same as
T example 3 except that
L d]
G:ADX [K] & q2[T]SE S qa(T) the left half of Xj is
L. T J significant. [F] 1llu-
[Foc] = 220 N [T] ==>E strated is 220. There
g is no suitable standard
configuration.
—— T "Nothing" is done here
o1 because quarters 1 and
2 mj ¥ T T [r] ==& 2 are both inactive.
- N S '
[F;, 1 = 230 J
N i Same as example 1, but
| VrAA k [K] & R[T] ==> RT)
J k k indexed via deferred
6 Lanx T T
J [T.] ==>E indexing.
— X ¥

NOTE: E is cleared and then losded as if by "LDE. The sum of R[E] and [Xj] then goes into E

[¢] .
and an SIE is performed. Ilnactive guarters of the STUV memory word therefore remain

unchanged.

If either quarter 1 or 2 is not part of an active subword (as, for example,

with standard configuration #3), one operand of the sum is not fully specified and +0

is used to fill out the operand.

August 1963

3-23

SKIP ON INDEX (SKX, 12)

a

SKX. T
J

SKX

skx (or REX, or SEX) provides 32 combinations of setting, adding, comparing, skipping, flag

raising, and dismissing - all relating to X memory and without changing the AE or the E register.

(See examples below.}

F memory is not used.

The configuration syllable specifies the desired combination.

(Examples

1 - 8 show the use of bits 4.6, 5, I and examples 10 - 12 illustrate bits 4.8 and 4.7.)

"T", the address syllable, (or the final deferred address) is used as an OPERAND.

EXAMPLES:
MNEMONIC
ABBREVIATION ABBREVIATED
NO. | INSTRUCTION (See Chart 7-3) DESCRIPTION COMMENT
SKX 3 T STUV memory is not used -
o RE[{j it "T" is the operand, not its
. Sm{fl ‘ SEKJ T Fmady location. The brackets []
(set) were left out on purpose.
"Minus" T - i.e. its ones
2 lsmcj T (Set negative) T ==> Xj complement is used to set
X,
J
If the sum is zero, it will
2 INX, T
3 SKK, 1 b [xj] + T ==>X, be -0 (all ones) unless {xj]
(Increase) was initially +0.
3 DEX T "' is added to fJ{j]. 7ero
. J 1) ==
L SIQE‘j T (Decressa) [Xj] + (-7) >Xj is -0. It cannot be +0.
Skip if [X.] differs from T.
I [X,]# T 1
L SXDJ T J Note: (+0) = (-0) and if
Skip -
2 SKXJ * (Skip if X P [X,] is initially (+0), it
N (i.e. #+42 ==> P) S d
differs.) is changed to (-O).
Skip if [xj] differs from
. % (Skip if X i [x, 14 -1 ST, Note: (-0) = (+0) and
; £ ip -
SI{KJ T differs from Skip if [xj] 1s initially f~0),
negative.) (i-e. #+2 ==>P) it is changed to +0.
Skip if [xJ] is less than T
SXLJ_ T If [Xj] < T and if [Xj‘] =T does not over=-
7 6SK}{J_ T (Skip if X Skip - flow. (Skip range: T-3777TT
is less.) (i.e. #+2 ==>P) to T) Note: If [X]is ini-
tially (+0), it is changed
to (-0})-

3-24

August 1963

SKX

12
Skip if [KJ] is greater than
sxch If [xJ] > -T -T and if [):J_]+Tdoes not
7 (Skip if X Skip overflow. (Skip range: -T to
8. ek T is greater.) j.e. 42 ==>P 37T7TT-1) Note: If [X,]
is initially (-0), it is
changed to (+0).
[X,] is set equal to T, . e.g.
J ¥
a) SKX [Ok} = set X
» (r)" T+[x,] == X : £rom ¥
9. SK}{.j {Tk} REKJ Tk Xk = j . Tom Xk.
b) smcJ {oj} = Comple-
ment X,.
J
For j = 1 to 37g, BXF is the
R{F T T o> X same as OSKX for there are
10 J =%
10 SKX, T (Reset and no flags for these numbers.
J 1 ==> Flag
raise flag.) B Note that flag zero can be
raised.
See Chapter L for the rami-
fications of "DISMISS."
2 F{)\{IZ"j T - ==)'X3 If j = the current sequence
11 SKX, T (Reset and number, "T" is nearly imma-
J DISMISS
Dismiss.) terial for the subsequent
(See note 3) change of seguence will
change Kj-
This is used to change
RFD, T 7 = 5
J ==> Xj sequence number - often in
12. | Psxx 1. (Reset; Raise 1 ==> Flag, | the form - 305”3 1. Tt
flag, avd Dis- DISMISS is ignored if j = current
miss.) sequence number.
Notes: 1. "Skip" means "omit the next instruction." i.e. "Go to #+2."
2. The configuration syllable is united with the rest of the instruction. It may be
given redundantly. e.g. DEX is the same as 3SKX or lINX or 3DE}(-
3. The hold bit cancels DISMISS. 2OSKX is the same as SKX alone.)
Lk, BRXF cannot be used as a Jump. Index register "j" is indeed set, but it will not
be copied into the P register, unless a change of sequence number occurs. (See
Chapter b.)
August 1963 3-25

JUMP ON POSITIVE INDEX (JEX, 06)
JUMP ON NEGATIVE INDEX (JNX, O7)

JPX and JNX are "Loop-closing", "Index-sensing" jump instruections.

follows:

JPK, T

[le is Sensed:

(Zero is excluded.
JEX jumps on POSITIVE.
JNX jumps on NEGATIVE.)

— |

JPX 06
JNX O

Their operaticon is as

Note:

EXAMPLES:

If it JUMPS:
41 ==> R(E)
T ==> P

DISMISS cccurs unless
cancelled via "h".

If it does not:
1 => P
There is no DISMISS

E is not changed.

W

The increment is added:

+ X, == X,
n+ X, >[J]

{This is done whether
it jumps or not.)

If the sum is zero, it is -0.
is a signed integer:

F Memory is not used.
A deferred address determines where to jump to, but not if, and the second

index register is not medified.

=17 to + 178.

1. Straight Table Scan (100 register
table located at "TABL.")

a.) JPX

Start - REXj T

Loop — LDA TﬂIﬂﬁ

nt JPXJ Loop

This program scans the table
"backward through the manu-

seript.” (i.e., highest
memory location first. Note:

xj is initially set to + (n-1).

3-26

b.) JNX
Start — lsxxj 77
loop — LDA (TABL + TT}J

h+l JNXJ Loop

This program scans "forward
through the manuscript.” (i.e.,
lowest memory location first.)
Note: X, is initially set to
- (n-1).7

August 1963

06 o7
th
2. To scan every n table register
&) SIARD — REX, (IL - n) b) START — lnmcj (TL - n)
LDA TA'BLj LDAJ TABL + TL - n
n TRX -1 n'™ X, #-1

These programs run for (gé) iterations if we assume that TL (Table Length) is an
integer multiple of n. As written, they scan the first register of each block of
n registers. To scan register "i" of each block, the LDA instruction could be
written LDA (TABL + i}J for example "a' (JPX) and LDA (TABL + i + TL - n)j for
example "o" (JNX).

3. Interlaced Table Scan

Scope flicker can be reduced by an interlsced teble scan. The fact that the change
in KJ is made after the jump decision causes a somewhat peculiar parameter configu-
ration, but the program logic is essentially the same as above. For example, if "C"
is the interlace, "TL" is the Table Length, and if "C" is not a factor of "IL," the
program below scans the whole table with an interlace of C. (If "C" is e factor of

TL, the program degenerates to example 2a.)

START - lRE.‘{j c
INK, TL
J

1DA (TABL + C - 1)j

0 JPXJ #-1

IMP # -3

If C = 3, and TL = 7, the table is scanned in the following order: 6, 3, 0, 4, 1,
55 2, 6, 3, 0, ete.

NOIE: 1. "Eero" used as an address (as above) is always +0.
2. M4 sutomatically puts a hold bit on JPX and JNX to cancel the automatic dismiss
(see Chapter 4 and Chapter 6).
3. The address of a deferred JNX or JFX is completely determined before the index
register is changed. Therefore a -lJPXa[a S would jump to Sa as defined by the
original contents of X& - if it jumps at all.

August 1963 3-27

3-2.3 JUMP SKIP CLASS

JMP
JEA
JHA
JOV
SKM
SED

hagust 1963 3-29

JUMP (With Variations)

e o,

J

05

JMP is an unconditional transfer of control. It means go to T (or TJ} for the next set of

instructions.

to provide 32 variations of JMP as illustrated helow:

DISMISS
(See Chap. L)

Saves last memory -—

L8 k7 k6 L5 ki

The configuration syllable "a" does not refer to F memory but is used directly

[[1

[

[

reference in L{E)

Saves return point (#+1)

"BRANCH" = An indexable JMP
1

JMP = BRC = Go to TJ
Saves return point (f#+1) in Xj
2JMP = JPS = Go to T, save
return point in Xﬁ.f

in R(E)T
EXAMPLES: (See #10.)
SUFERNUMERARY JUMPS
NO. INSTRUCTION MNEMONIC TO COMMENT
4] i
1. JMP TJ JMP TJ Ly Xj is ignored.
B lJMP Tj EBRC Tj Tj Indexable Jump = BRANCH
(Branch)
3. 2 Tj JPS Tj T Jump and save return point (#+1) in
(Jump and Save) the specified index register (X.).
Branch and save, Kj is used to
3 evaluate the jump destination Tj
b JMP T, BRS T, % and is then reset to the return
point (#+1).
(Branch and Save)
5 hJMP Tj = T Xj is ignored, #+1 is saved in R(E)
6. “np 'I'J. dgre TJ TJ Return point (#+1) is saved in R(E)
6 & Return point (#+l) is saved in R(E)
[E o TJ s Tj z and also in Kj.

t In Mb terminology, the symbol "#" is an abbreviation for the location of the current

instruetion.

(See Chapter 6.)

3-30

August 1963

JMP
05

8. Toe T BRS T, T

(=

Xj is used to determine the jump
destination Tj and is then reset to
the return point (#+1). The return

point is saved in R(E) as well.

10

The memory location of the last
data reference is saved in L(E).
(i.e. the contents of the @

register)

10. hpp g JPQ T T

Jump, save "p" (i.e. #+1) and "g"
(location of last data reference).
This is the recommended jump, for
the information saved is often of

use in checkout.

11. 15 p z, EPQ T, T

This instruction is the same as JFQ
except that the jump destination

is indexed.

15, 1one z, JES T, T

Jump, save in E, and in Xj.

13, 2ne % JPD T T

Jump, Dismiss.

1k, 2loe o, BRD T T
J J J

Branch, Dismiss.

15 22 e 2, g8 T, T

Jump, Dismiss, Save in Xj'

16. 2 o, BDS T, T,
J J J

Branch, Dismiss, Save in XJ'

Jump and save return point (#+L) in the specified index

register (Xj).

NOTE: A superscript numeral can be used redundantly on supernumerary mnemonics. For example:

16 16 1L

JMP = ~ JES = JES = 2JPQ = JPS etc. (Mhk "unites" them into the word.)

August 1963 3-31

CONDITIONAL JUMPS JPA El;6)
JNA (4T7)

JOV (45)
JPA - Jump on Positive Accumulator
JHA - Jump on Negative Accumulator
JOV - Jump on Overflow

o
JPA T
J

o
JHA T
J

GIO“ m
3 J

The conditional jumps go to T, if the conditions are satisfied by any active subword. Permuta-
tion is ignored. The return point (#+l) is saved in E if the jump takes place. The accumulator
and overflow flip-flops are not changed. Note that these conditional jumps are indexable.

EXAMPLES:

#1. A Four-way Switch:

JOV OF #% Goes to OF if overflow exists (Zh =1)
JNA NL #* Goes to N1 if A is negative.

JEA FlL **% Goes to PL if A is positive.

——— #% Continues if A is zero.

#2. Overflow:
30JOV TJ is equivalent to 37JOY Tj’ for both configurations specify the same active
subwords. If any of the four overflow flip-flops are set to 1, control will go to

Tj‘ The overflow indicators (zh‘z3’22’zl) are not cleared by JOV.

Active subwords use the overflow indicator associated with the sign quarter, e.g. Z2
is associated with the right half word, Zu with the left half word.

#3. To Detect Minus Zero in an Index Register:

(JNXJ T or JPX. T will not jump on either + or - zero.)

J
DFX A
lDij A #*% (0,,-0) or (0,,+0) now in A
JEA T1 ## Goes to TL if -0 in right half word.

¥% Continues if +0 in both halves.

3-32 August 1963

JPA (L46)
JNA (47)
Jov (45)

#4. 18 Bit Zeros Again:

205pa 1P ##% One half (or both) positive - (Goes to 1P)

20ma 1w #% One half (or both) negative - (Goes to 1N)
JPA PN #% Left (+0), Right (-0) - (Goes to PN)
JNA NP #% Left (-0), Right (+0) - (Goes to NP)
#% Both (+#0) or Both (-0) - (Continue)

ugust 1963 3-33

SKIP ON BIT (SKM, 17) SKM

1T
e
SKMq}b T
"Skip-on-a-bit" uses a one bit operand. It has 32 variations - some with Mh Supernumerary
Mnemonies. The basic variations are as follows:
5.9 48 L7 46 k5 hk
L1 [Lo
Q0 - No skip 4——J \—> 00 - No change
0L - Skip unconditionally 01 - Bit is complemented
10 - Skip if bit = 0 10 - Bit is set to 0 ("Make Zero")
11 - Skip if bit =1 11 - Bit is set to 1 ("Make One")
("skip" means "go to (#+2)"
i.e. skip over the next L, If 4.6 =1, T is cycled right once. (Rotated)

instruction.)

The bit in question is identified by its quarter number and bit number as diagrammed below:

The meta bit is No. 10 (dec.), (SKM is the only instruction that can affect it.)
The parity bit is No. 11 (dec.).

The parity circuit is No. 12 (Gec.).
(iny quarter mumber will do for the parity and meta bits.)

These can not be changed by BKM.

Bits and quarters are numbered from right to left and should be in subscript when used with SKM.
(See chapter 6, page 6-7.) The bit designation goes in the "j bits" (3.6 - 3.1), as follows:

3.6 3.5 3.4 3.3 3.2 3.1

| | I

Quarter No..._J L____,.Bit Number (When given in the form indicated above,
{00 refers to qlt) Bit Numbers are interpreted as Decimal,

e.g. 4.10 is the usual metabit designation.)
SKM is therefore non-indexable except through deferred addressing.

If a non-existent bit is selected, e.g. bit 0.0,1.0,2.0,3.0 for example, Unconditional Skips
(SKU) and Rotate (CYR) will still work, but "makes" will do nothing, and conditional skips
will not skip.

3-34 August 1963

SKM
17
SUPERNUMERARY MNEMONICS (See Chart 7-3)
MEC - lSI{M - Make complement
MEZ - 2SKM - Make zero
MEN - 3SKM - Make one

10

SKU - ~"SKM - Skip unconditionally, (go to #+2)
suc - *sKM - Skip and complement
sUZ - laSKM - Skip and make zero

sun - l381*:]“![- Bkip and make one

20,

SKZ - "TSKM - Skip if bit =0
SEC - 2151@‘.[- Skip on zero and complement
SZ27 - 2281@1 - Skip on zero and make zero

SzZN - 235KM - Skip on zero end make one

SKEN - SOSICM - Skip on one

SNC - 3J‘SKM - Skip on one and complement

SNZ - 32SKZ[‘*![- Bkip on one and make zero

SNN - 33SKM - Skip on one and meke one

CYR - l}SKZM - Cycle memory once to the right (rotate)
MCR - 5SI(M - Make complement and rotate

MZR - GSKM - Mske zero and rotate

MR - TSKM - Mske one and rotate

SNR - 31+SKM - 8kip on one and rotate
BZR - EI‘LSKM - Skip on zero and rotate
1k

BUR - & SKM - Bkip and rotate

NOTE: "Skip" is first, "make" next, and "rotate" last. l}SZZ = 26SKM = Skip on zerc, meke zero,

and then rotate.

EXAMPLES :
1. To copy a bit: 2. To clear n metabits starting at T
SKZ Q2_3 Sets bit T, | Rex,, {n-1)
sun T, equal to mh.mmT ** i.e. LﬂCZ.h‘lO{Ta}*
M5 g bit Q, 1 'lJan #-1

August 1963 3-35

SKIP IF E DIFFERS

SED compares all active quarters of E and Tj according to the given permutation.
difference exists the next instruction is skipped over.

Program Counter) can be changed.

SED T

Only P can
be changed.

(E is not changed.)

Subword Form is immaterial.

SED
b3

If any
No registers other than P (the central

EXAMPLES: (Standard F Memory - Chart 7-2.)
NO. INSTRUCTION DIAGRAM COMMENT
I————l Tj #4+2 =» P if E differs from TJ
i (7% SED Tj | I | | #‘l-l =% P if they are identical
[1 =
:l Tj The left half of T, is compared
i2
i B \\ to the right half of E. ("°SED
d is identical.) [Flal = 142,
[1 =
|:I E The right and left halves of E
EES » are compared. lTSED E, 2SE]ZJ E,
3- D // 12 22
SED E, or ~ SED E would have an
I:l E identical result.

3-36

August 1963

3-2.4 SCALE, NORMALIZE, CYCLE

Angust 1963

SCA
SCB
SAB
NOA
NAB
CYA
CYB
CAB

3-37

SCALE SCA, TO
SCB, TL

SAB, 72

%gon T,

] %a] x Ea{Tj] ==> A

"SCALE" multiplies each active subword by "a power of 2," i.e. by 2" where n is a signed integer

specified in T.. Each active subword can be scaled a different amount. The D register is used

to count the binary shifts. The details are as follows:

s) An “oD T

is performed (with permitation and sign extension as called for).

b) Each active subword (of A or AB) is scaled according to its sign quarter in D, and

these sign quarters are left set to -0.

c) If an overflow exists for an active subword, the proper result is recovered by comple-

menting the sign digit after the first shift, and the indicator is cleared.

This rule

is used for all operands - left (+), right (_), and zero. Overflow can not affect SCE.

Notice that SCALE amounts to shifting all the bits except the sign left or right and filling

the vacant positions with copies of the sign bit (i.e. with +0).
corrects the sign bit if necessary.
bits are lost off the left end.

SCALE senses overflow and
SCA and SAB always clear the overflow flip-flop - even if
SCALE never sets the overflow flip-flop.

EXAMPLES: (SCB is illustrated to avoid overflow complications.)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTICN COMMENT
I: (-4, [B] x ok =<8 {-4,] is a Mk convention
l l l l for A register with -4
b B -0 ==>q4(D) in quarter 4. See Chap-
VAN D q3,2,l[TJ] ==>q32L(D) | ter 6, page 6-7 and 6-10.
a4[B] x 22 ==>ql(B) Quarter 1 of B is not
- ; -
3OSCB () q3[B] x 2 2 ==>q3(B) changed. The sign bits
2. l l l l 3 are never changed. Bits
s 27?5003000(8) LIL L e2[B] x 27 ==>q2 (B) mey be lost off either

-0 ==>D end without any alarm.
5 The left halves of B and
R 2 w=
EECB (v} :l (] [B] £ >R(p) D are not changed.
3. \\\~ -0 ==>q2(D) | Note that gh of (N)
N = 3775003000{8) il 775 ==> q1(D) specifies the argument

of the scale operation.

3-38

August 1963

Note: ©Scale can of course be indexed - e.g. SCA T

SCA, T0

where the argument comes from TJ' It is

J

more common programming practice to use an RC word - e.g. SCA(-1,].

k. oOverflow: (SCA and SAB)
a) To "recover an overflow":
LDA (200 000 00O 000) *#kfce. will now be 400 000 000 000 (a nega-
ADD {200 000 000 000) tive number), and Z), (overflow bit #4) will
be "1".
scA {-3,) ¥-3, = TTh 000 000 000. After the scale,
Ace. will be OO 000 00C QOO and Zk will be
ng", 23,22,21 are not sensed nor changed.
(Any negative argument will suffice.)
b) Only active subwords are processed:
LDA {200 300 LOO 100}
3OADD {200 300 L0O 300} *¥Ace, will be 400 600 001 400.
#¥A11 four Z flip-flops will be "1".
gea {T74% 77% 774 774) *#0nly L(A) is scaled. Acc. will become
oLo 060 001 Loo. Z), will become "0",
Z3’ZE’ZI will remain "1".
Ysca (774 TTH TTH TTH) *#%0nly R(A) is changed. Acc. becomes
040 060 700 140 and Z,, becomes b 23
and Z, are still e
Note that zu,z3,z2,zl are overflow indicators. They tell whether overflow has
oceurred. An overflow resulting from negative numbers (as in g2 above) is not
treated any differently.
S Subword forms for the AB register:
a) "36" | s A II B J
b) "8 - 18" is L(A) | s |Js R(A) i R(B) |
) "21-9" [s ak32(a) I akz(B) |5 ar(a)] a(s)|
i " i . : T H
a) "9-9-9-9 |5 ab()i o(B)| 5 a3(a)i a3(3)|[s @2()] w2(®)] [s w(a)} ai(®)]
Note that all of B is part of the subword. There is only one sign bit in anAB subword.
August 1963

3-39

NORMALIZE ACCUMULATOR

NORMALIZE AB (Extended Accumulator)

NORMALIZE scales just enough to remove leading zeros or to "recover"
the active overflow indicators.
(a[rj]) and this difference is left in the Sign Quarter of D. If an overflow con-

ment from T

J

dition exists at the

complemented - just a

NOA T,

Oa] x 2" ==>a

Q[Tj] - nz ==> Sq(D)

start, "nz"
s for SCA or SAB.

from OVERFLOW.

NOA 6k
NAB 66

It clears

The number of leading zeros (nz) is subtracted from the argu-

is -1, the scale is one place to the right, and the sign is
If nz is zero, it is +0. (See Note 4 also.)

NOA and NAB start with an “LDD 'I‘J.. "nz" is subtracted from the sign quarter(s) and the rest

of D is not changed. The E register becomes a copy of Tj‘

E}[&MPLES:TT (Assume that NO OVERFLOW exists.)

ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
: (+0) n "nz" is the number of
[A] x 27" ==>4 leading "zeros" in the
1. NOA{O) l l l’ 1 -nz ==> ql(D) original contents of A.
+0 ==>q3,2,1(D) ("Zeros" can be positive
T 1=
zeros or negative zeros.)
The left halves of A
R[A] x 2"% ==> R(4A) and D are not changed.
:1 (+0] "nz" is the number of
"“zero" in the original
2 \\\ -ne ==> q2(D)
& NoA{o] contents of the right
| E—
[B +0 ==>q1(D) half of A. Note that
the result in D is a
nine bit numeral.
ZR " "n " L1
R[A] x 27" ==>R(A) ZR" and "ZL" are the
I:I:!___I__-, () a-ZR ==> g2(D) leading zeros of the
17 right and left 18 bit
3. ol ‘% b =>al{n) words of A. (N} is a
X = al0d == L[A] x 2l wax 1(A) regi ini
" T 3 == gister containing
[F] = 202 %k\\\i%&\% D .
17 c-2L ==> gh(D) a,b,c, and d in quarters
k,3,2, and 1.
d ==>q3(D)

11 Brackets{] are used
See Chapter 6, page

in the TX-2
6-10.

M4 Assembly Program

3-4o

to indicate "Register Containing'.

August 1963

NOA 6L
NAB 66

i with a 27,9 split,
gh32[A] x 27° ==> qh32(A) both counts will be

I:I:I:D (N) a-nz ==> gqh(D) 26 if [A-] is zero.

(See note on page

L. okl l £ l l b ==> q3(D) 361,
N =a,b,,0,d| t—0———— ¢ ==> q2(D)
o = Loo C—» T

al[A] x 2% == q1(A)

d-nz ==> gl(D)

5 - A sample program — Evaluate V = xyz
This product could have 105 significant bits (3 word lengths). One must resort to
programmed arithmetic to get them all, but normalize can be used to get the 34 most
significant bits. Consider the programs below.

Without Normalize: With Normalize:

LDA X LDA X

MUL Y MUL Y

MUL 2 NAB {0}

SID T

This program puts the 35 left bits MUL Z
of the 105 bit product in A and SAE T
essentially worthless numerals in
B. The answer in A may be toc small With normalize, the product is given
by 1 (in the 35th place). in AB, to 35+nz places from the sign.

(It mey low by 1 in the (354nz)th
place.) "nz", the number of zeros,
is in T (in negative form). nz
could be as much as 69 so the last
SAB may not be desired. For example,
if the NAB instruction above were
replaced with NAB{34.,) the answer
in AB can be considered a Tl bit
integer.
NOTE: 1. NOA and NAB leave E set the same as the memory register used.
If overflow exists, "nz" is -1 so [Tj]+l ==> Sq(D).
3. DNAB is essentially the same instruction - using the double length word (AB) instead.
(See page 3-39 - "Subword forms for the AB register".)
4, TNormelize is an arithmetic instruction. The sign bit is not counted. "Leading

zercs" will, of course, be plus or minus zeros - i.e., the same as the sign.

August 1963 3-41

CYA, 60
CYB, 61
CAB, 62

CYCLE

CYCLE logicelly falls in a class with LDA and STA, for it is most easily considered as a bit
shifting instruction and the sign bit has no special significance. Bits shifted off one end
are inserted at the other. None are lost.

are so similar to SCALE, it is usually grouped with SCALE and NOBMALIZE.

However, since the practical details of its use
The use of the

memory word is the same as SCALE.
a.) An %LDD T, is the first step.

b.) Each active subword is "cycled" or "rotated" according to its Sign Quarter in D

and the sign quarter is left at -0. For cycle, the active subword has its ends
connected - and can be considered as a ring of bits. If the number of places
equals the subword length, the instruction dees not chenge the subword. You can
therefore arrive at any new position by cycling either way - the short way takes
less computer time. The sign bit is handled no differently than the others and

no bits are lost.
c.) Overflow is ignored.
d.) The E register becomes a copy of the memory register used.

EXAMPLES: Assume [A] = 123 k56 765 1532(8) at the start

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRITPION COMMENT
N N 6 Y3 247 135 753 064 ==> A One 36 bit ring cycled
1. CYA(+1,) 1 l l 1 -0 ==> qh(D) onee o the Lart.
e eieit]
A D +0 ==> q3,2,1(D)
T T 246 ==> gh(A) The four guarters
3OCYA{N} 135 ==> g3(A) are cycled separately
2. i.e. four nine-bit
N=1,1,,1,1 D 753 ==> q2(A) ———T
065 ==> gl(A) to the left.

3-42

August 1963

Assume [A] = 123 456 765 h32(8) at the start.

CYA, 60
CYB, 61
CAB, 62

I

276 543 ==> R(A)

The left halves of
A and D are not

changed. The right

7 2CIA{-3,] ~\\::::\" half of A (a ring
= -0 ==>R(D) of 18 bits) is eyecled
| AP
3 places to the right.
i.e. one octal place.)
234 567 654 320 ==> A The 72 bit ring -AB-
[TT 11w 000 000 000 001 ==> B s cyeled 3 bits,
DEX B i.e. one octal place
=0 ==>qk(n) to the left
L. CAB{+3,) ’
+2 ==> q3(D)
W=3,2,,5,-6 | - =
T RN ©
+5 ==> q2(D)
-6 ==> ql(D)
NOTES: 1. The E register becomes a copy of the memory word used.

2. CYA, CYB, CAB are indexable, and, of course, deferred addressing can also be used.

(Neither of these is common.

Most users use RC words.)

3. CAB uses the same word structure as SAB and NAB.

August 1963

3-43

3-2.5 LOGIC, INSERT, COMPLEMENT/PERMUTE

ITA
ITE
UNA
DSA
INS
coM

August 1963 3-45

BIT LOGIC INSTRUCTIONS

For these instructions, the word is considered
each bit column is a separate entity.
active subwords - with sign extension if applicable.
as usual,; identical to the memory word used.

For ITE, the operand is the active guarters only.

%mwj

ﬁ%]h [A] ==> A

For ITA, UNA, and

ITa W

UNA b2
DSA 65
ITE Lo

as a string of independent bits -
DSA, the argument a[Tj], is all the

For these three, the E register is set,

There is no sign extension. The

result, of course, goes into E and there is no final E register copy from memory.

All these instructions are indexable

and of course indirect addressing can be used.

Note that this is
the "carry" that
results from
addition.

Name INTERSECT UNITE DISTINGUISH**
Abbreviation ITA UNA DSA¥HE
ITE
Symbol A v @
Other Names " AND" Inclusive OR Exclusive OR
Partial Add
o4 aT
[1,] [,]
Logic o 1 0o 1
Diagram olo o olo 1
o
Y(al (4]
S I« S | 1f1 O

Note that this is
the Partial Sum.

3-46

August 1963

All quarters are
active and in-

original [A] goes in-
to B.

[A] goes into B.

(IT4) (UnA) (DSA)

Typical Masking - e.g. Bit Setting, or Bit Complementing -

if TJ_ contains TT clearing to minus ih ot 5 contains T7
Hae ITA T; clears all ZRrg = & Tj TSR DSA Tj complements

gf J:. gx.gt?ft for the T7, UNA Tj sets the the last 6 bits.

e e last 6 bits to 1 with-

cut changing the rest.
Bpectal %A (-9,-9,,-9,-9) Oshp (-9,-9,,-9,-9) | > BAB(-9,-9,,-9-9)
| Feawple _lma® " [was ___ __ _ | DsAB |

¥ = 600 If positive, A is If Ifegative, A‘is:'» set | The a?ioc;-gtzrvz;l;i or
30 cleared to +0. The to -0. The original magnitu

quarter goes into A
The original [A] goes
into B.

dependent.
*¥% Note: DBA affects both the C and D registers. The effect on D is equivalent to LDD T,.
The effect on C is equivalent to forming the carries and uniting them with the original
contents of C. - i.e. ([A]a[TJ,]) v [¢] ==> C.
No.|INSTRUCTION CONFIGURATION ABBREVIATED DESCRIPTION COMMENT
DIAGRAM
V .
T R |T R |A = R (A . ffected.
. Tt -/é 5 [J]' [A] = (A) 5 1is unaffecte
] * ; The left half of A
|1) [’I'j] = E is also unchanged.
vz *
Tj is unaffected.
7 T R [T.] a R[A] == R (A) | Each bit of left half
2 Mg ¢ ,/////é ! d of A is "intersected"
3 | 4 sk [T,]aL[A] = ©(a) |withbit2. of]'I'J. =
= Hence, if R [T is
V722723 * [T.]=> E positive, L(A)Y is
J cleared.
T‘j is unaffected.
g % | 25 ARl = RE) | 105 is unarrectea.
HT | There is no sign
3 TE T‘j # i extension on ITE.
(F,l = 0| | P4 E
R [TJ} @ R[4] == R (4) DSA affects r;gisters
T B A, C, D, and E.
II| J R [7,] = R (D) See note above.
[T.] => B
1 W s
o Ba: Ty . (R[z,] a 4]) v R[C] => R(C)
| V74

August 1963

3-47

INSERT

INS 55

%ms T,
J

([aJa3]) v ([Blalr,]) => 1,

Insert is a partial STA (store accumulator) instruction — only those bits marked by a 1 in

the corresponding column of B are stored in TJ,. There is no sign extension, and [A] is not

changed.

If [B] is minus zero (all ones), INS is identical to STA.

to the final contents of the memory word used.

The E register is set

EXAMPIES: (Standard F Memory - Chart 7-2)
CONFIGURATION MASK
NO. INSTRUCTION DIAGRAM (CONTENTS OF B) COMMENTS¥*
7 e z 1
772727 [A] = 7. M5 1s
1. INS T T T -0 identical to STA when
J [B] = -0.
| I
N T RlA| == T,. This ti
Y27 *; [oy e
2. NS TJ T T t t 0,,T1T1T1 it looks like a “STA Tj’
because of the mask.
I
Bit 1.1 of A is copied
—% Tj into position 1.1 if Tj'
3, 31NS T T 4,2,,3,1 Quarters 2,3, and 4 are
) inactive. No other bits
E—— are changed. —SINS T 4
would do the same.
[Fl3] = 160
Bit 1.1 of A is copied
7 T, int ition 4.1 of T,.
k. SINS T \ h,2,,3,1 Note that permutation
4 has no effect on the use
— i} of B. °mns T, is
identical.

+%¥In all cases, there is a final copy into E from the memory register used.

t "Insert" is also given by ([A] v [E]} A ([B] v [Tj] 38

3-L48

August 1963

INS 55

CONFIGURATTION MASK
o. INSTRUCTION DIAGRAM (CONTENTS OF B) COMMENTS#¥*
—7 RStF WL Py
5. SINS{Tk}J* T L,5,,6,7 357A +e+ would be
equivalent.
I
|: T, Since [B] = 40, nothing
J
el INS T +0 happens.
J
[———
L 1[a] = A). On
D (ever) e lg :ﬁii' Ly
15
7. QINS A %,5,,0,7 quarter 3 o

N\

——

A
before)

changed. (Because of
the mask.)

August 1963

3-k9

COMPLEMENT - PERMUTE (eMT) COM
56

coM T

T3 is permuted.

COM - Complement - performs two basic operations. The active subwords of T, are

J

complemented (one's complement - all ones become zeros and vice versa) (with sign extension)
and all gquarters are permuted whether active or not. HNote that if all guarters are inactive,

COM permutes all quarters of T, without changing the data. PMI is another abbreviation -

J
equivalent to COM.

There are 4 basic steps:
1. [Tj] =» E , permuted according to .
2. Sign extension occurs in active subwords.
3. Active subwords are complemented. {dEEE =3 aE)
L, [E] =» Tj

Note that, as usual, E is the same as T‘j at the end.

straight - no permutation.

EXAMPLES: (Standard F Memory - Chart 7-2)

NO. INSTRUCTICN CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION

i T,1=> T All of T is
L 1 % (2] 3 ;
1 coM T‘j + ‘ i { (vefore) complemented

P, 3 [r;] = =
[T 1

== R(T.) The halves are
reversed and the

2 (before) :
2 coM T, SR right half is

= complemented.
777 B Rz, => 1,
after
1 % | dEioan) et s
(vefore) and 4 are set to

the complemented
sign extension.

16
% com T, R \
[Fi] = 163 77 Ty |8) = 2,3,

(after)

3-%0 . August 1963

NO. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION
o R R
J J J quarters are
>§é< inactive, the
b a =172 Lfr.] => & (T,) data is not
- J J changed - it i
(all inactive) i:] T g it is
J (Simultanecusly) merely permuted
according to
the given con-
figuration.
T [r. .]=>T This has
. g kJJ kJJ k’lj double index-
ing.
5 com (T,) 5 L l l l g
I S RS R [T =T +
T ./l => E k
[%% s #
(5] + [%,]
Note: Since COM does not use any register other than T 3 there may be some confusion
as to the meaning of "Activity". In this chapter, guarters for which arrows are
drawn are active. To be consistent with other instructions, one should say that
the permutation comes first, complementing second, and sign extension last. If you
use the phrase "Active Subwords of T .j"’ the order of the first two is immaterigl
since both operations can be considered to take place simultaneously. In any event,
sign extension uses the complemented sign.
August 1963 3-51

3-2.6 CONFIGURATION MEMORY CLASS

August 1963 3=53

SPECIFY FORM (SPF) SPF (21)

SPECIFY GROUP (SPG) SPG (22)
[+
SPF T, ql ['I'J.] = F,
gl [TJ] = F,
a2 1] L
C
S a3 [1] => F .,
q i [T j] 5 P

"Specify" copies from STUV memory into F Memory. (STUV memory is not changed.) SEF
sets only one F Memory word. BSPG sets four. F Memory addresses are consecutive module 3,78 -
faevy 0y Ly 25 weay 368’ 3’(8,0, 1, 2, ete. These instructions are indexable but not configur-

able. The E register is set, as usual, to the contents of the memory register used.

EXAMPLES:
NO. INSTRUCTION DESCRIFTICON CCMMENT
& OSPF TJ - Fy is permanently set
to +0 and can not be
changed.
q 2[T J] => F
2 °spg Tj q 3['_{'3_] = F, Same as #l.
4r.] = F
q ¥r,] = Ty
a l[TJ] => F37 F_ is, of course, not
37 = changed. The F
3 SFG Tj a S[TJ] == By Memory address "¢ is
normally given in OCTAL
q 4[1,] = F,

3-54 August 1963

FILE FORM
FILE GROUFP

°FLF T [F]=> ql(TJ}
[F,] => ar(r,)
[F.p] = qE(TJ.}

°FLG oy

[FC+2] =5 QB(TJ)

(F =» q4(T.)

C+3] J

FLF 31
FLG 32

"File" copies from F Memory into STUV Memory. (F Memory is not changed.) File Form (FLF)

copies a single 9 bit word, File Group copies four.
The F Memory Addressing is modulo 3?8— foes MW=l Xy 2 s

They are indexable, but not configurable.
. 368} 3?8} 0, 1; 2, +..+ ete. The

E register is set as usual, to the contents of the memory word used.

EXAMPLES :
NO. INSTRUCTION DESCRIFTION COMMENT
- Fo is permanently
P FLF 1"‘j +0 == ql(TJ) ot o 40,
0= ql(Tj)
== q2(T,
) i [F)] = a2(T,)
: 3 [F,] = a3(1y) o
[F,] = au(z,)
[F36] = ql(Té} The F Memory address
s (e => eny) <! e nomeliy
4. FIG T, J given in octal.
+0 = q3(TJ)
[F11 = a(T,)
August 1963 3-55

3-2.7 ARITHMETIC CLASS

ADD
SUB
MUL
DIV
TLY (TALLY)

August 1963 3-57

ADD (67) ADD (67)

SUBTRACT (77) SUB (77)
%Gop T, %al + ¥r.] > %
J J
%suB 2,] - O‘[Tj] s oA

ADD and SUETRACT are straightforward one's complement (RINGED) arithmetic instructions.
The use of configuration is similar to LDA. A zero result is negative except when both argu-
ments are zero at the start -(+0) + (+0) = +0; #0 -(-0) = +0. There are four overflow indica-
tors--a separate indicator for each active subword. The indicator is cleared before the
arithmetic is done and is set to a one for either type of overflow--(too negative or too positive).
(With one's complement arithmetic there is a sign reversal when overflow occurs. The scale
instructions take this into account.) Sign extension occurs prior to the arithmetic. The D
register is set as if an %.0p TJ were done. The C register is set to the carries from
each column. (In the case of subtract, "c" contains the carries from adding the complement

of [TJ].]I The B register is unaffected. The E register is set, as usual, to the contents

of the memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
Wo. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS

[A] + [T,] =

v | s, | ny WA

The expression
[a] A ETJ] = ¢ is

L

e
H g a =

4 [T I = equivalent to saying the
l 1 l l J s "earries" of each bit
['I'j] = column go into the cor-
= responding bit column of
000 D C. 7, is set if over-
flow oceours.
:l T.j R[A] + L[T.] => R(A) | The left half of the 4,
2 . C, and D registers is
2 ADD T, \x\x R[A] A L[TJ] => R(C) |) changed. 7, is set
L[TJ] => R(D) if overflow occurs.
| D ()] => =
!:] TJ [&] - [T,] => & Z, 1is set if overflow
[&] A [Tj] = ¢ oCeurs.
s | oy | LT
i A . S
[D (] = E

3-58 August 1963

ADD (67)

suB (77)
CONFIGURATION ABBREVIATED
WO, INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
i (217] T 606 => ql(A) | (277) is the Mi repre-
L. I s oEm sentation for "a register
3 =z 1 containing 277 o\ "«
ADD
(307} l 20T => q1(C) (8)
— 0 = 1(p
e | n
. 07T = E
6 :I Tj 201 => gl(A) (510,0) is the M4 rep-
DA [510,0) resentation for "A
1 = 7 3 fic
S g 1 register containing 510{8)
ADD ([470,0) Y10 => gql(c) hi ek, R S
L1 k7o => q1(D) in the rest of the word."
7
7 170,0 = B See Chapter 6.
Note: The four OVERFLOW indicators are associated with the subwords by Sign Quarter
Mumber. See table below:

SUBWORD OVERFLOW INDICATOR
Quarter 4 Zh
Quarter 3 Z3
Quarter 2 22
Quarter 1 Zl
Left Half Zh
Right Half ZE
Full Word Zh
27 - 9 Z), and Z;

August 1963

3-%9

MULTIPLY (76) MUL (76)

Yo T %a] x 9o %

3 A2l

3l =

"MUL" forms the double-length, ones-complement product of [A] and [TJ] and stores it in
A and B. The extra bit of B -- at the extreme right -- is set equal to the gign bit of the

preduct, i.e., to + 0. (Bit 1.1 of B = Bit 4.9 of A after MUL.)

| ol
| |
L]
Sign _/‘ I- Tull Product I\ (Sa.me as the)

Bit Sign Bit
The use of configuration is similar to LDA and the relevant overflow indicator (correspon-
ding to the active sign quarter) is cleared. No overflow can be generated. The active
subwords of C are cleared to +0 and D is set as if an cxLDD T,] had been done. The E

register is, as usual, set to the contents of the memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2.)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
|:' T [A] x [Tj] => AB "AB" is the double
1 MUL T £0 =nbit 1-1(p) | Leneth register
J +0 = % diagrammed above.
L It is also used with
i y +0 = C SAB, CAB, and DIV.
V77777777771 1) [Ti] => D Bit 11 of B is
[T"] = B set to i 0 ==
J depending on the
sign of the product.
I:| TJ_ 000 => gl (A) With standard con-
3 050 =» gl (B) figuration 3,
L LDA 3 000 => g1 (C) ql[AB] is an 18-bit
St (4} l 00k =» g1 (D) register composed of
L 0 =» ?l quarter 1 of A and
Y D quarter 1 of B. The
/77 other quarters are
not changed

3-60 August 1963

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTTION COMMENTS

: [:::::::::j] TJ + 0 ==> R{A) The left half
A (-3) 000030 ==> R(2) vl
3. Lo . l l + 0 ==> R(C)
A | - L ==> R(D)
| B 0 4 maip 3
0 ==> Z,

A
= 3000 == B
b, e { i] j 1 l l 0 === £
MUL (-L00Q) B k. T
V2204 © - 400 ==> E
0 == Z
I
— el il
- Only the right
. (3 ,, 0) 800030 s BER) half words are
B 45 + 0 ==> R(C) changed.
EMUL {4 ,, 0} L \ + L4 ==» R(D)
[V22 o (+4,,0) => E
Q ==> Z2
Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the

27-bit word, if it is active. This results in too many steps for the S-bit
word if it is active also. (This is true for MUL, DIV, NOA, NAB, and TLY.)
Normal use of this subword form is for floating numbers of the form N = x - o
(27 bits for "x," 9 for "y"). Since different cperations are performed on the

two syllables, both subwords will not be active at the same time.

Bugust 1963 3-61

DIVIDE (75) DIV (75)

]+ [ry] =>a

%y T

Remainder ==> B

DIVIDE considers the contents of AB (except for the lowest order bit of B) as the
numerator and the contents of Tj as the denominator. (Note that it is compatible with MUL.)
Configuration is similar to ADD, LDA, etc. The Quotient is stored in A with the appropriate
algebraic sign. The remainder is stored in B with the same sign as the original numerator.

(The sign of the remainder is at the left, as usual.] (SAB [+n} will bring strange bits into

A for the remainder (in B) is not an extension of the quotient.)

_[w] _g, R Q== A

J] [Tj] R==> B

The relevant overflow indicator is cleared at the outset and an overflow will be generated

if | [A] | exceeds or equals | [TJ] | -

Note: 1. 1If |[A]] < 2 -][Tj]| overflow, if any, is guaranteed recoverable via
SCA (-n} . SAB {-n} will also recover the correct answer, but it will
destroy the remainder.
2. If both [AB] and [TJ] are normalized (as per NAB and NOA), the condition
above is met, and any overflow is recoverable.
3. On overflow, the sign of A is always the reverse of the proper
algebraic sign.

. If overflow is not recoverable, both [A] and [B] are useless.

5. N _ ¥ , end Overflow is set. (This is true for any N.)

+ 0

6. 2. T8 W , and Overflow is set. (Also true for any N.)
-0

7. Divide clears C (as if by “LDC {0}) and sets D (as if by %D Tj}'
8. The contents of the memory register go inte E, as ususal.

9. See also note on page 3-6l.

3-62 August 1963

EXAMPLES: (Standard F Memory - Chart 7-2.) DIV (75)
CONFIGURATION ABBREVIATED
No. INSTRUCTION DIAGRAM DESCRIPTICN COMMENTS
[::::::::::] TJ [AB] = [Tj] => A |Overflow, if any, sets
1. DIV T, Remainder => B |24’
J l 1 l 10 -~ c
[TJ] => D
22224 D (7,1 => =
17T R[AB] + R[Tj] => R(A)|Overflow sets Z,. The
S Remainder => R(B)|left half of the arith-
3 l l +0 => R(C)|metic unit is unchanged.
i) R[Tj} => R(D)
Yz o [T.] => E
J
: Tj 00k => gl{A) |The numerator is actually
3 i half of 000052 since the
3. LDA (000} 001 => qL(B) |} et order bit of B is
3LDB {052} 000 => gql(C) |not part of it. In deci-
mal, we have 21 # 5 or
3prv { 5) L 005 => ql(D) g ;
7 D with a remainder of +1.
| 7 -
0 => Zl
6 } I +4h => ql(A) [Note that [A] is minus
L GLDA { -0, J 1 = 1(z) zero. The numerator is
: LDB {725,) - = % therefore -21 (decimal).
) +0 => ql(C) |[If [A] were +0, the
v { -5,} il -5 => gql(D) |numerator would be
L P2 v (-5,) => E 22 (g) or 234 (decimal).
Q0 => Zl

Mgust 1963

3-63

TALLY (74) TLY (74)

Fpry)

count of ones + [SqD] ==> SqD

TLY (TALLY) loads A (as does LDA). Then the count of ones is added to the sign quarter
of D. The rest of D is not affected. The sign digit is counted also if it is a "one'.

The E register is set, as usual, to [Tj].

EXAMPLES:
CONFIGURATION ABBREVIATED
NO. INSTRUCTICN DIAGRAM DESCRIPTION COMMENTS
|:| T [TJ] => A "n" is the number of
n+qh[D] => glD ones in £Tj]' The
1. Ty T l’ vlv L i [T | efied addition is regular 9-bit
J —_—) g2 ring addition with no
sl A overflow detection.

|:I (40} + 0 =>A The D register is not
changed
+0 =>E g
2, TLY (+0) l l l L

L 2t Vo
LA A A

— -0 =>R(A) The left half of A is
L 4 not changed. Only the
18+q2[D] => 2D sign quarter (No. 2) of
-0 => E D is affected.
Pt 2B

| VA A

Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the
27-bit word, if it is active. This results in too many steps for the 9-bit
word if it is active also. (This is true for MUL, DIV, NQA, NAB, and TLY.)
Normal use of this subword form is for floating numbers of the form N = x - ¥
(27 bits for "x," 9 for "y"). Since different operations are performed on the
two syllables, both subwords will not be active at the same time.

Iugust 1963 3-65

3-3 OPERATION CODE CHART (Wesley A. Clark).

August 1963 3-67

3-3.1 Number Systems

Let S be a binary number of length A

3 number ranges are commonly used:

1) Positive Integers (e.g., r, P, Q)
o ¢ Bz My

2) Signed Integers (e.g., Xj)

@ 1) 2 B e w2 1)

3) Signed Fractions (e.g., A in MUL, DIV)

-(1- 2‘(?_1)) <8 < +(1- 2”(?"13)

Negative number represented by "Ones Complement" of corresponding positive

120 g
number. s 051 =) (complement of S).
Two representations of number zero Qreagn: v @
P o = L[A bits in length

Reduction Modulo p

For positive integer 8 0< 8 < 2u

5 if 8< p
S moduy =
S-p if 8> u
Example: 6Emod T=6, 8mod 7=1
3-3.2 Glossary of Terms
h Hold bit
c Configuration
i Instruction
j Index
r effective address
Wr memory operand
wr* Permuted Memory Operand
W, 5 Memory operand (indexed)
‘.\Tr J* Permuted Indexed Memory Operand
r,rexj Operand addresses
D Leftmost (sign) quarter of D
(H’r J*)' Leftmost (sign) quarter of permuted indexed memory operand
G Group c

3-68 August 1963

EXAMPLE 1 EXAMPIE 2
8; T A-bit binary numbers 5 010 011 101 111 011 01O
s Complement of S (sign bit complemented S 101 100 010 000 100 101
< 8> Inversion of 8 < 8> 110 011 101 011 011 010
RS Positive (counterclockwise; left) unit
rotation of S RS 100 111 010 110 110 101
R ls Negative (clockwise; right) unit -
rotation of S RS 101 ©0L 110 011 101 101
2 x5 Unit positive scaling of S (S scaled
up by one) 2 x8 000 111 010 110 110 101
EAlx S| Unit negative scaling of S (3 scaled -1
down by one) 2T x 8 001 001l 110 111 101 101
(scaling is rotation without change
of sign bit)
n(s) Normalizer of S (S signed fraction)
% < | 2n{S) xS | <1 n(s) 0 2
Note: n(0) = n(0) = A 1. (Used as
9-bit number,)
+(8) Tally of 5 (number of ones in 8) (used
as 9-bit number.) (8) 5 6
T 011 010 01l 011 o0l0 011
sSAaT S and T for each bit o sl 010 0L 001 011 ©10 010
b, b=l, &,
Sv T T 5 orT www N gv T 011 011 111 111 011 0ll
S@T | 8 or T but not both 5@ 7 001 001 110 100 Q0L 00l
SaerT A-Dbit binarz rinE sum of S and T ® 101 110 000 010 101 110
Qote: S &85 =0
SerT A=bit binary ring difference = (S ® T) |s@rT 111 00L 00l 100 000 111
Enclosed expression applies to each active guarter of operand E
Enclosed expression applies to each active subword of cperand |:

A blank box indicates that no change is made.

August 1963 3-69

INSTRUCTION EXECUTION TABLE. Insracrions [h, e, i, 4, a0 Cewrnes ans "“;‘;‘n‘;““.’ﬁi...'.‘."g“‘i';‘c‘:;;;?'S”“ vaLyes)
TimE
(“““‘""i { |mmone. | MaBE ——" I | =} Xy W R W= Wiex, |20 A B c = o =
EILEAA @ el Wl | k') 1]
o Z1] SPF | sreciFy l'ul-l[!-
T 22| §PG |dreciry &R0y Pei A&’x" @
" 3i| FLF | FILE Fomm |
2.8 |32] rie | rur croem o
24| Lo [Loap A Wy
o 25| LDB |LoAD B — } War
26|10e [LoAb € i i
7| iop (oA o g
39| 5TA |S5TORE A { A
35| sTw |sTeRE B] L
1.2 [wlsvc [store ¢ c
A7 [3TD |STomE B B 3
5% | EXA | ExcHaneE A @ A] (o)
2.4 |=5|ins | msear J:::&:
41| ITA |wmomsecr A An Vil
42 | UNA [umiTe - Av Wy
o &6 | DSA [DISTWGUISH A AW (A » WaivC
67 | Abo | Apo AB W A a Vg W
77| sus | sustmact AG WY Al
15 [11]8 [S | 78 | Mur [mucrienr @& et |rex, o A w WY z
73 155]37]06] 75 [o1v | pawioe s ® @rum:;}_,_ (A8t Yy,
&)f/ 6| cvA [cvete A G A @
2 |G2|cap |ever an P
““g;’ &éllcre cYme B ﬁ""‘v.‘.'a
70| SCA | Scae A (A0 PN
ESTN o
oo 25y 7
Eaw o
L) o o 20 ;
n<q PO |72 |48 | SALE AR [Fladeo 270 ap ®
iy'vo 20 ¢aw)
Eare (T gt Wy
e At any
r|see | seae 8 oM
on | MO | wormauize A | Zisee 2-6‘!”‘ iw;:-')"anc'&}
% @ 2 | N KLY, W) |
66 | waR | NommALIzE AB | Z@)es i 28 Lp (W) e mian
@] Z#-1] (2"« ABY (W) @ 1
li2|9 SJg | Ty | TALLY ® | Wy b & el
c<H| pet ot !
1| -A
SKx| SKIP ow ®
36 12 m"‘] INOER 2 | X @A
Pel KELST=TY
-1l &
56 | PMT | PempuTe oy =it =
2‘0 COM | comMPLIRENT ® @ ‘:ﬁ‘ = 4 @
o 20| LoE | Lomn] — L
1.2 30|sre |sromre E Pl [A@Xy E-
30 1TE | iwvemigeT € Eaw
o [as]sto [sxie T |
£ nFFERE et Y Pr2
£d WS
2,0 Ji7|sem | sp- pane @ [A @ = ®
-] 1] msa | meser & (]
.2 6 | orx | peponiT & Sul5)Ry)
1.2 i% | EAX | ExtnAwcE X Pk | (b} el X5) ©
B 1o | Avx | AvemEwT X h@(\.gﬂ: e ; B N
3.2 |s|ax [aes x - K o
ok | JPL | Junr aw Xig0 | Pei @_ b
1.2 rosiTIvE X x20] <@ (Ey): (Ead:
O7| INK | Jurr om Xj<0 Rl
wes e X Kioo | Pet |
46| IPA | TuMP ow mra P+ T
m"“'"ﬂ-—- .'}.,’g AB X, "ran
[BT E I 7D i
wEBATINE A& - :;‘ I
au| Jov | Tume ow | Ziayes ‘
B ERF Lo Aﬂ‘;\yi_ A% Xl N
2 |os|ane | rume waran | A i
i BAL | BRAWCH & owid AR @ @ @
i ST| THD | TRAMEFER il P
. BAYA ::;' P “,{'— @ @ @
August 1963

3-71

3-3.3 Notes on the coding chart
8

1. In all expressions P+ 1, P + 2, sums are reduced modulo 21 .

(TPT777 + 1) mod 228 = o.

2. For SPF and FLF only quarter one of er is used. BSPG and FLG use all

four quarters. F memory addressing is counted modulo 378 (e.g., 36, 37,

0L wil)
3. If re XJ = 377604 (address of A reg.) then EXA has same effect as STA.
k. Final value of WQ => (Q=1r, r@& Xj).

5. ADD, SUB overflow conditions:
If A®W = A+W Then 0O ==> Z(A)

If A®GW # A+ W Then 1 ==> Z(A)

Z(AH) = z(Ahz) = z(Ahl) = Z(Ahj = 2,
z(A3)] 23
Z(A"El} = z(Ae} = I,
z(a)) = 27,
6. DIV Conditions:
CONDITIONS Z(A) A B
|w_.*|> |AB| | © QuoT REM
[%l #0 |wr3*|<~ SR JURE. JUNK
] ry 1S] 8
|aB| =0 A
1 =
lwr&*l =0 lA_Bl # 0 A @wr‘j* R-l B

Sign of normal remainder = sign of dividend (AB).

JUNK is recoverable if |A| <2 |er*l ;

7. Exceptions in MUL, DIV, NOA, NAB, TLY:
Expressions listed are not correct for quarter (subword) 1 of A, B, and D'

if a 27, 9 subword is chosen, and if quarter 1 is active.

8. CYCLE, SCALE, and NOBRMALIZE instructions begin, in effect, with LID.

9. PMT, COM consist of 3 consecutive steps: W .* ==> E

Aungust 1963 3-73

10.

SKEM variations:

J M

selected bit

r.gq.b
q mod k4 b -
Hr.q.lO(dec) = M
3.6[3.5| 3.4]3.3[3.2(3.1 | 5 B
r.g.1ll(dec) r
g = quarter; b = bit Mr.q.lE(dec) = parity (Mr)
CONDITIONS ACTIONS
FUNCTION c i (SKIP, Then MAKE,
1.8 4.7 4.6 b5 kb| TP men cycrE)
0 = = = - P4l == P
SKIP o 1 - - - - P+2==> P
SKIF on 1 o - _ _ 0 P+2==> P
ZERD 1 P+ 1l == P
SKIP on 1 1 _ _ = 0 P+1s==> P
ONE 1: P+ 2 == P
- - - - 8] = =
OO = = = il e Mr.q,b
MAKE ZERO - - - 1 0 = 0 === Mr.q.b
MAKE ONE - - - 3 II< - 1 ==> Mr.q.b
- - - 0 - - - -
CYCLE - - 1 - - - i R
T r
11. number 00 . 0:or LL ...

12.

13.

SG(XJ) is 18-bit
is 0 or 1.
ADK , AUX

of sequence of steps:

consist

e is 18-bit signed integer expansion of c.

AUX

@ X

=> X,
J

3-Th

August 1963

1L, JMP, BRC variations:

c
FUNCTION a ACTION
L8 L 7| k.6 |5 b4
JUMP - - - - 0 ¥ == P
BRANCH - ~ - - 1 r®X, ==>P
SAVE - - - 1| - P+ 1 ==> xj
P+1l=E| - | - - : P+1 ==>E,
Q@ ==>E - - - - Q==> E,
iz 0 & . & - =
DISMISS 1l -] =-1-1- ifh=0,0=>§
15. T1SD (Unit R
¢ I (Un eady) assembly
normal maode
mode out in
out in -
| = == W
W *::;ﬂ U E;E‘ Wy => Ug Ug => W,
rj K
¥ i {
Y Y . Y REV EWD_¥
E => U E=>W_ ¥ -1 ” .
K rj R wrj =2 wr,j R wr 3 i3 wrj

Angust 1963 3-75

August 1963

NUMERICAL, ORDER

OPERATION

I0s

PAGE

b7

3-30
3-26
3-26
3-20
3-1k
3-24
3-18
3-22
3-16
3-34
3-T

3-54
3-5h
3-6

3-6

3-6

3-8
3-55

gw%%%a#ééggﬁg

L L L |

!

BERVITRBBBEEELELYEE

1

CHAPTER 3

3-77

ALPHABETICAL ORDER
OFERATION CODE NO.
ADD 67
ADX 15
AUX 10
coM 56
CAB 62
CYA 60
CYR 6L
DIV 75
DPX 16
DSA 65
EXA 5k
EXX 1k
FLF 31
FLG 32
INS 55
108 N
ITA b1
ITE Lo
JMP 5
JNA L7
JIX T
JOV L5
JEA L6
JPX 6
oA =i
1DB 25
LDC 26
1DD 27
LDE 20
MUL 76
NAB 66
NOA 6l
RSX 11
SAB T2
SCA 70
sCB 71
SED L3
SKM 17
SKX 12
SEF 21
SPG 22
STA 3k
STB 35
STC 36
STD 37
STE 30
SUB i
TSD ST
TLY Th
UNA 4o

2
=

4249 L0 Lo 1 Lo L Lo Lo
EoREHROBERS

EiLRG
= el el
[es] \\ﬂoao

| o] Thele] TR0 TR Rt Fieat TR Pocl ERtc el Tl R R ey it |

00 L9 49 0 (L0 0 10 60 L0 L0 Q9 (0 10 10 10 Lo 10 (0 60 10 L0 L 10 L0 L0 L0 L0 L0 L0 o Lo 0 =
SR B TP RL R R AR R R EEES NN OO RERARB EET

1

T¥-2 USERS HANDEOOK
CHAPTER 4 - IN-OUT SYSTEM

TABLE OF CONTENTS

L-1 INTRODUCTION

k-2 TX-2 INOUT JARGON
L-2.1 SEQUENCE - SUBPROGRAM - PROGRAM
L4-2.2 PLACEKFEPERS, PROGRAM COUNTERS, AND THE P REGISTER
4L-2,3 SELECT, CONNECT, TURN ON

.3 TX-2 INOUT CONTROL LANGUAGE
L-3.1 CHANGE OF SEQUENCE NUMEER
L-3.2 THE HOLD BIT
k-3.3 START POINTS
L_3.4 DROP OUT - TEMPORARY AND PERMANENT
L-3.5 THE "I0S" OPERATION - "INOUT SELECT"
L-3.6 THE REPORT BIT
L4_3.7 ™"TSD" - TRANSFER DATA
4-3.8 CONTROL LANGUAGE SUMMARY

L_L, NOTES ON CODING FOR INTERLEAVED OPERATION
L-k.1 BRUTE FORCE
L-4.,2 HIGH - LOW - MEDIUM PRICRITY SUBPROGRAMS

4-5 UNIT BY UNIT DESCRIPTIONS
No. 41 INOUT ALARMS
Wo. 42 TRAPPING
No. 47 MISCELLANEOUS INPUTS
No. 50 DATRAC (SAMPLED ANALOG INPUT)
No. 51 XEROX PRINTER
No. 52 PETR (PHOTOELECTRIC PAPER TAPE READER)
No. 54 INTERVAL TIMER
Wo. 55 LIGHT PEN
No. 56, €60 DISPLAY
No. 61 RANDOM NUMBER GENERATOR
No. 63 PUNCH

No. (65, 66, 71, 72) LINCOLN WRITERS

July 1961 b-1

L

CHAPTER L
TX-2 IN-QUT SYSTEM

INTRODUCTION:

TX-2 was designed for 33 "IN-OUT" devices (see chart T-1). Each channel is identified
by its "Sequence Number" - Zero for "STARTOVER" and hO—TT(B) for "normal" channels.
(Sequence Numbers are usually given in Octal.)

The basic In-Cut set includes:

For Input: Fhotoelectric Paper Tape Reader
Keyboard and Reader of Lincoln Writer
Datrac Analog Sampler

For Qutput: Xerox Printer
High Speed Paper Tape Punch
Printer and Punch of Lincoln Writer
Display Scopes

For Bulk Storage: Variable Speed Addressable Magnetie Tape
(% units, manually selected at first, about 2 million words
per unit.)

The subprograms associated with INOUT units can be written so that the waiting time for
one unit is automatically used as computation time for others. Only one subprogram is in
operation at any specific time, although the interleaved operation of several subprograms
makes it possible for several INOUT units to be in operation simultaneously.

In a typical program, a subprogram will continue to run until it must wait for its
associated unit to complete a data transfer or until it is interrupted to allow a subprogram
of higher priority to run. Bach subprogram has a "placekeeper" to remember where it should
resune operation amian indicator ("FLAG") to tell when it is ready to run again Since it is
likely that more than one subprogram will be ready (i.e., more than one Flag will be up,)
at any given time, a priority system is provided and is adjustable (by rewiring the "Priority
Plugboard").

Each INOUT channel has, therefore, a "Sequence Number" (4O-77 octal) for identification,
a placekeeper (the correspondingly numbered index register), and a one bit register - its
"FLAG" for signaling. Channel number zero is a special case in that its "unit" is the
STARTOVER and CODABO pushbuttons, its "placekeeper" is the Toggle Start Point Register (TSP),
and its Priority is the highest and cannot be changed. (The pushbuttons - STARTOVER and
CODABO - raise Flag #0. "CODABO" also clears alarms, presets all control flip-flops, lowers
all other Flags, and starts the computer. "STARTOVER" does NO MORE than to raise Flag #0.)

hp July 1961

Sequence Numbers 76 and 77 have been reserved for non-INOUT purposes. Flags 76 and 77

must be raised and/or lowered by programmed instructions. With the standard priority plug-

board, they have the lowest Priority position. (Sequence number L0 has the highest. The K

register, a 6 bit FF register, holds the sequence number of the currently operating sub-

prngram.) A hTSD using a non-INOUT Sequence No. will cycle memory one place to the left.

L-2 TX-2 INOUT JARGON

b2

ka2

h2.3

July 1961

SEQUENCE - SUBPROGRAM - PROGRAM

TX-2 is indeed a "Multiple Sequence" or "Multiple Subprogram" machine. This is
to say that it can interleave subprograms - i.e., it can keep track of several inter-
leaved program sequences. This does not say that it can run several interleaved
independent programs. So much colusion and cooperation would be required to inter-
leave unrelated programs that they should probably be done by the same person. One
could then argue that the result would be better described as a multi-purpose program.

The word "Sequence" is often used as a synonym for "Inout Channel".
Sometimes it refers to "Sequence Number". (We often say "Sequence" 77 rather than

"Sequence Number" 77). And it is used in the "normal" sense - i.e., "subprogram".
PLACEKEEPERS, PROGRAM COUNTERS, AND THE P REGISTER

The placekeepers - all 33 of them counting #0, (the Toggle Start Point,) - are
memory devices whose purpose is to remember where each subprogram is to resume
operation when it gets a chance. FPlacekeepers hO-TT(B) are index registers. Place-
keeper "ZERO" is the Toggle Start Point register (TSP) (a row of toggle switches on
the computer console).

The P register is an 18 bit flip-flop control register that always holds either
the location number of the current instruction or that of the next instruetion. It

corresponds to the "program counter" or "instruction counter" of other machines.

Index Registers 40-T7, the placekeepers, are often called the "program counters".
Occasionally the P register is called "The program counter".

SELECT, CONNECT, TURN ON

To "connect", or "Turn on" an INOUT unit means to set the control flip-flop of
the channel so that data can be transferred, and so that the INOUT unit has access to
its Flag. The unit is said to be "connected to the computer”. Each regular INOUT
unit has a "C" flip-flop - and a corresponding console indicator - to show whether it

is "connected" or not.

k-3

The word "select" is often used as a synonym for "connect" but it is also more
or less reserved for the day when two or more units must share the same channel.

This will be true, for example, in the magnetic tape bulk storage system.
T¥-2 INOUT CONTROL LANGUAGE

TSD - "Transfer Data" and I0S - "INOUT SELECT" are the only INOUT operations. The
channel used for data transfer depends on the "sequence number" in use rather than the unit
connected, for many units may be connected, but only one subprogram is in operation at the
time a given data transfer is initiated.

Control of the interleaving - not strictly an INOUT function is done through:
The hold bit(#4.9), a syllable of every instruction,
Resetting placekeepers via X Memory operations, and
Drop out - permanent or temporary. (See 4-3.4)

4-3.1 CHANGE OF SEQUENCE NUMBER
A change of sequence mumber occurs whenever:

a) A high Priority INOUT channel takes over by "BREAKING" or
interrupting a lower priority subprogram.

b) A subprogram drops out feither permanently, or to wait for its
unit to get ready for another data transfer) and a lower priority sub-
program takes over. If no other subprogram is ready, no change of
sequence number occurs. The computer goes into "LIMBO", a condition
where it repeatedly scans all the Flags until one is up. If the same

old Flag (as indicated by the K register}comes up, no change of
sequence oCCurs.

L4 July 1961

b-3.2

4-3.3

July 1961

When a change of seguence number occurs, several internal registers are affected:

.= il . -
3 + - oo

The E Register ==> on# | mew# | ser ¥RoM THE P REGISTER |

Old Placekeeper —> Reset from the P register same as the right half
of E. This will be "p+1" (one more than the location
number of the last instruction) unless the last
instruction changed P directly. (E.g., by SKX, SKM,
JMP, JNA, JPA, JOV, JMP, SED, JNX, JFPX, or TSD) TSD

will leave "p" rather than "p+1" if the data transfer

can not take place.
P Register s Set from the new placekeeper.
K Register = Set to the new seguence number.

Note that the current placekeeper is changed only when the sequence number is changed.
It can therefore be used as an ordinary index register while its subprogram is in
operation.

THE HOLD BIT

A typical INOUT subprogram is usually written so that it can be interrupted at
any time by another subprogram of higher priority. To do this completely, one would
have to refrain from using the Arithmetic Unit and the E register. Since this is too
severe a restriction, the "hold syllable" or "hold bit" is provided. A hold bit
insures that no "break" or interruption will occur following the completion of the
held instruction.

A break can occur before a "held TSD", but only when the INOUT unit is unable to
handle the data transfer. (This is called "DISMISS and WATT".)

Since instructions using the E register must nearly always be held, the assembly
program automatically inserts the hold syllable. (LDE, ITE, and JPX, JWX.) (JPX
and JNX are included because their automatic dismiss is usually not wanted. The hold
syllable cancels "dismiss" whether built in (as in TSD, JNX, JPX) or programmed (as

in Pskx, P10s, 2nm)).

START POINTS
To start a subprogram we need only set its placekeeper to the starting place and

raise its Flag. If the computer is running, the subprogram will start as soon as it

has highest priority among those that are ready.

k-5

L-3.4

"Starting" is particularly easy for sequence mumber zero. Its placekeeper,
"TSP", is set by hand. If the computer is rumming or in "LIMBO" the STARTOVER push-
button will suffice. Flag zero will go up and a change of sequence number to #0 will
cccur as soon as an instruction is performed that has no hold bit (or when a hTSD that
can not be initiated is encountered). CODABO is used when the computer is not

running, or when the user wants to stop all other subprograms and start subprogram

#0 only.

A subprogram using sequence number zero has highest priority and therefore can
not be interrupted. Sequence number zero is used primerily to start other subprograms.
This amounts to setting placekeepers for the others and raising the Flags of those
that should start. The following operations are used:

For setting placekeepers: RSX, SKX - i.e., the instructions normally
used to change the X Memory.

. . [} ", lo
For raising Flag "F": SKX, or IOSF 50 000

For permanent Drop Out: The dismiss bit (4.8) - a syllable of SKX,
JMP, and I0S only. The built in Dismiss
feature of TSD, JNX, and JPX can also be used
for permanent drop out.
Note that the single instruction "305K1d 101IT (in sequence zero) would start
the subprogram that is at 101 operating under sequence number "a". (Providing, of

30

course, that @ is not zero.) 1In fact, the SKxa 101 will work from any sequence

number other than @. (It can not be made to look like "JMP 101".)
DROP OUT - PERMANENT AND TEMPORARY

When a subprogram is finished, it can drop out permanently through the DISMISS
syllable (bit 4.8) of 103, SKX, or JMP. When TSD has initiated an output data
transfer or when it has completed an input data transfer the built in dismiss will
cause drop out if "hold" was not used. This drop out will be temporary - the INOUT
unit will raise the Flag. For input units the Flag is raised when the next datum is
ready (e.g., when the next key is pressed or the next line of tape comes up). For
output units the Flag is raised when the data transfer is complete and the unit is
ready for another (e.g., when the character has been printed, or the paper tape has

been punched).

Drop out always lowers the current Flag. It is considered "temporary" if the
unit is about to raise the Flag and "permanent" if the Flag will be raised by another
subprogram (or if the subprogram is finished for good). Temporary drop out can also
occur when a TSD operation is not possible - i.e., when an output unit is still busy

L6 July 1961

4-3.5

July 1961

or when there is no datum available from an input unit (e.g., when the next line has
not yet arrived). This form of temporary drop out is called "DISMISS and WAIT" and
can not be prevented by using the "hold bit". In this case, the TSD that caused the
drop out has not been done, the P register is not advanced,and the TSD is done when

the subprogram resumes operation.
THE I0S OPERATION - "INOUT SELECT"

The primary functions of I0S are "Connection" and "Disconnection" of INOUT units,
and the specification of operating modes. Some units have several modes - for example,
the user has the copticon of punching tape with or without a Tth hole on each line.

I0S is also used for raising and lowering Flags and will eventually be used for

selecting mag tape drives.

The basic I0S cperations are:

108, 20 000 - Disconnect Unit "I" from the computer

108, 300 - Connect Unit J (if not already comnected), and set to
Mode XXX

IOSJ 4o 000 - Lower Flag J

I0S, 50 000 - Raise Flag J

IOBJ 60 XXX - Select Unit X¥X (Not used yet)

IOS‘T 20 000, Disconnect, has no effect on interleaving except that a TSD that
tries to initiate a data transfer will not be performed. (A "Dismiss and Wait" will
occur - waiting for the unit to be ready to transfer the data. In most cases this
amounts to a permanent drop out.)

IOSJ J¥XXXX, Connect, has one peculiarity. It will raise Flag J whenever:
Unit J is an QUIPUT unit,
and Unit J was not already connected.
When a mode change takes much time, the unit involved will generate a raise flag
signal to indicate that the change has been made, and no data transfer will be
accepted during the intervening interval. (i.e., the "buffer is busy".)

IOSJ Lo 000,LOWER FLAG J, is not equivalent to drop out if J is the current
sequence number. The subprogram currently in operation will continue to run until
it drops out or until it is interrupted by a unit of higher priority. If such a
BREAK oceurs, the interrupted subprogram will not resume cperation, for Flag J is
indeed lowered. If J is not the current sequence number, IDSJ Lo 000 prevents

subprogram J from resuming operation until Flag J is raised somehow - (perhaps by

unit J or by another subprogram).

IOSJ 50 000, (and lOSKXJ) will raise FLAG J, but as before, "J = current sequence"
is a special case. Note that:
SKKJ ¥
2OIOSJ 50 000

Will change the P register and therefore be similar to a JMP if J is EEE the current

30
or SKXJ ¥

sequence mumber. But if J is the current sequence number, no change of sequence
number is ordered and the RAISE FLAG cancels the DISMISS. There is effectively no
change. (Except that SUSKX Y will set X to "Y" but this will be wiped out by the

next change of seguence number.)

The Flag of the current sequence is never used. Following each instruction

that is not held, control scans the Flags having higher priority but goes no further.
It does not consider the current Flag. If the instruction was gg}g_no scan is made
at all. When a subprogram drops out, all the Flags are scanned until a raised Flag
is found. When no Flags are up, and this scanning is taking place, the computer is
in "LIMBO". As scon as a Flag is found, a change of Sequence Number (see 4-3.1)

takes place and normal operation is resumed.
L-3.6 THE REPORT BIT

A simple I0S has no effect on the E register. If bit 4.4 is set to 1, (a
lIOSJ 0 for example) the control flip-flops of the chosen unit are copied into E
before the rest of the instruction is performed. Thus, if 1IOSJ 3XXX is used, E
will contain information on the state of affairs before the mode change. Unused

portions of E are cleared.

The standard report is as follows:

Bit 3.1 to 3.6 - Sequence Number of Reporting Unit
"o2.9 - TFlag
" 2.8 - Buffer Status - 1 = not busy
= busy
BT - Maintenance
" 2.6 - Connect
" 2.5 - ETA - Equipment Tnability Alarm
L - - MISIND - Missed Data Indicator
Y B8R -1.0 - Mode flip-flops - same as in the I03 30K for most
units.
" og3urakig - Special indicators - cleared if not used.

L-8 July 1961

4-3.7 TSD - TRANSFER DATA

July 1961

With a few exceptions (41, 42, 55, 75) each INOUT unit has an INOUT Buffer
Register (IOB) and a Status FF. STATUS = 1 means it is the computer's turn to use
the buffer, STATUS = 0 means that the "BUFFER is BUSY" - i.e., the wnit is working
on an uncompleted data transfer. The buffers range in size from 6 to 24 bits.

TSD - Transfer Data - means either "copy from I0B, to memory" or "copy memory to
IOBR" where k is the current sequence number (i.e., contents of the K register).
Thus for input units, TSD completes the data transfer and for output units, TSD
initiates the data transfer. (For input, the transfer is "unit-to-buffer," then
'buffer-to-memory"(via TSD) and for output it is "memory-to-buffer" (via TSD), then
"wuffer-to-unit".)

Except where TSD is used in ASSEMELY mode, permutation and activity can be used
in the normal manner. There is no sign extension - subword form is ignored.
"Inactive" portions of an output buffer are filled with +0. The buffer is considered
to be at the far right unless otherwise stated in the unit descriptions.

TSD has two built-in DISMISS features. If the buffer is busy, the TSD can not
be performed and drop out occurs whether a hold is used or not. This is called
"dismiss and wait" and comes before the P register index point in the control cyele.
(P is not advenced.) Once the TSD operation is done, the other built-in DISMISS
occurs but this time "hold" is effective. Such a hold is used on input devices to
insure use of the new datum as soon as possible and on output devices to utilize the
processing time without changing the sequence mumber. It is possible in either case

to use so much time that lower priority subprograms never have time to operate.

If an INOUT unit is not connected, a TSD will find the buffer "busy" and "Diemiss
and wait" will occur. If the unit is subsequently connected by another subprogrem,
the flag of the first will be raised and the TSD will be performed as soon as normal
interleaving will allow.

If a TSD is done using sequence number 0, 76, or 77, the gspecified memory word
will be cyeled left once. The configuration syllable iz not used - the cyele is a

full 36 bit operation. Unless a "hold" was used, the automatic dismiss syllable of
TSD will take effect. (This is also true for sequence mumbers ior wiich there is no
INOUT unit as yet.)

Note that for sequence number 75 (Miscellaneous Outputs), TSD does not cycle.
(Tt will still dismiss if not "held", however.)

k-9

L-3.8 CONTROL LANGUAGE SUMMARY

108
0 i
IOSJ o] - Has no effect except to take time. (But note that ~I0S is
"Report".)
o]
IOSJ 20000 - Disconnect Unit J
0]
IOSJ' £y 8008 - Connect Unit J, Set Mode, Raise Flag J if Unit J was a
disconnected OQutput Unit.
0
IosJ hoooo - lower Flag J - Not DISMISS, (i.e., will not cause drop out.)
OIOSJ_ 50000 - Raise Flag J
SKX
lo axtl
SKXJ N - PRaise Flag J, Set XJ to N .
2OSKXJ N - DISMISS, Set X; to "W,
Pgix, N - Both of the sbove for J k. If J =k, there is no drop out.
(x = current sequence number.)
DISMISS

Bit L.8 for I0S, JMP, SKX (e.g., Eosxor:, 20105}

"Built in" as part of TSD, JNX, JPX

(Otherwise not available.)

Change of Sequence Number Affects:

Register E —» [om# | mew# | cowrenrs oF P |

0ld Placekeeper —» Contents of Register P
Register K — Wew Sequence Number
Register P —# (Contents of New Placekeeper X

“
el fiaal —~

=
L I ‘ | I il
*Not Used,J Sequence L*2.3 - 1.1 Mode Bits

Report - l105 - (bit 4.4 of I08)
i by rhay ke
ol o

Except by Number of
Magnetic Reporting 2.4 - MISIND
Tape. Unit. 2.5 - EIA
2.6 - Connect
2.7 - Maintenance
2.8 - Buffer Status (0 = busy)
2.9 = Flag
* Register E is cleared before the report. Therefore, all un-used bits
are zero.

410 July 1961

L-l NOTES ON CODING FOR INTERLEAVED OPERATION

If a program uses but one unit there is no need to interleave any subprograms and the
entire program can be performed using one seguence number. Even if two or more units are
to be used, it is sometimes better to use them one after the other rather than simultanecusly.
If the above conditions are true, the only pitfall that may be overlooked is premature drop
out. Careful use of the dismiss bit and built in dismiss features will prevent this error.

Interleaved operation of subprograms requires sharing the following:

Main Memory
X Memory
F Memory
Arithmetic Element (A,B,C,D, and Overflow FF).
TIME
(Iisted in order of increasing difficulty)

Main Memory and X Memory must usually be partitioned, except, of course where they are
used for common data. The F Memory can usually be set at the start to some "Standard
Configurations" and left unchanged. Two approaches to sharing TIME and AE are given below.

L4-4.1 BRUTE FORCE HOLDING

Whenever the INOUT units involved are slow enough, or are not free-running
(i.e., do not dictate timing) a brute force method may be used. (The Lincoln Writer
Printer and the High Speed Punch are two such units.) The lower priority subprograms
can use a hold bit on all instructions where a break is intolerable, (assuming a
BREAK will change the Arithmetic Element). The only limit is that they can't hold
on Eli instruetions. The highest priority subprogram has no problem other than the
faet that it must drop out now and then to give the others a chance. If it must
wait for a lower unit it can do so by dropping out and relying on the other sub-
program for restarting. Synchronization can be automatic only if the high priority
loop contains a temporary drop out. The easiest way to obtain a temporary drop out
is through regular and, if need be, dummy TSD operations (e.g., non-printing keys on
the Typewriter, blank tape on the punch, ete.). Another method would be to use the
Interval Timer (Unit #5k4).

h-L.2 HIGH-LOW-MEDIUM PRIORITY SUBPROGRAMS

The Brute Force Holding method will not work if the timing of one unit requires
that it receive attention soon after its Flag comes up. In many cases it is necessary
to restrict holding to no more than three consecutive operations. Fortunately, the
index memory operations can be used in place of the Arithmetie Element operations for
many applications. This means that all but the lowest priority subprograms do not
need the Arithmetic Element. The rulesfor this method are as follows:

July 1961 h-11

For Lowest Priority Subprogram - The only one to use the Arithmetic Element.

(L]

*
a) No more than "n" consecutive holds. (It should be possible to limit
this lowest priority subprogram to holding only on JPX or JNX.)

("Consecutive", here refers to TIME, not storage.)
For Medium Priority Subprograms -
a) No more than "a" consecutive holds.*
b) HNo use of the Arithmetic Element
For Highest Priority -
a) No use of the Arithmetic Element unless it is saved and restored.
b) "Hold" should be needed only on JNX, JPX, and TSD. In other places,

it has no effect. When used on TSD, care should be taken to insure
that some time remains for other units.

*
"n" the number of permissable consecutive "holds" is determined by the timing requirements of

the highest priority subprogram. "n" = 3 is enough to allow considerable flexibility in the
other subprograms.

b1z July 1961

No. L1
IN-OUT ALARMS

IN-QUT ALARMS

DESCRIPTION:

This "device enables operation of an Alarm Subprogram whenever an IN-OUT alarm occurs.
FLAG 41 is raised upon EIA (Equipment Inability) or MISAL (Missed Data) for any of the
devices listed below. TSD is used to determine the type and source of the alarm.

MODE SELECTION:

Connects alarm circuitry to central computer. FLAG 41 will
10s), 30000 now be raised upon alarms. TSD will now report alarming

conditions. "MISAL" (Alarm) is suppressed. See Note 1 below.

TSD INSTRUCTION:

TSD T’ I.«; ::::I T, T3SD does not clear alarm. The
of fending unit must be disconnected
" 2k l i i l (10s 20000). See Note 3. TSD
T30 T 1 108, copies I0By, into Ty.
BUFFER BIT ALLOCATTONS:
Bit Corresponding In-Out
Octal Integer Alarm
1L 001 MISAL, - Datrac 50
1.2 o002 MISAL - PETR 52
143 0ok MISAL - Mag. Tape)
1.k 010 EIA - Mag. Tape L6
1.5 020 EIA - Camerz 60
1.6 oko EIA - Punch 63
LT 100 EIA - Xerox 51
1.8 200 EIA - Lincoln Witr. 65,66
1.0 Loo EIA - Lincoln Wtr. 71,72
NOTE: 1. An unsupressed "MISAL" will stop the computer. The two forms of supression, prog

and manual, are independent - both must be off to remove the supression. Progn
supression does not light the yellow console light, but the red light and gong
work.

2. EIA - "Equipment Inability Alarm" - does not stop the computer but it may ring a
buzzer or stop the unit involved.

3. If an additiopal alarm is generated before the first has been cleared, IOEMJ will be
set but FLAG b1 will not be raised. TSD can be used again to see if this his occurred.
Note that an IOS 30000 following IOS 20000 will raise FLAGS 60, &3 and 51, but not
FLAGS 50 or 52, FLAG 46 is s special case. TSD should be used before disconnecting
the offending unit for it can not report conditions of units that are not connected.

Hovember 1961

No. L2
TRAP
lof 2

The TRAP circuits can be set to raise FLAG 42 (thereby starting a special subprogram)
whenever a metabit is encountered in the operation of other subprograms. FLAG L2 can alszo
be raised on change of seguence number or upon a signal from the TX-2 Sync System. The
circuits can also set metabits. BSince metabits can be encountered in 3 basic ways, there
are several TRAP modes. See below. TSD is not used (but retains its eycle left and
dismiss features). Combined modes are allowed. For exanmple, 108y, 30007 will set to trap
on all metabits encountered, whether by instruction,defer cycle, or operand.

MODES
(Programmed) (A1l Pushbuttons OFF.)

IOShe 20000
or Clear Clears Mode Selection

IOS;_{_2 30000

IosLFe 30001 | Trap on Marked Instruction FLAG 42 is raised before the end of the
marked instruction.

108, , 30002 | Trap on Deferred Address FLAG 42 is raised before the end of the
instruction using a marked deferred
address.

FLAG 42 is raised after a delay of one

105, 30004 | Trap on Operand to several instructions, depending on
overlap conditions.

FLAG 42 is raised during change sequence
cycle if new Place Keeper (index register)

I0S), 30010 | Trap on Change Sequence is marked (2:9 = 1). The "new" (marked)
sequence number goes into quarter 3 of the
E Register, and the "old" into quarter L.
There is no trap when leaving muber L2,

The three "set metabits" modes below are partly manual in that the "set metabits”

pushbutton switch on the console must be "ON'. These medes do not raise FLAG Lo,
IC'SL2 30100 | Set Mestabits of Instructions | Sets metabit of all instructions
performed.
IOSh? 30200 | Set Metabits of Deferred Sets metabit of all deferred addresses
Addresses used.
10S), 30400 | Set Metabits of Operands Sets metabit of all operands used.

July 1961

No. L2

2of 2
MANUAL MODE: (Trap on Sync System Signal)
FLAG 42 can be raised by a signal from the Sync System. The requirements are:

1. "Sync 1" and "Sync 2" pushbutton switches should be OFF.

2. The "Sync to Trap" pushbutton switch should be "ON". While it is "ON" all
other trapping modes are not effective. Setting modes still work. When
"Syne to Trap" is turned "OFF", the original mode is reinstated.

3. "Gate 1 to Sync Jacks" pushbutton switch should be ON. (This is located on
the Syne System Panel.)

July 1961

No. b7
MISC. INPUTS

MISCELLANEOUS INPUTS

Nine cne-bit independent input channels - each with a BCN jack and an ON-OFF toggle

switch are provided. A standard TX-2 transition from -3V to ground will set the chosen

buffer digit and raise FLAG 47. The buffer is cleared upon copying into memory wvia TSD.

Two Schmidt Triggers with filters are provided on the panel itself, and a 3 channel push-

button pulse generator is also available as & separate, movable unit.

MODE SELECTION

IOSh? 30000 CONNECT This allows inputs to raise FLAG 47.
It does nothing else.

T5D

TSD T, e CL L7 TSD reads IOB into T, and clears IOB.

oR ‘ # 4 4 Permutation is operative - there is no
sign extension - quarter 1 must be active -
“rsp T] 108
i 47 | activity of g2, 3, 4 is not relevant.

MANUAL CONIROLS:

Notes:

ok |
el mB 2 I

Filter switches —]
| o i

Schmidt Triggers . #; MO ey e ve—Toggles (Iron_offll Py each.)

~=—BCN Connectors - (Standard
TH-2 Inout Transition)

Three channel push-
button pulse generator

1. The input signal must be a "Standard TX-2 Transition" (i.e. from -3 wvolts to ground
with g rise time less than 0.2 microseconds).

2. The Schmidt triggers are completely independent of the rest of the circuitry and
must be cabled to the channel desired, The input to the Schmidt trigger must be
g smooth transition from ground to -3 volts. Bince the normal open circuit volt-
age is about -3 volts, a sine wave of about 5 volts RMS, or an opening switch
contact can be used. The filter should be used with the switch contact input or
with any other noisy source. The Schmidt trigger inverts the input signal producing
a standard TX-2 Inout Transition as its output. (The circuit switches at -0.9 volts
going down and at about -2.2 volts going up. The rise and fall time is about 0.15
microseconds.)

July 1961

No. 50

DATRAC

Lpd 2
DATRAC - Analog to Digital Numerical Input

The DATRAC is an analog to digital converter made by Epsco, Inc. It provides numerical
samples of a continuous electric signal. A measurement or sample is started upon receipt of
a "trigger pulse" from the computer or from an external source. (Such as the Interval

Timer - See No. 54.) Pertinent parameters are as follows: (and see notes below.)

Maximum Sampling Rate: 27 Kilocycles (37 usec per sample)

Measuring Time (Trigger to Raise Flag): 22 usec.

Nominal Input Signal: -1 volt to +1 volt (can be set to ¥10 volt

or %100 volt behind the panel.)
Output Signed 18 bit Ones Complement Fraction
CPERATIONS
10550 30000 CONNECT 10850 30000 permits FLAG 50 to be raised and sends
a trigger pulse to the datrac control panel, (wherd
it may be switched to the DATRAC, or not as desired
by the user.)
TSD T, [l T T 11 T, TSD copies an 18 bit signed ones complement
OR 4 4 * ‘ fraction into TJ along permuted pathways if so

T - specified. The reliable precision is; however,

5 O so{only 8 to 11 bits - (at the left end). There
is no sign extension in TJ- TSD also sends a
trigger to the DATRAC control panel (where it
may be switched to the DATRAC or not as desired.)

NOTE: 1. Do not trigger the Datrac more often than at 37 usec intervals. It is possible
to damage the circuits.

2. TSD copies the measurement taken at the time of the last trigger.

3. A MISAL is created when a trigger arrives at the Datrac before the previous sample
has been transferred to the computer via TSD. (See IN-OUT #ul.)

July 1961

No. SO

DATRAC
2 of 2
MANUAL CONTROLS:
DATRAC Control Panel
[1 Trigger Inputs (Standard TX-2 Inout
o Transition. i.e. -3
to ground in less than

g, 0.2 microseconds.)
| 4
[0sc. Oscillator Inputs (3 volts RMS required)
| Osc.
TSD "Up" connects programmed triggers to
IOS] DATRAC. These are internally connected,

General Radio Ogeillator (Not an integral part
<« of the DATRAC system.)

DATRAC Signal Input. (Cannon Connector XI311
required. Pin 1 - Shield, pin 2 - Ground,
pin 3 - Signal.)

"External Trigger Input" This trigger input is
______,_——-‘-""not compatible with TX-2. Use the inputs on the
"Control Panel" above. They are internally
connected to this input.

~——————_ DATRAC Power Supply The Datrac power is not

left ON. A warm-up time of from 5 to 30 minutes
is required (30 minutes is enough to insure that
it is as stable as it will be.) Users should be
sure to turn the power OFF when they are finished.

July 1961

XEROX PRINTER
The XEROX is an electrostatic, high speed (960 lines per minute) printer. It is

No. 51
XERCK PRINTER
sk

basically a charactron display with automatic continuous xerographic recording. Through

electronic compensation, the display area or frame is held 'stationary' for sbout 45 milli-

seconds, and then moved down about 0.1 inch to catch up with the paper. The programmer

must specify the x,y position as well as the code number for each character to be printed.

QFPERATIONS
10551 30000 CONNECT "Connect" turns on the xerographic recording
apparatus and raises FLAG 51 when the eguipment
is ready. (Warm up time is about 5 seconds.)
10551 30010 FRAME SYNC If the unit is not comnected, "Frame Sync" will
"eomnect" it. FLAG 51 is raised at the start of
the next Frame period. (Frame peried is 45
milliseconds.)
TSD T, la D:I:I:’ i TSD causes one character to be printed. Since
- l l ‘ ‘ TSD takes about 750 usec, cnly 60 characters
can be printed within one FRAME interval. See
“Tsp T CT—TT1 7 108
i 51| diagram below for Xerox buffer layout.

EUFFER LAYOUT

Notes:

voFE e D

July 1961

o
=+

.1

O

O
[a¥] o~

I B P

X Position

Y Position Character Code

The "Frame Area" is a rectangle approximately 5 by 1 1/b inches.

The "Origin"™ is at the left end, centered vertically.

The X position is given by a 9 bit positive integer. (000 to TTTBJ

The Y position is given by a 6 bit ones-complement signed numeral. (—37 to +378)

The First TSD starts the paper motion. The paper will continue to move until 15
seconds after the last TSD or until 15 seconds after the Xerox is disconnected

via 1085120000.

A TSD that must start up the paper drive is unEredictablc due to noise generated by
the paper mechanism. The safe procedure is to print cne or two "blank" characters

(e.g. code 100) and an extra Frame Sync (I0S
moving emcothly when Lhe data is displayed.

5130010) to ensure that the paper is

Numerical Parameters:
Frame Interval
Frame Reset Interval
Character Print Time
Frame Size
Character Size

Paper Speed

Calculated Parameters:
Characters per line
Vertical deflection
Horizontal deflection
Frame spacing
Lines per inch

Suggested X increment

MANUAL CONTROLS

ON OFF
SWITCH

No. 51

XEROX PRINTER

45 milliseconds (approximately)

2 milliseconds

750 microseconds

1 1/4 inches high by 5 inches wide
Neminally 3/32 high by 1/16 wide

2 inches per second

60
.02 inches per unit

0l inches per unit
.06k inches

10.65

8 units

Low paper buzzer alarm

2of 3

Note: '"Low Paper" alarm causes an EIA indication and can raise FLAG 41 if IO alarm circuits
are "connected". See IN-OUT Unit L41.

July 1961

CHARACTER

M A = ¥ N < X E < C H DO WO ZT T F A LT O MmO O w I

(PERIOD)

Note: Bit 1.9 of the Xerox Character Code is & "size control bit".

0" means small. The codes are given above with the "proper”

November 1961

XEROX PRINTER CHARACTER CODES

OCTAL CODE

154
142
361
352
313
344
302
554
172
144
143
332
360
370
353
312
160
371
322
153
362
152
343
161
342
162
132
133
220
221
222
351
372
340
363
730
703
720
150
570
140
114
151
103

(oss)o71)346)

(043)
(os4)
(012)

(157)

(047)o62)317)
(os5)(070)345)
(355)

(0a2)
(145)
(3586)
(o17)032)307)

(os7)072)347)

(os3)
(148)
(o0s52)
(147)
(117)

(205)
(208)
(z07)

(357)
(os0)
(073)
(445)460)715)
(413)
(¢15Ka30)705)

(555)

(1186)

CHARACTER

]

¥ & ~ @ w a w»

N e

= 0 W @ N & W A W oM oR O m o= = R

X U 2 =

o

b O= 2 > 2

—

(ZERO)

(COMMA)

(CIRCLE)

411

No. 51
Jof3

OCTAL CODE
122 (107)
324 (034)
325 (033)
024

111

112

173

174

163

164

310 (040)
311 (041)
353 (083)
203

334 (064)
023

001

002

003

004

020 (00s)
021 (00s)
ozz (007)
300 (010)
501 (011)
ooo

202

204

120 (105)
121 (1086)
113

714 (4aa4)
3873

341 (051)
3564 (074)
731 (4ae)a61)7156)
704 (414)
721 (418)431)(706)
151

571 (558)
141

130 (115)
102

104

"1" means large, and
size.

MANUAL CONTROLS

No. 52
PETR
2 of 2

Note: The manual control
pushbuttons discon-
nect the PETR. (This

1s equivalent to the

105

5220000 instruction.)}

Maintenance
Switch

Reel/Strip Toggle Switch Selects the drive for tape
motion in the "Reel" direction for both manual
and computer operation.

'Reel" - Up to 2000 lines per see. Drive
provided by the reeler.
"strip" - About 40O lines per sec. Drive

provided by the internal capstan.

N—————— Bin Pushbutton

TAPE DIAGRAMS

\——— Wind Pushbutton
direction.
operation.

Starts tape movement in the "Reel"
Countermands any computer originated
Tape is not read by computer.

- BStarts tape movement into the bin,

at about 400 lines/sec wvia internal capstan drive.
When the "End Mark" (Code T3, no Tth.) is
encountered tape motion is stopped with the mark
on the bin side of the reading point. Any
computer originated operation is countermanded.
Tape is not read.

(Read toward PETR, inside to outside.)
16 711 o]o 1]3 o]2 2]o €]

L]
L
L]

remean

l

e aie

i Normal" "Assembly"

(One line) (5ix lines)
a—T0 the | e C To the
PETR (Read toward the Reeler

Tth. hole

-i.e.

From inside to

outside.)

July 1961

INTERVAL TIMER

No. 54
INTERVAL TIMER
lof 2

The INTERVAL TIMER is essentially a counter that passes every nth pulse of a pulse

oscillator (the "End Carry Pulse").

and stop time are controllable. The output, a string of accurately spaced pulses, can be

The basic counting rate, timed interval, start time,

used to raise FLAG 54, and (or) to trigger an external device (such as the DATRAC for

example). Control is partly manual, partly by program.

OPERATI ONS

IOSSH 30000

STOP COUNTER

(and Connect)#*

STOPS the counter and hence the output string.
The count for the interval will now be reset
repeatedly from the buffer (at the counting rate).

(Counting rate is selected manually.)

Iossh 30100

START COUNTER

(and Connect)¥*

STARTS the counter. The pulse string will start
after one counted interval and will continue
until it is stopped. In this mode, the string
is available only at the "EC OUTPUT" jack on

the console.

IOS5# 30200

SET TO RAISE
FLAG 54

(and Connect)#*

CONNECTS output string to raise FLAG 54 at the
end of each timed interval. This mode is used
when the interval timer is to be started by
hand or by an external trigger.

105, 30300

START and RATISE
FLAG (and Connect)#®

This is s combination of the two operations

just above. The first output pulse and raising

of FLAG 54 come after one interval as specified
by the Buffer. (The buffer can be set manually

from toggles, or by a TSD in the program.)

*
Al Ios5k 30000 instructions "connect" the unit if it is not already connected.

Notes: 1. The buffer is "busy" during "end carry time" - i.e. when it is in use. For 10 kec.,
100 ke., and "Ext. Osc." this is equivalent to the basic counting interwval. For
1 mc., the buffer is "busy” during the last 16 counts. If the reset value is less
than 16, the counter must be stopped before the buffer can be changed.

2. Any change in the buffer becomes effective only at the end of the current interval
unless the change is made with the counter stopped.

3. Manual control overrides program control.

July 1961

(¢

(¢

((

(

(C

(«

No. 60
OSCILLOSCOFE DISPLAY
lof 2

SCOPE DISPLAY

The "scope" is a cartesian coordinate, high speed (20 to 80 usec) display with 10 bit

precision in (x, y), controllable intensity (4 levels), and a phosphor persistancy of about
2 seconds. £Each point must be specified separately and the display must be repeated
endlessly if it is to be viewed rather than photographed. A camera mount, several cameras,

and a film index instruction are provided. The usable display area is T by 7 inches.

OPERATIONS
10660 30000 SELECT SCOPE If the scope is unselected, FLAG £0 is raised.
(CONNECT) This instruction gives lowest intensity and a
centered origin. See other 10560 30000 type
operations below.
108, 30000 SELECT SCOPE The scope 'intensity" is controlled by the
10660 30010 and set duration of the spot rather than beam
10560 30020 INTENSITY intensity.
10660 30030
30000 - Low - 10 usec.
30010 - Med. Low - 20 psec.
30020 - Med. High - Y0 psec.
30030 - High - 80 psec.
10860 30000 SELECT SCOPE The origin can be at the center, at the left or
10860 30100 and set bottom edge, or at the lower left corner.
I0560 30200 ORIGIN
10560 30300 LOCATION 30000 - Center - [:]
30100 - Bottom Center - [:]
30200 - Left Center - 41
30300 - Lower Left Corner - I:]
10560 30004 INDEX FIIM The TI03 is busy until the return signal comes
back from the camera. The retwrn signal also
raises FLAG 60.
NOTE: The I0Sg, 30004 (Index Film) instruction causes an "EIA" (Equipment Inability Alarm) when

the Tilm supply in the camera magazine is low. This raises flag 41 if unit 41 is connected,
lights the "End of Film" light, and rings a buzzer. (See next page.] 1t does not stop

the computer. The scope and camera can still be used until the film runs out completely.
When there is no film at all, the return signal that frees the buffer is not generated,

TSD operations find the buffer "busy", end "Dismiss and Wait" occurs.

November 1961

No. 60
OSCILLOSCOPE DISPLAY

2 of 2
SCOPE DISFLAY
T Tj la]:[::: T_-; TSD copies from TJ to the scope buffer. The
10 bit coordinates are interpreted as signed
i l l l’ l cones complement numerals. Therefore, there
#TsD T, — 3 T0B.y | are two zeros - plus zero (all zeros) and
/ minus zero (all ones). Moved origin modes
x coord. ¥ coord. are realized by automatic complementing of
4.9 -3.9) (2.9 - 1.9) the appropriate sign bit. Thus 0 = -0 in
centered origin mode; and OTTT(a} = lODO<8)
in moved modes. Permutation and activity
may be used.
NOTES

1. In most cases it is easier to use 9 bit arithmetic.

In 18 bit arithmetic, one can use

"Fractions" and sense end carry by the SKM instruction, or one can use "integers" and

sense overflow the same way.

In the latter case, one must

cycle or scale to the left

so that the 10 bits will be in the buffer position.

ANUAL CONTROLS

¢ & & 8
¢ 8 & &
~ ‘ -
=5 £

L]

el

e

| &]
s |

e e e-e0 @ L

/— On-Off Pushbuttons - Display power
comes on after a 65 second delay. It
is best for it to be brought on while
the computer is stopped, for it often
causes a spurious raise flag signal.

For best resclution, it is neces-
sary to wait about 20 minutes for the
circuits to reach thermal equilibrium.

"Toward the
Kvay", gives a
vertically inverted display to compensate
for the mirror inversion in the camera
mount.

“Camera Inversion Switch -
wire" is "Normal

End of Film Light

—End of Film Acknowledgement Pushbutton
This button will stop the alarm buzzer,
but does not clear the EIA flip-flop.
(See In-Out #L1)

——Manual Film Index -

Trame.

Moves the film one

November 1961

No. 61
RANDOM NUMBER GENERATOR

RANDOM NUMBER GENERATOR

The Random Number Generator assembles a 9 bit number "at random" from a radioactive

Cesium Source. The average time required is 57.6 usec - minimum time 28.8 usec.

OPERATIONS

10561 30000 SELECT AND The select operation also triggers the
TRIGGER generation of a random number. FLAG 61

is raised as soon as the mumber is ready.

TSD copies the generated number into Tj'

i
ot le | CTT T,
OR l l l l must be active.) TSD also triggers the
a o eneration of the next number. FLAG 61
TSU T] 1or_, | &

(Permutation is allowed, and guarter one

will be raised when it is ready.

MANUAL CONTROLS

On-Off Pushbuttons - There is a 60 Note: The meters should read about half scale.
second warm-up delay. Note: The They are used for maintenance purposes
Random Number Generator should be left only. The maintenance switch is inside
OFF when not in use. the box above the control panel.

July 1961

No. 63
PUNCH
lof2
PAPER TAFE PUNCH
The PUNCH is the counterpart unit to the FETR. It is a line-by-line device and can
be programmed to punch at speeds up to 180 lines per second. A TSD must be given for each

line. Four modes are defined below.

OFERATIONS
108, 30000 NORMAL Sets to punch 6 channels - no T°® hole
no 7t (used for blank tape, end marks, and
visual pattern punching.)
10363 30004 NORMAL Sets for 6 channels with automatic Tth
WITH Tth hole punch on each line. (Used for tapes
to be listed on off line Lincoln Writers.)
IOS63 30002 ASSEMBLY Sets for splayed punching - Six TSD
NO Tth instructions punchout a 36 bit computer
word.
10563 30006 ASSEMBLY Sets for splayed punching with automatic
WITH Tth Tth hole. Used primarily for Binary
OQutput.

NOTE: All the above 10363 30020 instructions "CONNECT" (SELECT) the punch and raise FLAG 63
if (and only if) the PUNCH was unconnected prior to the instruction.

TS0 T, [a CT T T 1, .
IN NORMAL mode, permutation and/or
OR I ’ | activity may be used. Only 6 bits of TJ
%15p T 108 are copied, T, is not affected.
J T B J
In ASSEMBLY mode the configuration
syllable is ignored. The datum is copied
TSD T, e T, as shown (from bits 4.9, 4.3, 3.6, 2.9,
2.3, 1.6) and after the copy the full 36
. iR bit word is cycled left once (in TJ).
TSD T, |- 10B ;| six "TSD TJ" operations will copy a 36 bit
word from Ti to tape and will leave Ea
cycled 5 places to the left.

July 1961

No. 63

PUNCH

2 of 2
MANUAT, CONTROLS:

Buzzer - Sounds when tape is low or jammed.

Buzzer Suppression Switch - Normally to the left
(i.e., Unsuppressed.)

Maintenance Switech - "On Maintenance' is to the
right.

Tape Feed Pushbutton -~ There is a 5 sec. delay
before tape is fed. (Button must be held down.)

Alarm Indicator Light (Low Tape, or Tape Jam)

Maintenance Indicator Light

i 3 Punch Reeler
-___________‘—-—h-Reeler Control Arm - DNormally operated by the
tape as it is being reeled but can be moved
Reeler 3witch up by hand to energize the reeler brake when
needed.

"Chad" Basket

Punch Motor Switch - Normally up -
(For use on Maintenance mode only.)

TAPE DIAGRAM:

Outside Inside

Last

|
1o[1fofo]o] msp

First

Normal Mode - TSD |6 7]1 o]0 1]3 o2 2]o 6]

(Read toward the - =— 7]

Tth. hole - i.e., | =
from inside to

outside edge.) Tth

Hole Punch

Assembly mode - (Read from bottom
to top, inside to outside.)

July 1961

No. 65, 66
LINCOLN WRITER No. 71, 72
1 of 2

LINCOLN WRITER
NOTE: Two Lincoln Writers can be ON LINE at once - "65, 66" or "71, 72"
REFERENCE: Group Report 51-8 (6 October 1959)

DESCRIPTION:
The Lincoln Writer Input consists of a double keyboard with automatic case change and
a Soroban mechanical tape reader. They are interlocked so that only one can be used at
a time - the keyboard is inactive while the reader is running. The Output is an IBM
electric typewriter and a Friden paper tape punch.

Manual controls on the Lincoln Writer permit on-line or off-line use and seemingly
both at once. The simplest connection for coding is "pure on-line" i.e., keyboard and

reader connected to the computer alone - not to punch or writer.

In this "pure on-line"mode, there are no timing considerations that can cause trouble.
TSD operations can be written without regard to the elapsed time between them. The only
complication that must be remembered is that "carriage return" resets the keyboard to

"lower case" and "normal script" without transmitting any case or script code.

Note also that a "carriage return" sent to the writer via TSD using Sequence # 66 or T2
will alsc affect the KEYBOARD'S automatic case memory in same manner. The Lincoln Writer
input is not completely independent of its output! The situation becomes more complex when
the keyboard is connected to writer and/or punch as well. These complex cases are to be

discussed later in a supplement.
Automatic case codes are generated whenever the user changes from one keyboard to

another. The key will remain locked down until two TSD operations have been performed -

the first to accept the case code and the second for the character itself.

July 1961

o0

01

02

03

04

05

06

o7

10

11

13

14

15

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

27

TX=2 LINCOLN WRITER CODES

o0
READ IN
BEGIN
NO

YES

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

7z

CAR RETURN
TAB

BACK SPACE
COLOR BLACK
SUPER

NORMAL

SUB

COLOR RED
SPACE

WORD EXAM
LINE FEED DOWN
LINE FEED UP
LOWER CASE
UPPER CASE
STOP

NULLIFY

No. 65, 66
2 of 2

July 1961

No 65 and/or No. T1

LW INPUT
KEYBOARD
OPERATIONS:
10565 30000 CONNECT This instruction selects the keyboard.
KEYBOARD Pressing a key will now raise FLAG 65 (or T1)

(T0s;, 30000

S oLliEE GErh) if the keyboard is connected to the

computer through the Lincoln Writer

manual controls.

TSD copies the code number of the
depressed key into T Permutation

i
TS0 TJ Eﬂ D:l::!- TJ may be used, quarter one must be

oR | ‘ ’ active. The key is released after the

copy. If an automatic code for case
“rso T 108

E] 65| change (75 to UPPER, T4 to LOWER) was
generated, the key will be released by

the second TSD.

MANUAL CONTROLS

1. The reader must be started by hand via the "start reader" pushbutton. It will then
read the line at the read station, advance one line, and wait for the datum to be
accepted (presumably via TSD). The keyboard is inactivated while the reader is on.
"STOP Reader" will re-activate the keyboard Maximum speed is 19 lines/sec and if the
keyboard is connected to the computer alone, it can be programmed to run as slowly as
desired.

2. Other manual controls are more or less self-explanatory and are well covered in Group
Report 51-8.

3. Only the six bits (1.1 - 1.6) corresponding to the buffer are changed by TSD.

July 1961

No. 66 and/or No. 72
LINCOLN WRITER OUTPUT

TYPEWRITER OUTPUT

OPERATIONS
10866 30000 SELECT This operation selects the output of the
(Unit 1) (CONNECT) Iincoln Writer - Typewriter and/or Punch.
0s_, 30000 FLAG 66 (or T2) is raised if (and only if)
(Unit 2) the unit was unselected prior to the

instruction.

TSD copies 6 bits from Tj to the Lincoln

TSD T, |e [::][::I:::[::] T Writer, where it is printed and/or punched
J

depending on manual controls. The Buffer
oR | | l remains busy until the printing or punching
TsD T, 10B. . | is over and at that time FLAG 66 (or 72) is
raised Permutation may be used and quarter

cne should be active.

1-&|

-l

MANUAL CONTROL

1. See Group Report 51-8 for details.

2. "Computer Output" should be switched to "Punch" and/or "Writer".

NOTES: 1. Carriage Return (Code #60) not only returns the carriage and advances the paper, but
it also resets the Lincoln Writer to Lowercase and Normal Script. The Keyboard case
relay is changed too. (In this respect, the keyboard and writer are not independent
devices.)

2. Certain character codes (1k, 15,15 17,71,76 77) do not print. (They are labeled on
the keyboard as "WORD EXAM", IN", etc.) When such a code is sent to the
WRITER, it is accepted, and takes about the same time as a regular character, but
nothing is printed.

July 1961

No. TS
MISC. QUTPUT
1of 2
MISCELLANEQUS QUTPUTS

Nine one-bit computer controlled relay contacts with G.R. Terminals are provided.
Charmel No. 9 has an high speed output as well. The nine bit word can be shifted left (ring
or open) under manual control at a 500 KC rate if only high speed output is regquired or at

200 cycles per second if the relay contacts are to be sensed. TSD is not used. (It will not

eycle the memory word, but it will DISMISS if no "hold" is used, and it will change E as if

it were a °LDE operation.)

OPERATIONS

IC!'S?5 30 000 Clear The nine output channels are set to correspond
i 001 SET 1.1 to quarter 1 (the righthand nine bits) of the
! 002 uoy.p instruction. I0S ; 30000 therefore clears all
" ook .5 nine - 10575 30777 sets all nine.
u 010 "o1l.k
i 020 " 1.5 There is no raise flag indication. It may be
" oo "1 assumed that the relay has changed after 2 milli-
" 100 noq7 seconds. The high speed output "MOM-9" will change
" 200 "o1.8 before the instruction is over.#*
" koo il

*Note: Changing bit 1.9 from "1" to "0" produces a standard TX-2 IN-OUT transition (-3 V
to ground) at "MOM-9". Going from "0" to "1" produces a similar transition from
ground to -3. The rise-fall time for these transitions is less than 0.2 micro-
seconds.

MANUAL CONTROLS

| ——————— Relay Contact Terminals

Shift Control

Maintenance Switch

i D Test Pushbutton - Sets relays to correspond
MOM-9" OQutput to the Toggle Reset Register.

Shift-rate Inputs and Input Toggle Reset Register
Selector Switch

November 1961

No. 75

RELAY CONTACTS MISC. OUTPUT

2 of 2
C. P. Clare High Speed Relay - HGS - 1009 - Make before break.

Up to 1/ amp non-inductive load.
Up to 1 amp reactive load with suppressor only. (Plug-in suppressors are available.)

Cycle rate approximately 500 cycles - 2 millisec. period.

SHIFT CONTROL

1. Ring Shift Left
2. Open End Shift Left (all nine, 1.9 is not a sign bit.)
3. No shift

SHIFT INPUT' SELECTOR

The shift rate is determined by the external shift input which may be a sinewave or a
pulse train. The shift input selector is a toggle switch which should be thrown toward the
source used - up for "SINE", down for "PULSE".

SINE WAVE INPUT

A 15V EMS sine wave is required (e.g. CR Oscillator 1304). Maximum rate 500 KC for
High Speed ("MOM-9") output, 500 cycles for relay output. Each cycle produces a cne bit
shift if "SHIFT CONTROL"™ is in position 1 or 2.

PULSE SHIFT INPUT

A standard TX-2 Inout Transition (-3 to CGnd) is required. It gives a one bit shift if
"SHIFT CONTROL" is in position 1 or 2. Maximum rate: 500 KC for High Speed Output (MOM-G),
500 cycles for relay output. "MOM-9" should NOT be used to trigger the shift, for it may
not change bit 1.9 or 1.1. (It would shift the others reliably.)

NOTE:

1. The shift and pushbutton inputs are not interlocked and can interfere with programmed
use. Miscellaneous inputs can be used to synchronize the program and the shift input

in use.

November 1961

TX-2 HANDBOOK
CHAPTER 5
LIGHTS AWD BUTTONS

TABLE OF CONTENTS

5-1 Computer Room Iayout . « « « « « & o o Frl = O T I OO < I B P
5-1.1 Freme Contents - Floor Plan (Fig. 5-1) + + + + « « = « v+ s ¢ ¢ s s s &« s« + 52
5-1.2 Fower On-Off Procedures (Fig. 5-2) + = + « + v = v = v o v = v v s v s+ & 53
5:1.:3 Power Alarms - Breakers (Fige 5-3) « « « « o o« o s o« o o « = o s o o 4 o o 523
5-1.4 Air Conditioning « « o + + o v v 4 v w4 e e v e e e e e e e e e 5ab

5-2 Console Indicator Lights (Fig. 5-4) . . « « v v v v o v v v v o v w v s siow o @ e Beg
5-2.1 Primary Indicators . . . - . « « ¢« o o o o 0 o0 0L s Lt s s e . . 525

(A, B, C, D, B, K, P& N, Q & N, NJ&X, FA & F)
5-2.2 ATeme (THE. 5-5Yr0 o0 o w e s, o & m ie mioer mom m o e s s s g e w o ow oo Beld
5-2.3 IN-O0T Tndicabore (Mg 5-8)uw o w % % #08 & & % W Wi § » % % W0 @ 8 ¥ e ke Bl

523 Console Pushbuttons (FiZ. 5-5) + + « 4 + + &+ + + s « # + v+ s s 2 s v+ s s & = + 4 « 516

5-3.1 Condition Buttons: (With Lights - "Out" is normal) - - + + + + « + « » . . 5-16

Suppress Memory - U, T, 8
No Overlap
Stop Conditions
Pasofa - (Preset and Start over from Alarm)
Auto Start
Low Speed Repeat
Low Speed Pushbutton
Remote TSP
Suppress Chime
5-3.2 Action Buttons (Fig. 5-5) + + = + = « + « + + + + v v o v e 4 w4 5-18
Staop
Preset
Clear Alarms, Clear Real Time Clock
Calaco (Clear Alarms and Continue)
Codabo (Count Down and Blast Off)
5-3.4 Miscellanecus Console Items + « « s & & o s & & & & & & o« s s 4 o « + « » 5220
Audio Control (Fig. 5-8)
Knob Register - 377620
External Register - 3?7621

5-4 TE-2 Sync System (Fig. 5-9) « + = + v ¢ s s 0 b st e 4 e s e s wa e e SR -
5-5 Miscellanecus Conventions + » « = « = » o+ o+ v o s v v 0 v 0 v e v e e eow e e 525
5-5.1 Paper Tape Read-in Programs + + + ¢ + =+ + = + + & s o+ s + s s = « + + « 5225
5-5.2 Paper Tape Read-in Programs - Listings - « + ¢« « o « 4 ¢ & o o o & P 5-26
5-5.3 Tape Preparabion « « + » + & s = © s s ¢ ¢ s s ¢ s s s v v s s 4o+ o v+« 528

November 1963 5-1

5-1 The Computer Room

POWER
—_—
aN-DBFF
COMPUTER
SWITCH

AR
COMDIT,
CONTROL

AlR
COMNDITION

FZ
IN-OUT SWITCH Jué T |THIN | CoNTROL |ARITH.ELEMENT A I t P
£ E|Fim < B g
coom B COMSOLE ?\
LIGHTS O |BM TAPE ROGM LIGHTS
O =5 B wesssc],
- ROOM INCIDENT <
@ @ TEMEEE CAMERA i
TX=2 @ W
TAPE [PLUGBOARD
& = MEMORY PETR
@ : PUNCH
- S
3
i~
*
“S% MEMORY F AEROX
5.&.[@ D.P.P. o ROOM E
STACK Ol : :] o LiGHTS LwW-2
TEMP. 3 | Tare !
2 | cam.
o L__._. PLUGROGARD
l Orack

BENCH

SPARE PLUGINS

| |mzs .lNQMMNTEN&HCEl 24|
DESK

€

| AIR DUCT

SPARE PLUG-INS I

ENTRAMCE
A-034

5

X

ENTRANCE
ADZE

Fig. 5-1, TX-2 Floor Plan - March 1963

5-1.1 Frame Contents - Floor Plan
F1 - Console - See Figure 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9
F2 - Main Frame
B - Arithmetic Element, and E Register

C - Control, X Memory, P, Q, M, and N Registers

F3

F5

F7
8

- Uand T Memories
- IN-QUT Switeh

{72 T v IR R > B

Memory Stack

Memory Register Selection Cireuits

- Sequence Control, Thin Film Memory

5 Memory Digit Plane Drivers and Sense Amplifiers

LOCKED DOORS

TX-2 Mag Tape Drivers and Timing Track Writing Equipment
IBM Tape Control, TX-2 Tape Control, Plotter Control , TX-2 Power
Lincoln Writer Controls, Of Clock, Display Box, Misc. Inputs Box,

Speech Filters

Plugboards, Datrac, Interval Timer, Misc. Input, Mise. Output, Ampex

Mag Tape

5=-1.2 Power ON-OFF Procedures

C
L3 &
L <14 w
s &
(‘
©
©
L4
£
L 9
£ : "
C

Fig. 5-2 - Power Panel (in the Power Room)

Power On:

Hold the button in until the warning horn stops. The computer will

be "ready" in about 1 1/2 minutes. PRun "clear memory" once or twice
with parity alarms suppressed. Un-suppress the alarms. the computer
should be ready for use. Log the time. (Fig. 5-3) Turn on the Lincoln

Writer(s), and the IEM Tape Units. (They have their own power switches.)

Power Off:
Be sure TX-2 tape is at "MAT 0000", before pushing "OFF" button. Log

the time. (Fig. 5-3) Turn off the Lincoln Writer(s), and IBM Tape Units.

5-1.3 Power Alarms - Breakers

T AF—__‘ﬂ—___,,_———Circuit Breaker Indicators

"Time" to be logged

——
RS
safassanayos

Marginal| Bl)
Checking = ss«»
Console

m m - e — Power Meters

eessamann

L Register 377621

? (External Input Register)
?l.ii.li.l.l L] I . I 1 /

2 00 of
i. 5 = :J.-ﬁcuyt-a' | ‘

—
wes

pew
insfonsnanna
e

sisssssss

Fig. 5-3 - Maintenance Conscle

The cirecuit breakers are located at the top of each frame. When a breaker
"ets go", a horn sounds and a light comes on at the breaker panel and at the power

panel on the console. The accepted procedure is as follows:

Frame: What to do: If that fails:

S, Tor UMemory : F2, 3, 4, or 5 a) Dump Power Call for help.
b) Reset the breaker
¢) Bring Power On

Computer Frames: Reset Breaker Call for help.

IN-OUT Equipment Reset Breaker Call for help -
Set Maintenance Switch
on Breaker Panel and

do not use failing unit.

In any event, log the incident stating the time it occurred, which breaker it

was, and what was done.

5-1.% Air Conditioning
There is a room temperature thermometer on the column at frame 9. It
usually reads about TOOF. There are two thermometers for the 5 Memory Stack.
One is behind the stack, the other is in the power room. The power room meters

should read as follows: (They are to the left as you enter from the computer roor.)

NORMAL CALL for HELP DUMP POWER
Memory Stack 60 - TO T2 or more 75 or more
"MIXED AIR" 48 - 58 75 or more 80 or more

5-4 November 1963

5-2.1 Primary Indicators

The

each. - The least si

Registers A, B, C, D, E, K

These indicators always show the contents of the associated flip-flop registers.
(K shows the sequence number last used. - See Chapter 4.) They are not affected
by alarms or pushbuttons. The overflow indicators are just above A,
PK Indicators
PKa and PKﬁ are of interest for the most part to the Technicians. They show
the PKl.PKE’ and PK3 timing levels. PKh, Pch, and PKép show the hold bit,
configuration bits, and Operation Code of the instruction whose read out cycle is
in progress.
9K Indicators
QKa and QKE show the QK timing levels. Qch and QKop show the configuration
read from F Memory and the last operation that required a data reference. QKEf
is also used to remember the original Index Register Number on deferred address
cycles. (The original Index Register is used last.)
AK Indicators
AKa and ﬁKﬁ show the AK timing levels. (There is an indicator for esach level.

Ach and ﬂKbP show the configuration (minus permutation) Operation Code of the last

Arithmetic Operation.

ASK - The Arithmetic Step Counter
ASK is used to count steps for Arithmetic Operations such as Multiply, Telly, and
Divide which are different for different word lengths.

AWK - The X Memory Counter

KWK sets the timing levels for the writing of the Index Registers.
CSK - The Change Seguence Counter
CSK sets the timing levels for a Change of Sequence, (CSK 5 lo(octal) are the
steps that indicates LIMBO.)
Memory Indicators - Interlocks
Most of these are not of interest to programmers. The L, PIE’ PI3’ PI5’ and
DFA are of use in interpreting N (see page 5-10). PI2 indicates a defer cycle is

in progress. DFA indicates completion of a defer cyele.

5-6 Hovember 1963

START-STOP Control - SPR, Start Foint Register

The left half of this indicator shows the start-stop interlocks and is of
interest mainly to Technicians. The right half is the Start Point Register. It
is set by the RESET, STARTOVER, and CODABO pushbuttons and is used to set the P
register when a change to sequence zerc is performed. (see PK2 in the table below.)

Registers P and N

P and I are the selector and buffer for readout of instructions from STUV Memory.
P is also called the "Central Program Counter" and N the '"Instruction Register".
At the start of any instruction, they are, of course, conpatible - P gives the
address of the contents of N. As the instruction is performed, both are changed.
The extent of such change depends on when, in the cycle, the computer was stopped.

There are two indicators to help interpret P. Their use is given below:

Indicators
"POD" "Py1" Contents of P

0 O P gives the address of the last instruction
read out of STUV Memory. (It may have been
changed in N - see PK2 in table on page 5-9.)

o] A P has been indexed, but not yet used for
read out. It gives the address of the next
instruction.

1 o] "PmODified" - P has been changed radically
and probably bears no relation to N. (As by a
Jjump, skip, or sequence change.

i 1 This situation should not occur. Take
a picture of it.

The interpretation of the N register depends upon the type of operation being
performed, and how far the computer has gone before stopping. Instructions require from
one to five basic cycles. The first cycles for one instruction can be overlapped with the
final cycles of the previous instruction and it is therefore possible for two cycles to
be running at the same time. The stop system (stop button, sync system, and slow speed
control) is synchronized so that once a cycle has started, it must proceed to completion.
There are indicators that tell what cycle is next, but one must exercise ingenuity to

determine which one has just finished. The basic cycles are abbreviated as follows:

November 1963 5-7

CSK

Instruction Readout Cycle
(Used by AOP instruction - Instruction Readout followed by Arithmetic

Cycle)

Intermediate Address Cycle (Deferred Addressing)

Final Address Cycle (Deferred Addressing)

Data Reference Cycle

Data Reference followed by Arithmetic Operation Cycle. They are
inseparable, but another QK could start before the AK part is over.

Change Sequence Cycle.

In practice, their order of occurrence depends on the operations being performed and

on overlap conditions.

computer operations.

The table below shows the cycles for the three basic types of

Type Op Code (See Chart 7-3) Cycles Required
0-7 (Jumps and IOS) PK,
i i
b, b6, b With deferred address PK, , PK, , PI«(3
10 - 57 (Non AE, Non Jump) PI'{‘1 , QK
2 (but not
L, 46, 47) With deferred address FK, , PK‘,2 , PK, 5, QK
(AE operations) PK) QKAK
3 60 - 17
With deferred address PI{l 3 PI{,2 ;, PK,, QKAK

The CSK cycle can occur only at the end of an instruction - i.e., only after PK.l,

PK3, QK, or QKAK - never between PK‘.L and PKQ, nor between Pl(2 and PK

The effect of these cycles on N is as follows:

5-8

3

November 1963

Cycle

Effect on N

This is the initial instruction readout. N will
contain the instruction located at the address indicated
by P.

EXCEPT when the operation is JNX or JPX (codes 6
and 7), for on these two operations the right half of N
is used for the sign extended index increment (18 bits).
(BUT if the JNX or JPX is deferred, the increment is not

added until PK3 so N is not changed during PKl.

The intermediate deferred address cycle (PK2) is
always followed by PK3.
read out into N using Q as the selector. All 36 bits

The intermediate address is

of N are changed, but the initial index register number
was saved (in QKIRCF} to be used last (in the PK3 eycle).

After a PKé cycle, N contains the contents of the
memory register given by @. Bit 2.9 of @ will be 1 due
to the defer bit.

The final deferred address cycle does not do a
memory readout. It is known as the "Ultimate Cycle".
DFA will be set to 1. N is further changed by adding in
the index contents to get the final address. Then the
original NJ bits are restored and the instruction

continues. The rest of N is cleared.

The QK ecycle of all index memory operations and
SKM (all op codes 10-1T7) clears the right half of N.
For RSX, EXX, AUX, and ADX it is subsequently set from
the right half of E which was in turn set from memory
and may have sign extension. ADX puts the augend from
memory there. The next PK cycle can not be overlapped
with the QK cycle of these operations.

QKAK does not change N

CSK

The change sequence cycle always changes NJ to the
old sequence number.

If the new number is zerc, the right helf of N is
set to the contents of SPR (Start Point Register). The
rest of N is not changed by CSK.

CSK must be followed by PKl'

November 1963

"Control" does not really care sbout what has been done. It is interested only in
what it is allowed to do. Once it has started a cycle, it goes merrily on to completion,
but before starting cone, it must get past a number of interlocks, one of which 1s the
start-stop system. We can therefore tell what cycle is about to start and with that
information, together with a program manuscript, the P register, and the P + 1 and POD
indicators, we should be able to deduce where it stopped, and therefore what is in N.
The conditions for starting are foretold by indicators PI

17 PIQ, PI3’ PI5, and DFA as
follows:

"Interlock Indicators" Next Cycle Stopped
Pl[l P12 PI3 PI5 DFA is After
o] 0] 0 X H{l i
0 1 Q 1 [0} PK]_
0 1 o] 0 0] PI(3 PKE
0 0 0 0 1 PK3 or QK, C8SK
0 4] 1 0 X CSK ?
1 0 0 0 X QK or QKAK ?
Note: "X" means "It can be Q0 or 1, it does not matter.”

"¢" means "Any cycle but PKE".

Registers Q and M
Except for defer cycles, @ and M are the selector and buffer for data references to

STUV memory. The memory references for deferred intermediate addresses use Q as the

selector and I as the buffer (Cyecles FK, eand PK3).

Indicators NJ. and X

The NJ lights are copies of the index teg bits of N (bits 3.6 - '3.1). The X register
is the index memory buffer. N 3 and X will always be compatible, for the X memory is

read out even if it is not used.

Registers FA and F

FA and F are the selector (F Address) and buffer for the Configuration Memory. They

are always compatible.

5-10 November 1963

5-2.2 Alarms

Fig. 5-5, - Alarms, Conditions and Action Pushbuttons

The top row of pushbutton indicators in Fig. 5-5 above is used for the ten TX-2
Alarms, two special indicators, and the Sync System (Section 5-4). All of the alarms
except TSAL, USAL, and the "Mousetrap” can be suppressed by pushing the indicator. These
pushbuttons have two lights each. The upper light indicates the alarm, the lower light
shows that it is suppressed. Suppression of an alarm merely keeps it from stopping the
computer. In the case of parity alarms, the suppression allows the computer to use the
incorrect information and a new, presumably correct, parity is computed and stored. The
light will always come on. The chime must be suppressed separately if not wanted. (see
5-3.1 for chime details.) "MISAL" - the Missed Information Alarm - can also raise flag
41 (In Out Alarms). See Chapter 4, Section 5.

Detailed information on each alarm is given in the table below:

ATARM HAFFENS DURING - WHAT
HAVE CAUSE COMPUTER CYCLE TC DO
Parity Alarm on readout of Take a picture.
data from STUV Memory into the M QK or Report failing bit and
R Register. Q gives the address of QKAK whether it was "dropped"
STUV Memory register. This alamm or "picked up". (if
can not be programmed. you know what should

have been read out.)

Try again.
Parity Alarm on readout of Teke a picture.
instruction into W (loeation given PKl Report failing bit as
NPAL by P), or on readout of deferred — "drop out" or '"pick -
intermediate address into W up'. Try again, alarm
(location given by Q). Pﬁé not programmable.
** Because of overlap, another cycle may be running concurrently and the computer will

continue until both are completed.

November 1963 5-11

ALARM HAPPENS DURING WHAT
NAME CAUSE COMFUTER CYCLE TO DO
Parity alarm on readout of Take a picture.
XPAL index register into X. Nj tells Any Repert failing bit as
which index register. This alarm Cycle "dropout" or "pickup"
can not be programmed. if you can. Try again.
Parity alarm on readout PKl Take a picture.
FEAL from F Memory (configuration) into QK Report failing bit as
the F register. FA tells vhich F or QKAK dropout” or "pickup".
memory register. Try again.
Check your pro-
gram, this alarm can
P register is set to an Iﬁi be programmed. If
FSAL illegal address. cSK machine malfunction
is suspected, take a
picture and try again.
Q register is set to an Eﬂé, Check your pro-
illegal address - either a data QK; or gram. This alarm can
REbL reference or a deferred address. QAKX hel programung pag Ig
Check chart on page 5-10. not likely to be a
machine malfunction.
Operation Selection Alarm:
OCSAL An illegal instruction was readout PKl Check the program.
into N. Take a picture.
In Out Alarm: This happens Check the device
on an I0OS instruction. The selected you are selecting or
I0SAL device is either broken, on "main- PKl the indicator panel.

tenance", or non-existent. The IOS

has had no affect, even if the alarm

was suppressed. The Nj indicators

should tell what unit was selected.

The in out device is
probably on "mainten-

ance'. Unless there
is a "hands off" sign,
throw the maintenance
switeh down (i.e., not
maintenance) and try

again.

#% Because of overlap, another cycle may be running concurrently and the computer will

continue until both are completed.

5-12

November 1963

ATARM HAPFENS DURING** WHAT
NAME CAUSE COMFUTER CYCLE TO IO
Missed Information Alarm: Probably program
This occurs when the program is too trouble. Can happen
slow for the in-out device, and a with PETR, TX-2 Mag Tape,
MISAL nev datum or output opportunity has Any A/D Converter, or IBM
come along before the last was used. Time Mag Tape. Take a picture.
MISAL is automatically suppressed if
sequence 41 (in Out Alarms) is
connected.
The T memory selection currents Any Take a picture,
have not died cut before a new Cycle report that it Happened,
TSAL register selection was demanded. Except and hope it will go
(T memory is 200,000 to 207,777) CSK away. It can not be
programmed or suppressed.
Same as TSAL, but for the U Any cycle
USAL Memory. (210,000 - 217,77T) except CSK Same as for TSAL.
This is an extra alarm
designed to trap any mouse that may
be causing computer trouble. It
Mouse- will be set differently from time Any cycle beme 48 for TEAL - USAL.
trap to time. As of now, it is set to
catch g missed control pulse.
The following indicators are not true alarms.
A non-standard priority plug- Replace the
Priority board is in use. (The stendard It doesn't standard plugboard at
Fatch priority is consecutive numerical happen - it Frame 2, Bay D.
Indicator | order--lowest number having highest exists.
priority.)
The computer is rumning, but Tt doesn't For most inter-
all selected sequences are waiting happen - it leaved programs, the
Limbo for a flag. exists. LIMBO light will be on,
for some waiting time is
almost unavoidable. If
the program seems to have
stopped completely, check
the interleaving.
¥ See Footnote on page 5-12.

November 1963

2-13

5-2.3 IN-OUT Indicators

The IN-OUT indicators common to most units -
i.e., "Flag", "Connect", "Status", and "Maintenance" -
are on the main indicator panel - Fig. 5-4 and Fig. 5-6
(to the right). All sequence numbers have a FLAG, but

some have no associated IN-OUT unit and hence no "Connect",

"Status", or "Maintenance" indicators ("F", "C", "S8", and
"M"). The indicators are interpreted as follows: (see

also Chapter U4)

IN-0UT Indicators

INDICATOR MEANTNG

F - FLAG The Flag is up - The associated program will be operated

as soon as priority conditions allow.

C - CONNECT The Associated IN-OUT unit is "connected"; i.e.,

selected for use.

S - STATUS If STATUS = 1 ("ON"), a TSD can be performed. If

STATUS = O ("OFF"), a TSD will have to wait, for the IN-
QUT buffer is still busy processing the last datum.

M - MAINTENANCE If M = 1, the Maintenance Switch (at the unit) is up.

A select instruction (IOS) will cause an IOSAL (IN-OQUT

Select Alarm). The unit can not be connected.

The IN-OUT Buffers and special indicators are on a separate panel shown on next page:

(See Chapter 4 also).

5-14

November 1963

=

Fig. 5-T7 - IN-OUT Buffers and Special Indicators

November 1963 5-15

5-3 Console Pushbuttons

Fig. 5-5, - Alarms, Conditions and Action Pushbuttons

5-3.1 Condition Pushbuttons (Fig. 5-5)

The center row of pushbuttons and some of the bottom row will change the mode of

operation and will light up as an indication that the computer is not in its normal mode.

The table below shows what they do:

No Stop on PKl

NAME FUNCTION

U Memory Off These prevent the program from using the U, 8, or

T Memory Off T memories. When the indicators are ON, a PSAL or

S Memory Off @BSAL will be generated if an attempt is made to
use the suppressed memory.
Overlapped programs will run slower with "NO OVERLAP"

No Overlap on, but the indicator lights - especially N - should
be easier to interpret.

Wo Stop on CSK

No Stop on QK The computer will not stop before the selected

No Stop on FK, cycle(s).

PASOFA
AUTO START

"Preset and Start over from Alarm" and "Auto Start"
are usually used together. Auto Start alone is
equivalent to pushing CATLACO about a second after
the alarm. PASOFA is equivalent to an automatic
CODABO after alarm. (Except that the alarm is not
cleared.) They are used primarily for maintenance

and computer repair.

5-16 November 1963

NAME

FUNCTION

Low Speed Repeat

This circuit inserts a variable delay between the
computer cycles. It operates in conjunction with
the NO STOP buttons (i.e., it does not insert a
delsy before the selected cycle(s)). There can be
no OVERLAP when this mode of operation is used., The
inserted delay (and therefore the effective computer
speed) is controlled by the right-hand switch-knob
at the bottom left corner of the control panel

(Fig. 5-5). (It is labeled L.5.R.)

Low Speed Pushbutton

This circuit inserts a "STOF' before each computer
cycle unless the "NO STOP" buttons are on. There

can be no overlap.

Hold on LSFE

"Hold on Low Speed Pushbutton" - In this mode, all
instructions are treated as if their hold bit were
set. This allows step-by-step operation of a low
priority program without any interruption due to a
change of sequence.

Remote TSP

There is a portable control panel that contains

some of the condition and action buttons and another
18-switch toggle START register. It can be plugged
in at Frames 9, 3, and 2, and also behind the
console. (It contains condition buttons: ILow

Speed Repeat, Low Speed Pushbutton, Remote TSP, the
Sync Stops; and action buttons: CODABO, PRESET,
CALACO, and STOP.

No Chime on SUFFP ALMS
No Chime on SUFP ALMS

SUPP means "not suppressed". The circuits were
designed for two different chimes but only one tone
is commercially available at present. These

condition buttons have no other effect.

November 1963

3-17

5=-3.2 Action Buttons

Fig. 5-5 - Alarms, Conditions and Action Pushbuttons

There are six buttons that actually do something. Their use is outlined in the table

below. No information registers (Memory or AE) are affected. There is no clear memory

button.

BUTTON

FUNCTION

CODABO

"Count Down and Blast Off" - CODABQ is the most
commonly used start button. It is roughly equivalent
to STOP, CLEAR ATARMS, PRESET, STARTOVER, and CALACO
in that order. Tts effect is to clear all flags, preset
all interlocks, and start the computer at the memory
location given by the Toggleswitch Start Register (TSP)
or the remote TSP, if selected. There are 9 CODABO
buttons - 8 for the fixed addresses - 377710 to 377TLT
and the ninth for the two toggle START registers (Console
and Remote). CODABO leaves the SPR (Start Point Register)
set to the chosen starting place.

STOP

"STOP" is synchronized so that the computer will
complete the cycles it has started. Except for start-
stop interlocks, no registers or indicators are directly
affected.

5-18 November 1963

BUTTON

FUNCTION

CALACO

"Clear ALarms and COntinue" - CALACO merely resumes
operation where it left off. If no flags are up, the
computer will go into LIMBQ. The combination of STOP
and CALACO has no effect on a single sequence non-InCut
program, but will probably upset IN-OUT and interleaved

programs because of the timing.

RESET

There are nine BESET buttons - eight of them load
the SRP with the fixed addresses 377710 to 377717.
The ninth loads SRP from the selected Toggle Start
Register (Console or Remote). RESET has NO OTHER EFFECT.
The SEP is, in effect, a partial placekeeper for
sequence zero. If the program raises flag zero, sequence
zero starts at the place indicated by SRP. SRP is not
changed when sequence zero drops out as the other place-
keepers are. It can be changed only by pushbuttons.

STARTOVER

Nine STARTOVER buttons are available. They are
equivalent to RESET plus a "Raise Flag Zero". STOP
followed by STARTOVER will not do much, for STARTOVER
does not start the computer. If the computer is running
or in LIMBO, STARTOVER will be effective for Flag Zero
has priority over all others no matter which priority
plugboard is in use. STARTOVER followed by CALACO is
similar to CODABO, but does not clear the Flags and

interlocks.

There is but one PRESET button. Like RESET, it is
seldom used by programmers. It clears all flags and In-
out "Connect" flip-flops, and sets all interlocks and
indicators to their proper "PRESET" value. This button
is interlocked so that it is ineffective unless the
computer is stopped.

Clear SUFP ALMS

Clear SUPP AIMS

Suppressed Alarms are handled by separate circuits
and a pushbutton is supplied for each type. SUFF means

"not suppressed”.

Clear Real Time
Clock
(Reg. 377630)

The Real Time Clock is indexed automatiecally every
10 microseconds. It will clear itself every 7.6 days or
so if it is left alone. (The toggle switch to the right
of the indicator turns the indicator lights off but has
no effect on the Clock Register.)

November 1963

5-3.4 Miscellanecus Console Items:
Audio Controls

Selector Switch
e -]

& 'l.*.b ®

Mike Input

Mike Level Adj.

Fig. 5-8 - Audio Controls

For the convenience in trouble-shooting, to reassure users that the machine is running,

and to further the progress of research, TX-2 has been made audible via two separate,
independent, and identical Audio Systems. The Selector switches have ten positions, five

of which are currently in use and wired as follows:

1. Guarter 1 of the X Register (Analog signal decoded from indicator
Circuit.)

2. Quarter 2 of the X Register (Analog signal decoded from indicator
Circuit.)

3. Vertical Display Decoder (Sequence 60)

k. Horizontal Display Decoder (Sequence 60)
= The Patch Panel at Frame 9.
The inside knob of the selector switch is the main volume contrel. The micropheone input is
mixed in at all selector settings and has its own level control.
Knob Register - (377620)

Register 377620 - The Kncb Register -~ also called the "Shaft Encoded" Register is
located just below display #l. It is similar to a toggle register except that it is set
by four knobs - one for each quarter. The metabit is a lighted pushbutton switch. (Eight
revolutions cover the range 000-T7T.)

External Input Register - 377621)

Register 377621 - The External Input Register - is a set of four plugs just to the
right of the marginal check panel (Fig. 5-3). There exists a box with 37 pushbuttons
intended for use with (or as) the external register. These pushbuttons are directly

analogous to toggles except they must be held down if they are te stay a "1". (Unlike the
keyboard, any number may be down together.)

Note: Contact bounce is about the same as the toggle contact bounce - a delay

of 10 ms allows a small safety factor.

Clock Register - (377630)

Register 377630 is a 36-bit counter indexed every 10 microseconds by an external
oscillator. It can be cleared by pushbutton (Fig. 5-5), but not by a programmed
instruction (such as STA or DFX).

5-20

5-4 TX-2 Synec System
The Sync System produces an
output signal when certain manually
preselected conditions are met.
9 For exsmple:
a) When (or if) the progrem gets
- to a prespecified memory
location. (i.e., [P] = preset

- value)

; _ 3 : b) When a certain memory register
| ; - s © is used for date or deferred

address. (i.e., [Q] = preset

value)
L1 b 4 # & 8 & &4 & B & &
» e B 48w ¥ c) When a certain operation is
L LB IR SN T A S L used. (i.e., [PKop] = preset
2 value)
s 3 . & s 8 & 68)
% T s b d) When a certain segquence
& @ « 8 S &6 & 0P number is used.
[v . & & 8
» - & # & & & L
. & FE Certain combinations are
possible. The output can be
- w W s w4 switched to any or all of the
& & &b LA B “« & @ following:
> 5 s @ @ ® & 3 08 '
Fig. 5-9 - TH-2 Sync System
OUTPUT SWITCH LOCATION COMMENT
Stop on SYAL # Top Row Pushbuttons There are two alarms
(Fig. 5-5) and two condition selectors,
Stop on SYAL #2 Right next to SYAL 1 but only one set of condition
parameter switches.
Signal to Sync On Sync Panel Uses for scope sync
Jacks (Fig 5-9 above) during computer repair and
maintenance.
Raise Flag 42 Bottom Row Pushbuttons See Chapter 4 - Trap
(trap sequence) (Fig. 5-5) Sequence. This button over-
rides other trap modes.
Synec Stop to Top Row Pushbuttons Used mainly for mainten-
Arithmetic Element (Fig. 5-5) ance to Stop AE operations
within a cyecle.

November 1963 5-21

Figure 5-9 shows the two SYNC SYSTEM panels. The lower panel contains the Sync
Parameter Switches; the upper panel the Sync Condition Selecting Switches and the output-
to-8ync jacks pushbutton switches.

Parameter Switches

There is but one set of switches for each parameter even though there are two sets
of selectors. The parameter switches are laid out in four major rows:
TNSTRUCTION (K, W)

CHANGE SEQUENCE COUNTER, and INSTRUCTION LOCATION (CSK, P)
DATA CYCLE (ex , Q)

ARTTHMETIC CYCLE (AK)

Each parameter set is grouped, like the indicators (see Fig. 5-l, and Section 5-2.1)
in columns of 3 for Octal interpretation. The least significant bit is at the bottom.

Condition Selector Switches
There are two SYnc stop Alarms (SYAL 1 and SYAL 2). These are controlled by two
"GATES" (Gate 1 and Gate 2). The "GATES" are controlled by two sets of condition switches -

32 switches each. Either gate or both can supply ocutput pulses to the sync jacks or stop
circuits. (Only the alarm indicators are separate.) ALL the selected conditions must be
met for the output to be generated. (The GATES are AND circuits.)

The conditions available are described below:

CONDITION COMMENT

See upper left corner - Fig. 5-9. Pﬁx refers to
the 32 possible time steps (levels) of the PK cycle
counter and therefore determines when the syne signal
PK& will be generated. A setting of 16(oct} is recommended,
for it provides a definite time to stop, and is used by
all instructions. P&a is recommended when any of the

"P"-type conditions are used.

This compares the PKOp Parameter switch setting
PKOP with the operation most recently read out of memory.
(Bits 4.3 to 3.7)

This compares the configuration switch setting with

Pch the configuration bits most recently read out. (Bits
4.8 to b k)
PKh "h" refers to the hold bit of the instruction most

recently read out. (Bit L.9)

5-22 Novenber 1963

CONDITICHN CCMMENT

*
P P refers, of course, to the P register. The

Parameter switches are in the second major row.

This condition allows selection of the time step
when the sync pulse is generated. A setting of 2 is
Q%m recommended. QKG and Pﬁx should not be used concur-
rently unless a particular type of overlap condition is
sought.

This set looks for a particular operation, Just as
does PKop , but only those instruections that require a
data reference will ever get into QKOP . (The QKop
op indicator lights are at the left - Fig. 5-4%. They are
sometimes helpful in debugging, for they tell what

operation made the last datsa reference.)

Q is used for intermediate deferred addresses as
well as data references, but these two can be separated
Q somewhat via QK&. With @ sand QER selected, the sync
output will occur only for data references since the

FK counter is used for the defer cycles.

The circuitry is able to detect set metabits on
instructions but not zero metabits. If the parameter
Nh'lo switch is down and the selector switch is up, no sync

pulse can be generated for the gate in use.

'10) can be detected

The data reference metabit (ML
%10 trove). Note that it can

be changed without & memory reference for it serves as

only when set (just as N

My'lo the metabit of the A, B, C, D, and E registers. (i.e.,

MKC), 1o A or MKC) ,, B will change bit L,10 of M.

”NJ" refers to the "j" bits of the N register and

b hence to the index register in use, or to the bit selection

of an SKM operation.

¥ If the instruction that has been interrupted used a deferred address, CALACO will not
continmue the program until the third time it is used. (Since P is not changed until the
last moment, a Sync Stop occurs during the intermediate cycle, and again during the
"iltimate" cycle.)

November 1963 5-23

CONDITION COMMENT
"Aga" is the Arithmetie Instruction Time Level
counter. There is cne switch for each level (it there-
AK& fore mekes little sense to have more than one up). The
recommended setting is OFF - it is mainly for mainténance
use.
”EKOP" is a 6-bit register that holds the most
AKop recent arithmetic operation (code values are all above
57). Tt is not changed until another arithmetic opera-
tion is performed.
ASK is a T-bit counter used for arithmetic opera-
ASK tions that require repetitive steps - for example,

multiply and divide. It clicks along during shifts and
cycles, but is not used.

XE 9 is the sign bit of the X memory buffer. It
can be used, for example, to detect completion of a JNX
or JPX loop.

N2 1 is the right half of the N register. It is
3

especially useful for detecting a jump to a specified

location.

K holds the current sequence number., It is often

useful in conjunction with CSK below.

CSK - The Change Sequence Counter - will remain

zero until & change of sequence occurs. A setting of
10 (CSKh = 1) detects a change into LIMBO, a setting of
1 is recommended if K is used for the 0ld Sequence;

a setting of 6 if K is to be set to the New Sequence.
In either case, the CSK cycle will be completed before
the computer stops.

B, C, D,
F, Mr, IOI

These letters refer to open cables at Bays B, C, F,
of Frame 2, the Mag Tape Frames (F6, 7, 8), and Frame 9
(I0I). They are used by the maintenance technicians for

special conditions cooked up as the need arises.

5.0l November 1963

5-5 Miscellaneous Conventions

5-5.1 Paper Tape Read-in Programs -

3
Plugboard Memory (377740 - 377777} contains three standard programs. They are as

follows:

CODAEQ
POINT

NAME OF
PROGRAM

COMMENT

37TTT0(g)

"Clear Memory"
or

"Smear Memory"

All of 5,T, and U Memory is set to +0 in
the Left Half word and each register's own
location in the right. Metabits are not
changed. This program proceeds automatically
to 377750 - Set Standard Config - and then to
377760 - Read in Reader Leader. (See below.)

377730
(8)

Set Configuration

A1]1 of F Memory is set to the standard
configurations and the program proceeds auto-
matically to 377760 - Read in Reader Leader

3?7760(8)

Read In

This program reads the first 21 words
from paper tape into registers 3 through 24 of
S Memory, and then goes to register 3. A1l
binary tapes start with the "Reader Leader”,
a block of 21 words that is the TX-2 Read in
Program. The TX-2 Read-in program will read
any standard binary block and check the sum-
check at the end. (If the check fails, the
program tries again.) The meta-bit of each
word being stored is cleared. See listings
below. See Section 6-3.4, page 6-23 for
Binary Format.

* There are two plugboards: Plugboard "B" -

registers 377760 to 377777-

November 1963

registers 377740 to 377757, and Plugboard "A" -

5-25

2-3.2

Program Listings (continued)

"READER LEADER"

TX-2 Paper Tape Input Program [For Binary Format]

LOCATION

[=]

Lo T I T I L
[~

-

L R -
S N & A W N

NN N R R NN
N e ot A WoN =

*
INSTRUCTION

kJPX5‘3?7760

lJNXSGS???GO

14,pq 27
2
1szb”woou
RSXS?S
ATSD ©
36
) Jsz?zz
g“xss°
: AUX 0
STE 16
1s
BPQS4O

1
Iosszzoooo

NUMERICAL FORM

{OCTAL)
00000 000000
go00000 cooo0o01
000000 ocoo002
011154 coo000Ss5
360554 000020
421153 oo0o000
013000 ooo0011
360554 ocooo17
402000 cooo00
003053 000034
410753 ooooo7
360554 000020
400656 377760
400756 377760
140500 o00027
021712 400011
011157 000003
405700 Q00000
360657 oooo02]
011056 o00000
421056 000000
013000 000016
150554 g0Q000
010452 020000

% Registers 0, 1, and 2 are not part of the Reader Leader itself, but are used as

temporary storage.

5-26

November 1963

5-5.2 Program Listings*
PLUGBOARD PROGRAMS
NUMERICAL FORM
LOCATION INSTRUCTICH (OCTAL)
377740 760,342, ,340,000 760342 340000
377741 410,763, 762,761 410763 762761
377742 160,142,,140,411 160142 140411
377743 202,163,,162,161 202163 162161
377744 732,232,,250,200 732232 230200
377745 605,731 ,,730,733 605731 730733
377746 320,670,,750,600 320670 750600
377747 604,331,,330,333 604331 330333
377750 SPG 377740 002200 377740
377751 4SPG 377741 042200 377741
377752 JUSPG 377742 102200 377742 ?
377753 34SPG 377743 142200 377743 ;
377754 zr"SPE; 377744 202200 377744 E
377755 24SPG 377745 242200 377745 ,§
377756 SOSPG 377746 302200 377746 a
377757 4spg 377747 342200 377747
377760 1SKK5‘23 011254 000023
377761 REX,,377763 001252 377763 -
377762 211055230105 210452 030106 E
377763 REX, 5 001253 000005 =2
377764 ATSD_ 26 405754 000026 §
377765 hssJszssrrrsa 760653 377764 .%
377766 h‘Jnx545?7?as 410754 377763 ™
377767 J#JPQ 3 140500 000003
377770 REX, 207777 001277 207777
377771 DPK???7???S 0gl677 777776
577772 14,pQ 377773 140500 377773
377773 REX 777610 001200 777610
577774 hstPX?73?777: 760677 377771
377775 JOSKN4.12377744 301712 377744
377776 77,,0 0g00077 000000
377777 IﬁJPQ 377750 140500 377750

The X Memory is not changed, but each register is "exercised" to remove possible
APAT, alarms.

November 1963

5-a7

Tape Preparation

(See Group Report 51-8, dated 6 October 1959)

An abbreviated manuscript and associated tape is shown below:

This end is inside the reel.
A yard or so of blank tape
is sufficient to reach the

reeler.

V'Fnd Mark" - i.e. code T3

(without seventh hole.)

About 2 inches for convenience
Initial Carriage Return

CRCIC R BN R R R R R BN R R R

Initial Carrisge Return

**TEST
LDA GG,
ADD FT,

Manuscript

Final Carriage Return

L1 L]
LL L}

(AR R R T N R R RN N T N RN R R R

o

About 2 inches for convenience

L]
[]

STOP CODE - 76 With a Tth hole

About a foot of blank tape for
protection. This is the outside

end of the reel.

B5-20

TX-2 USERS HANDEOOK
CHAPTER 6 - TX-2 UTILITY SYSTEM

TAELE OF CONTENTS

6-1 INTRODUCTION - TYPICAL USE OF Mb ASSEMBLY PROGRAM

6-1.1
6-1.2
6-1.3

MAWUSCRIPT, DIRECTIVE, LISTING
META LANGUAGE
MACRO INSTRUCTIONS

6-2 Mhb PROGRAMMING LANGUAGE

6-2.1
6-2.
6-2.
6-2.
6-2.
6-2.
6-2.
6-2.

o =] On 1 £ w m

INSTRUCTION WORDS

SYMEX DEFINITION - TAGS - EQUALITIES - AUTCMATIC ASSIGINMENT
RULES FOR SYMEX FORMATION

NUMERTCAL. FORMAT - USE OF COMMAS

MEMORY LOCATION OF PROGRAM - ORIGINS

RC WORDS - RC ELOCK

WORD ASSEMBLY

SPECTIAL SYMBOLS

6-3 META-LANGUAGE FOR CONTROL OF M4 ASSEMBLY

6-3.1
6-3.2
6-3.3
6-3.4
6-3.5
6-3.6
6-3.7
6-3.8

META-COMMAND FORMAT
M4 OPERATION - NAME, CLEAN, LW READ, RECONVERT, BINARY STORE, GOTO
META-COMMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE
M4 OQUTPUT - LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)

ML FORMAT VARIATION - DEC, OCT, T = CR, T = TAB, RC STORE, XXX
USE OF SPECIAL KEYS

MAGNETIC TAPE BULK STORAGE - SAVE, READ, TAPE, CORE

META-COMMAND SUMMARY

6-4 MACRO INSTRUCTIONS

6-4.1
6-4.2
6-4.3
6-L .l
6-4.5
6=L .6
6-b.7

MACRO DEFINITIONS - META-COMMANDS "DEFINE" AND "EMD"
THE MNEMONIC ABBREVIATICN LINE OF A MACRO DEFINITION
MACRO NAMES

DUMMY PARAMETERS

MACRO TERMINATORS

THE DEFINING SUBPROGRAM

USE OF MACRO INSTRUCTIONS

October 1961 6-1

CHAPTER 6
TX-2 UTILITY SYSTEM

6-1 INTRODUCTION - TYPICAL USE OF M4 ASSEMBLY PROGRAM

The TX-2 Assembly Program "M4" is a conventional symbolic assembler, but has
considerable flexibility and two types of special features - Meta-Language for control of
the program, and Macro Instructions, a feature that gives M4 the essential characteristics

of a compiler. The symbolic tags for address sections can be nearly any combination of
letters, symbols, and mumerals (with a few restrictions). Tags used for the configuration
and index syllables are nearly as flexible. Mi will assign all tags that have not been
assigned by the user. The program is designed for on-line keyboard input and control as
well as paper tape input. After checkout has started, a program can be kept in symbolic
form in magnetic tape bulk storage.

Typical use of ML begins with off-line tape preparation using a Lincoln Writer (See
Group Report 51-8.). During debugging, the program can be preserved in symbolic and/or
binary form on paper tape or in mag tape bulk storage as the user wishes. The symbolic form
saved by the program is called a "DIRECTIVE" and is essentially the same as the original
manuscript. Additions, insertions, relocation, rearrangement, and deletion are all handled

by the M4 system - it is not necessary to retype the manuscript.

In addition to DIRECTIVE output (via Xerox, lLincoln Writer, Paper Tape, or Magnetic
Tape), one can also get a LISTING (via Xerox, Lincoln Writer, or Punch). A LISTING is a
copy of the program in absoclute as well as symbolic format (side-by-side). It ineludes an
alphabetically ordered tag table and a FORMAT ERROR notice if any errors were found. A
LISTING can be obtained on punched paper tape for off-line Lincoln Writer printout, but this
tape is not acceptable as input.

The binary form of the users program can be stored directly in the computer MEMOTY,
punched in binary format on paper tape, or stored in magnetic tape bulk storage. When
stored directly, either on mag tape or in memory, the M4 program area is protected and the

storage may be incomplete. If a DIRECTIVE exists in core memory it too is protected.
6-1.1 MANUSCRIPT - DIRECTIVE - LISTING

A "Manuscript" is any program prepared off-line. It may exist in printed, hand

written, or punched tape form.
A DIRECTIVE is the symbolic form created by M4. It may exist within ML tempo-

rary storage, in magnetic tape bulk storage, or in printed or punched form. A
DIRECTIVE closely resembles the manuscript. The following changes are worth noting:

6-2 October 1961

1.) Any corrections and/or insertions have been made.

2.) All definitions and equalities are at the beginning. (Equalities may be
anywhere on & manuscript.)

3.) Redundancies such as extra spaces are removed.

4.) Fractions are converted to the eguivalent integer. The Numeral System is

preserved.
5.) A check sum is added at the end.

A TISTING is a program output in absolute as well as symbolic format. The

format is as follows:

Tag Table (Alphabetical)

Equalities

Macro Definitions

Format Errors

Program (in symbolic and absolute)

RC Words (unless the RC block location was specified within the program.)

(The Tag Table, Errors, absolute program, and RC block are not part of a
Directive.)

6-1.2 META-LANGUAGE

The control of the M4 program is accomplished through the M4 Meta-Language
instructions. All meta-language commands are to be preceeded by L (two hands).
When used on a manuscript, meta-commands are cbeyed on read-in and do not appear on
the directive (Except for those like ww RC, which is used to specify the location
of the "RC Block" - (Register Containing).).

The basic types of Meta-Language Commands are:

Input
Correction-making
Output

Mag Tape

Format

Macro Definition
Direct Storage
Single Pushbutton

October 1961 6-3

6-1.3 MACRO INSTRUCTIONS

A macro instruction is essentially a convenient flexible abbreviation for a
similarly convenient and flexible subprogram. The user writes the subprogram once -
with dummy parameters - as a "MACRO DEFINITION". Tags, and equalities used in the
definition are kept separately and are not part of the program proper. When a macro
instruction is used, only those parameters that are needed should be specified. The
portions of the defining subprogram that refer to unspecified parameters are left out
when the macro is converted. For this reason, and since the parameter of one macro
can be the abbreviation for another, a different set of instructions will usually be
compiled for each use.

Some stendard macro instructions will be built into the Mb system. When they
are used on a manuscript, the definition will appear on the Mk Directive and Listing.
Since Macro Instructions can be redefined, it will not be necessary to aveid using

the standard names except to avoid confusion when reading a program later on.

6£-2 M PROGRAMMING LANGUAGE

6-2.1 INSTRUCTION WORDS

A TX-2 instruction word has U basic syllables and three special indicators as

shown in the diagram below:

o

-~ @ @ o om [T =~ & —~
- . % - @ " 0w L I I -
o T T T % L moN -~
O kL. i [

j | k
»= » % ADD g * GEORGE

The three indicators are preassigned symbols as follows:

BIT 4-10 w = meta bit (not part of binary tape format)
BIT 4+9 k = hold bit
% = no hold bit (Needed because h is automatically included

with IDE, ITE, JPX and JNX.)

BIT 2.9 * defer bit

They must be in normal script, and may appear anywhere in the word.

6L October 1901

6-2.2

October 1961

The four basic syllables are as follows:

"e" . "Configuration" syllable - a 5 bit word (bits 4.4 - L4.8) used as
the F memory address or as an extension of the instruction syllable
(oMP, 10S, SKM, SKX). This syllable must be in superscript or
preceeded by I . It can be nmumeriecal or symbolic, but no spaces
are allowed. For SKM, JMP, and SKX it is specified autcmatically
by the supernumerary mnemonics. (See Table T7-3.)

"i" - "Instruction" syllable - a & bit word. This syllable is a normal
seript, 3 letter standard mnemonic abbreviation for the imstruction.
It is terminated by a space as well as the standard symex ter-
minators. The mnemonic abbreviations ineclude the configuration
syllable as well for JMP, SKM, and SKX. (See Chart 7-3.) The
instruction syllable may be specified numerically or with a normal
symex but in these cases it is not terminated by a space. A

regular symex terminator must be used. (See 6-2.2, rule #8.)

"3" - "Index" syllable - a 6 bit word used as the X memory address, i.e.,
the index register tag. (Except for SKM where it is used for bit
designation.) The "j" syllable is normally in subscript. It may

be a numeral or a symex, but no spaces are allowed.

"k" - '"Base Address" - a 17 bit word. The base address may be symbolic
or numerical and spaces may be used as part of a symex. It is
given in normal script. Redundant spaces are removed upon

conversion.

It is not necessary to use the order shown above. Any ordering is allowed if

the script and symex conventions are carefully used. For example:

o o o
ADD T, or ADD T, or ADD T’ﬂaor T; ADD

SYMEX DEFINITION - TAGS - EQUALITIES - AUTOMATIC ASSIGNMENT

A "Symex" is a symbolic expression. It is converted to a mumeral by M4 when a
program is stored, punched in binary format, or listed. A "TAG" is a symex used as
a name for a place in a program. A tag is always terminated by an arrow (-), and
is set to the nmumerical location of the word that it tags.

A symex can be set equal to a numeral directly - e.g., "apple = 6", or to any
36 bit word. For example a symex may be set equal to an instruction. When such a
symex is used as the instruction syllable in a normal word, it must be terminated by

a symex terminator - not by "space” (Only Standard mnemonics are terminated by space.)

A symex that is not used as a Tag nor defined by equal sign will be assigned by
ML according to its use within the program. See chart below:

Unassigned Symexes:

Used to Specify: Automatically Assigned as or to:
Configuration Only Zero
Index Only The lowest numerical index register value

not already used. (Except Zero and no
higher than 77.)

Configuration and Index Zero

Address only The numerical memory location of the next
place in the RC words block. The contents
of this RC word are set to zero. This

provision is useful in assigning temporary

storage.
Configuration and Address Zero
Config., Index, and Address Zero
Index and Address Same as Index Only.
Origin (i.e., Memory Location of "i", where W is the numer of words in the
Block) program including the RC Block.

A symex assigned by M4, or by equals sign may be redefined at any point in a
program manuscript, and the latest definition will be used throughout. If the symex

was initially assigned as a Tag - i.e., with an arrow, a re-definition will be
recorded as a double definition error, and will be accepted, but not corrected. The
only way to remove it from the directive is to use meta-language (REPLACE) and refer
to it with a relative address based on a different tag.

6-2.3 RULES FOR SYMEX FORMATION

A symex must contain at least one non-numerical character.
It may contain as many legal characters as desired.

3. The single letters A, B, C, D and E are preassigned to the numerals 37760k -
377610. (i.e., the AE addresses.)

L. The three letter mnemonic instruction abbreviations can not be used as symexes.
The preassigned abbreviations and single letters can be used as part of a
symex if they are not separately terminated. Note that space bar terminates
op codes and single letter AE addresses but does not terminate other symexes.

6-6 October 1961

e.g. "ATYPE" or "TYPE A" are allowed.
"A TYPE" is equivalent to "37760L4 + TYFE".
"ADDY" is allowed - "ADD Y" is not. (ADDY is a legitimate Symex -
ADD Y is a two syllable instruction.)

6. The legitimate symbols are:

0123 4567839

A through Z

o B Y A € A
tJkrnpgtwszyz (NOT k)
« (PERIOD) ' (APOSTROPHE)

_ T[]0 and Space Bar.

T. Compound Characters are allowed when the following restrictions are applied:

Only one backspace.

Two or three characters only.

Space bar is allowed.

Any sequence of characters is legal. (Except © , © , @)

8. The following symbols terminate symexes:

[ox v oA

€ E~< > uUun

, (COMMA) = - |

h + - 7

SCRIPT CHANGES, TAB, CARRIAGE RETURN, COLOR CHANGES,
LINE FEED UP, DOWN

1] At g

6-2.4 NUMERICAL FORMAT - USE OF COMMAS

M4 will accept integers or fractions in Decimal or Octal. It will not accept
mixed numbers, except as a SKM bit designation. The details are handled by the
position of the period. See chart below:

Periods Numeral Type Example Equivalent Octal Integer
None Octal Integer 431 000 000 000 L431
Preceeding Octal Fraction A3 21k hoo o000 000
Following Decimal Integer L3]. 000 Q00 000 657
Both Decimal Fraction 431, 156 2si Q20 303
Centered SKM Bit Designation 2.10 000 Q00 000 052
(i.e., 10 101021

Note: The SKM Designation is usually given in subscript and is, therefore, moved
to bits 3.1 - 3.6.

October 1961 6-T

Hote:

Commas

are

a)

b)

The meta-commend == DECIMAL reverses the meaning of a "following
period. *™OCTAL restores it to the above.

The two parts of an SKM Bit Designation are Decimal integers.
Numbers may be preceeded by Plus (+) or Minus (-). For example:
(Octal Integer 40O 000 000 000 = - 377 777 777 777-)

ML converts fractions to Integer form for Directives. The Numeral

System 1s preserved.
used to specify separate subwords as follows:
The word is set - to +0. (Any unspecified portions will therefore

stay at +0.)
The word is assembled from left to right.

"

The mumeral (or any other word) is converted to a 36 bit binary word.

This 36 bit word is inserted into Memory according to the comma chart.

COMMA CHART
COMMAS BEFORE | COMMAS AFTER CRAM DIAGRAM EXAMPLE
0 0 EEE bbb 333 222 111
0 1 / WE 5 & &
0 2 ‘(/ a2d L - -
0 3 / / / 333 202 111 =
£ 0 ‘ N
1 1 / / - 222 111 -
1 2 / = UL - -
1 3 {4 ' Wik 333 222 -
2 0 vt - - 22 111
2 1 / - - A1 -
2 2 XK 222 111 b4 333
2 3 \ = - Bk 333
3 0 ‘ e b s
3 1 \ w oz oa Uk
3 2 N - Wil = a
3 3 o = - W o333

o}
1
o

Oetober 1961

For example: To specify 1/2 in each quarter, write
200 200 200 200
or 200, 200,, 200, 200
A A L A
or 3 332 EN) r22 2

To specify an instruction in the right half word as well as its normal position

in the left, write

6-2.5

symex form and is terminated by a vertical bar.
it will be on DIRECTIVES, or it may preceed & normal word.

recursive - i.e., set equal to another symex.

incorrectly, and no alarm is generated.

@ .4
] LDﬂatuo LDAB..,

MEMORY LOCATION OF PROGRAM - ORIGINS

The location of the first word of a block is to be specified in numerical or

It may be on a line by itself, as
The symex may be

If the recursive symex is circular
{i.e., eventually equal to itself,) or if it is undefined, the block will be located

(It will appear to be located a "n", where

"n" is the number of words in the program, but the RC words are assigned as if it

were located at zero.) If there is no origin (i.e. no vertical bar), the whole

program is located (correctly) at 200 000(8)'

October 1961

See the examples below.

HAGs | HAGE=77
LDA BOSY
STA HUPG
22JAC» JPQ MOUSE
HAG&s+100
+413,,5
~563,61
516 | LDE TOMM
STE JERRY
H- JPQ HEHE

If the origin is specified by a symex (as "HAGE" above), the block may be moved by
redefining the symex via equal sign. If the origin was assigned numerically (e.g.
515' above) it can be changed by REPLACE, counting back from an nonest tag. For
example, to move the block at 516 to location 5516, the proper metacommend would be
wwREPLACE He3 5516

Note that the Origin itself counts as a full line.

f-2.6 RC WORDS - RC BLOCK

Since it is often more convenient to specify an operand directly rather than by
its address, M4 interprets any word within brackets, e.g. {3456} as an operand by
providing a register containing the bracketed word, and using its address wherever
the same word is used within brackets. (Bracketed words are called "RC Words"
from "Register Containing".)

The "RC Block" is made up of RC words, i.e. bracketed expressions and temporary
storage assigned to unassigned symexes used in address sections. It is located at

the end of the last program block unless otherwise specified by meta language.
Examples:

suB {w} "w" can be any 36 bit word.

Words within the RC Block may be Tagged. If
such a word is changed via meta language, the
change should be made where it is used (i.e. at
DICK+ LDE {SEORGE="LDA T] "DICK") rather than inside the RC Block

j (i.e. at "GEORGE").
A change made within the RC Block will not
appear on a subsequent DIRECTIVE. To be
lasting, such a change should be made outside

the block.
== REP DICK LDA {GEORGE+ 5} *APERMANENT
wrREP GEORGE GEORGE=+3 *¥*TEMPORARY

"RC Words" may contain other RC Words - i.e. the brackets may be "nested".
For example:

LpA {LDE{-13}}

The brackets must balance - there must be as many right hand brackets as there are
left hand ones.

6-10 October 1961

6-2.7 WORD ASSEMBLY

The address syllable is formed first as a 36 bit integer using normal integer
arithmetic. It may contain parentheses, the arithmetic symbols: + - X /, and the
logic symbols A ("and"), v ("or"), @ ("exclusive or"). The symbols are in-
terpreted from left to right. (i.e. not quite "normal" algebra)

For example:

4G + S5R/6 is interpreted as higﬁ

Lg + (SR/6) is interpreted as 4G + g

Parenthetical expressions may be nested, but the parentheses must balance - i.e.
there must be as many left parentheses as right. For example:

(77 -(46 + (5R/6)))
The use of another symex is equivalent to using parentheses. e.g.,
P 5R
4G + @ is interpreted as 4G + & if @ = 5R/6

The 36 bit address syllable is united (inclusive OR) with the others fconfiguration,
operation, index). Extra syllables of the latter group are alsc united into the
word. The one bit syllables are set last, "not hold" (L) being the final one.

6-2.8 SPECIAL SYMBOLS

"The current Location" - The symbol "#" is a special symex which always is
equal to the current location. Thus "JMP #" is a jump to itself, "JMP # + 1"
is a'"jump-to-the-next-register"”. If # is used within brackets, it refers to

the RC BLOCK rather than the current address.

* "Start of Comments" - A double asterisk - ¥* - is used before comments or
annctations. Al symbols are legel in the comment section except mw XXX and
} ; and comments are saved and included in Listing and Directive Printouts.
A carriage return terminates the comment section. A comment may be used

within an RC word and another on the same line outside the bracket.
P|'¢ The notation ’I'T is egquivalent to 4 {T'] % . The ,I ¢ must be in subseript.

For example: RExalaTRGG is equivalent to RExu{TAGGB}*'

= A carriage return immediately preceded by minus sign (-) will not terminate
the line. This feature is needed because complex nested Macro-instructions

often require more than one line of print. It can not be used for comments.

October 1961 6-11

6-3 METALANGUAGE - FOR CONTROL OF M4 ASSEMBLY

The M4 conversion - assembly process is designed for input and control from the key-
board or from paper tape. Since keyboard use is more flexible and tape is faster, the
normal procedure is to use both. "Metacommands" are instructions directed to the M
program itself covering the following areas:

Paper Tape Input

Mlterations

ML Output

Direct Storage

Format Variation

Magnetic Tape Bulk Storage
Macro Definition (Section 6-4)

6-3.1 METACOMMAND FORMAT

Metacommands may require cne line or several, and no address section, or as
many as two. The address section refers to the "Directive" of a program and may
specify one line, or a block of consecutive lines. Note that a line of a directive
may correspond to several program words (c.f. MACRO, Section 6-4) or no program
words at all (e.g., origins and comments).

There are three formats for address sections:

1. AA - The line at "aA".
ARA+n - The nth line after AA.
AA=n

- The nth line before AA.

"AA" should be an honest tag (defined by an arrow), rather than a
numeral or symex defined by equal sign.

2. AAIu n lines begimning with the line at AA
AAta|n (or A + q).
3. AA = BB The block of lines from AA to BB including AA

but not BB. (Or from AA + q to BB + p.)

A typical metacommand is as follows:
=wREP GEORGE+7 RSTE TT

It will replace the line at "GEORGE + 7" with the word "hSTE TT".

6-12 October 1961

Similarly, the meta-command

= MOVE AA-BB GEORGE

will move the block "AA to BB" to just before George.

To reduce typing, the following conventions are allowed:

1. # is equivalent to the end of the program.
AR~ means "From before AA to the end". (Do not use this
with DELETE.)
3. =AR means "From the beginning up to AA". (Wot including AA)
k. The name of a metacommand can be abbreviated to just the first three
letters.

5. Tab is used to terminate syllables.
6-3.2 ML OPERATION - NAME, CLEAN, LW READ, RECONVERT, STORE, GOTO

There are two versions of the M4 program - "Mi from mag. tape" on the Golden
Reel and "ML from paper" on the White Reel. They are essentially identical except
that the paper tape version will ignore all metacommands that use magnetic tape
bulk storage.

Mh is located at registers 160 000 - 174 010 (octal) and uses the rest of
memory as temporary storage. 157 777 down towards zero is used for storage of

your Direetive. 174 000 - 200 000 is used for various tables.
There are two CODABO start points:

160 000 - Fresh start, new program, M: is reset completely, a New Name
is required.

160 00l - Continue same old program. M4 is reset to OCTAL, and T = TAB.
(see section 6-3.4)

Upon read-in of either reel, M4 will type NAME and then will wait for the user
to respond by typing his "M4 Name" on the keyboard. The situation is the same as
that produced by the metacommand "NAME" described below:
meNAME DAD

NAME is the metacommand used to identify the user. The users "name" is

required by Mk to identify output and to determine which part of the Mh
Magnetic Tape is to be used. All paper tape, and printed ocutput is identified

October 1961 6-13

by the user's M4 initials and a 4 character word derived from the check sum
of his directive.

When "ML from tape" is used, the users name determines which portion of
Bulk Storage is available. Most individual users are assigned tape storage
equivalent to one S memory. Groups of users may combine by using the same
name, thereby extending their awvailable bulk storage to several memories.
Bulk storage is used in blocks of 200(8} words. See section 6-3.7 for further
details.

Note:
1. ML names are three characters long.
2. 'The special name "FRE" is reserved for users whe have no name.
3. "NAME" does not clear M.

= CLEAN
CLEAN (CL) restores M4t to its pristine state. It is equivalent to
CODABQ 160 Q00 except that CODABO 160 200 types NAME and waits for one, while
CLEAN does not.
LW READ
IW READ (Iw) (Special Key "Readin") switches M4 input from Keyboard
to PETR. The PETR will be in its "Bin and Read" mode (108523010h). When
stop code (76) is read by the PETR, M4 input is switched back to the keyboard.
All Metacommands may be used on tape except ww READ and == RECONVERT.
=wRECONVERT
RECONVERT (REC) expands the stored directive into free storage in a
form similar to its printed or punched version. It then forms a new directive.
The result is the same as punching a paper tape directive, cleaning ML, and
reading in the new directive. Al]l redundancies are removed, the RC Block is
corrected, - the directive is shorter than before. When there is insufficient

free storage, this command will produce QSAL and do nothing.

wwBINARY STORE AA
BINARY STORE (BIN), (Special Key "“BEGIN") completes the conversion

process and stores the program directly in memory. If an address "AA" is
given, a "h JPQ AA" is performed with sequence number TO selected. The user
can therefore save the return point, run his preogram, and return to Ms auto-

matically. "AA" must be within the program area.

"BINARY STORE" does not destroy M4 or the directive. If a program is
to be located within these areas of storage, a binary tape should be made -
see section 6-3.L under "PUNCH BINARY".

=G0 TO AA
"GO0 TO" executes an "h JPQ AA" with sequence 70 selected. It makes
it possible to go to the user's program and return automatically to Mi. The

address "AA" must be within the program area. NOTE: ML leaves STANDARD CON-
FIGURATIONS in F memory only when its use is terminated by GOTO or BIN. When

the user starts his own program with CODABO F register #37 is not standard.

6-1h4 October 1961

6-3.3 METACOMMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE

ww INSERT AA ONE LINE
OR

= INSERT AA

wwEND

INSERT (INS) puts the new program lines just before "AA". When only
one line is to be inserted or when the next line will be a metacommand from

this group, the terminating command "END" is not needed.

~wDELETE AA
==DELETE AR-BB
wwDELETE AA|n

DELETE (DEL) removes a section of the directive. Symexes that were
assigned within the removed area are now undefined. The RC words used only
within the deleted area are not removed from the RC Block. If an Origin is
removed, subsegquent words are located relative to the Origin preceding the

deleted area.

wwREPLACE AA
wwREPLACE AA-BB
wwREPLACE AA|n

REFLACE (REP) is a combination of DELETE and INSERT. It can remove an
arbitrary number of lines and put a different arbitrary set in their place.
Note that it deals with lines - not words. For example, to replace an in-
struction at a tagged location, one must be sure to replace the tag also, for
the whole line is removed. If only one line is to be inserted, the new line
can be typed on the same line as the REP instruction. If several are required

they must go on succeeding lines and END (or another meta-command from this

group) must be used as a terminator. See examples belaow.
mwREP G6 Ge+“LDA T, (To correct one line.)
wrREP AP-+AP+6
- (To replace one set of lines

with a different set.)

wrEND
mrMOVE AA cc
wrMOVE AA-+BB cc
wrMOVE AA|n ccC

MOVE (AA to CC in this case) is a combination of delete and insert where
nothing is lost.

October 1961 6-15

In the example below, a few "second thoughts" have been indicated in hand

written form.

£— K SN Pl BROG RAM For Uasnss Marclboik

START| START=400
TEST+ SK# 5 it R
o +7
Cou Comm JPQ BL‘::::: skxg, #
105 ;. F0000
oUT= TSD TABL, o
51‘(2._ ~p Ao = /000
”KNS.]PR TRQ’ ’ou.r’S ‘_,pr;‘ = Aed?
RE- LDA {0} §-/%
STA RESET
The correction tape for the above is shown below. A complete listing of

the corrected program is given in the next section.

BL=1l0o0O
00PS=2000
w=REP TEST TEST->SKZ, ,PR
w=REP OUT=1+0UT+1
COMM+ JPQ BL

305kx . #+1

66

10S 30000
oUT- TSD TABL,

SKZ,, SIND

JPQ 00PS
== END
wwREP RE RE-+LDA {-1}
e INS TEST=1 *%SAMPLE PROGRAM FOR USERS HANDBOOK

Note: The symex "START" could not be used in the last metacommand because it is not an
honest, arrow-defined tag. To insert before an origin, one must count back

from an honest tag.

6-16 October 1961

6-3.4 M4 OUTPUT

- LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)

me LIST AA
welLIST AA-+BB LIST (LI) (Special Key - WORD EXAM) - List pro-
e LIST AR |n duces a "M4 Listing" wia the Xerox Prinfer.
wwPLIST AA
wePLIST AA-BB Plist produces a listing via Punched paper tape.
wwPLIST AA |n
wrTYPE AR
wer TYPE AA-+BB Type produces a listing via the Lincoln Writer.
wrTYPE AA'u
A LISTING tells what M4 did with the Manuseript or Directive received.
Macro instructions are given in expanded form. The program is given in OCTAL

as well as symbolic and is usually preceded by various tables. The overall

format is as follows:

LISTING FORMAT

SYMEX TABLE Given only when the first word of the
EQUALITIES TABLE Program is included in the area requested
MACRO DEFINITIONS by the Metacommand.
ERRORS. _____ ___
PROGRAM:
SYMBOLIC ABSOLUTE
RC BLOCK
SUMCK (Paper tape versions only.)

The SYMEX TABLE is printed in octal, in three columns and is in alpha-

betical order (4 letters) as if there were but one page. Symexes with an

asterisk were assigned by ML because they were left unassigned on the manu-

seript, or because they were used within a Macro Definition. Symexes with

a hand (=) are MACRO names. Symexes used only within macros, and those

defined by equals sign, are listed, but no equivalent numeral is given.

The EQUALITIES TABLE is in one column in alphabetic order. (First Letter)

Symexes with an asterisk are those assigned by M. An equality definition

can not be deleted but it will be replaced if repeated. The last definition

is the one that is used, and such repetition does not constitute an error.

MACRO DEFINITIONS are listed as defined originally. They can not be

deleted or changed but they may be re-defined.

October 1961

6-17

The ERROR PRINTOUT is of two types - FORMAT ERROR and DOUBLE ASSIGNMENT.
An error printout is given on the first listing only - it is not repeated on
subsequent listings even though the error may still exist. A line containing
a FORMAT ERRCR is reprinted in the error printout and the error deleted from the
Directive. (It therefore can not reoccur.) A DOUBELE ASSIGNMENT occurs when

a symex is assigned both by equal sign and by arrow, or twice by arrow. The
printout gives the location of the first assigmment. The second assigmment
is used and can be found in the symex table. If both definitions were by
arrow, the offending tag will appear in two places on the directive and on the
listing, but only the last assigmment will be used throughout the program and
in the Symex table. To delete the first one, it is necessary to count from
some other tag. If the second one was wrong, it can be deleted directly, and
the first one will take over in subseguent Listings and Directives.

The error printout format is shown by the examples below:

DOUBLE DEFINITION]| BADTAG **FIRST LOCATION

FORMAT ERROR] LOCATION **BAD LINE

Format Errors include such things as an attempt to define an op code (e.g.

ILDA = DAD 6), extra meta-comnmands (especially END), and improper symbols in
MACRO DEFINITIONS. In meta-commands, the line is removed; in other cases, only
the offending character is deleted.

The PROGRAM is printed in symbolic form at the left, on two lines if
necessary. The octal numeral form is given at the right with its octal

memory location.

The SUMCHECK occurs only on paper tape versions of Listings and Directives
(Plist and Dir). Tt is given as a meta-command, e.g. wwSUM 436521
The sum is checked on M4 Read-in (wwLW READ)and if an error is found, the
word "SUMCK" is printed on the Lincoln Writer. The user can proceed at his

own risk, or he can try again.

wwrERRORS

ERRORS will type the error block if there are less than 8, or if there
are more, it will print them on the Xerox. Onece this is done, the error

b lock will not appear on subsequent listings.

6-18 October 1961

Example 1
Here is a listing of the program of the previous section - before the correction tape was

used.

BL=000407 RE=000404 TABL=000412
OUT=000402 RESET=000411 TEST=000400
PR=000410
START= 400
a=]
FORMAT ERROR|] TEST+1%*COM~ JPQ BL
START|
TEST—+ SKN , ., PR |s01761 000410|000400
COM JPQ BL | 145700 000407 | 401
ouT- TSD TABL, |oos7zor o0oo0arz| a0z
MKN PR |osi761 0oo0410| 403
RE-+ LbA { o} |0o2400 000406| 404
STA RESET |oosd00 00os11]| aos
0 |eocooo oooooo| aos
BL— 0 |oooooo ocooooo| 407
PR+] |0ooooo 0oo0o00|000410
RESET= 0 |0oooooo cooooo| 411
TABL—+ 0 |oooooo o0ooooo| 412
mrSUM 037602

October 1961 6-19

Example 2

Here is & listing of the same example, made after the correction tape was used. Note that

the error notice is always printed once, even if the error is corrected later on.

If a listing

is made between tapes, the error notice is not inecluded on the second listing.

COMM=000401
IND=000414

BL= 1000

00OPS= 2000

START= 400

[- T |

QUT=000404
PR=000415
RE=000410
RESET=000416

FORMAT ERROR| TEST+I**COM-

START|
TEST-
COMM-

ouUT=

RE=>

IND—+
PR=>
RESET=
TABL-+

S UM

TABL=000417
TEST=000400

JPQ BL

**SAMPLE PROGRAM FOR USERS HANDBOOK

SKZ . . PR
JPQ BL

o o o ©

056632

6-20

|2z01761 0004
|140500 o010
|301266 o004
|oooass o300
|oos701 ocoa
|202763 o004
|140s500 voz20
|os1761 coo0a
|ooz2400 o004

|cosa00 cooa

| 0co0000 0ooo
|7z77777 77727
|cooooe oooo
|eocoooo oooo
|oooooo oooco

|ocoooe oooco

15|ooo400
oo| 401
o3 402
oo 403
17| 404
14| a0s
oo| 406
15! 407
13]o004z20

16| 411

oo| 412
76| 413
oo| 414
oo 415
ool 416

oo| 417

October 1961

wrDIR AA

wDIR AA-+BB Directive via Punched paper tape.
ww D IR AA|=n

wTDIR AA

wr TDIR AA-BB Directive via Typewriter.
wwTDIR AA|n

= LD IR AR

wr LDIR AA-BB Directive via Xerox.

wrLDIR AA|n

The format of a DIRECTIVE is as follows:

EQUALITIES TABLE (lio Asterisks or Hands)

MACRO DEFINITIONS

SYMBOLIC PROGRAM

ww SUMCHECK 432170 (Looks like a Meta-command)

There is no symex table, error table, octal program, or RC Word block. The
sumcheck is a 6 digit octal nmumber. If the tape has been damaged or spliced
so that the sumcheck is wrong, M4 will type "SUMCK" on the Lincoln Writer,
and control of M4 will return to the Keyboard.

Partiael Listings and Directives

If no address section is given in the Listing and Directive type meta-
commands, the entire program is included in the output. In a partial Listing
or Directive, the tables and macro definitions are ineluded only if the first
word of the program is included in the section indicated by the address given.

October 1961 6-21

(Directive Before Corrections)

START= 400
START]|

TEST=+ SKN .., PR
COM JPQ BL

oUT= TSD TABLG
MKN ., PR

RE-+ LoA { o]
STA RESET

= SUM 011516

(Directive After Corrections)

BL= 1000
00PS= 2000
START= 400
**SAMPLE PROGRAM FOR USERS HANDBOOK
START]
TEST= Skz _ , PR
COMM— JPQ BL
30
SKX ss#+1
105 30000
66
ouT= TSD TABL
SKZ g IND
JPQ 00PS
MKN ., PR
RE= LA {-1}
STA RESET
mSUM 021762

6-22 October 1961

wr PUNCH
wwrPUNCH AA

PUNCH produces a punched paper tape in Binary Format. If an address is
given, a JPQ AA goes into register 27(0ct.)' If there is no given address,
JPD 27 is used. Since the readin program ends with an 1055220000 (DISCON-
NECT PETR) in register eﬁ(oct.) the "AA" is essentially a starting address
for the tape. AA must be within the program.

Binary Tape Format is as shown below:

To the Bin To the Beeler
-f————— —_—
Last First Start Reader .
Block b4
aonopmgrm...-....-..q....-..---ngrm.-l-a}éétaoau:l-[_,eader CRCRCE R I B
Tth Block* Block* Register (23 words) :
Hole 2T oct)
End
Mark

October 1961

#There is, in general, one block per M4 Origin.

The "Reader Leader" is the binary version of the Readin Program itself. The
Readin Plugboard Program reads the reader leader into registers Ohaé(octal)
and then jumps to register 3, the start of the readin program. The first
word of & block tells where the block is to be located, and how many words
are therein. The last word is an 18 bit check sum and an address telling
the readin program where to go next. For all but the last block, this
address will be "3", the stert of the readin program. For the last block it
will be 26(Oct.}. Registeifﬁ contains "1055220000" and 27 will be either
JPQ AA (if AA is given) or ~ JPD 27 if no address was given. The readin
program therefore will jump to the new program with seguence number 52 chosen,
and with the PETR DISCONNECTED. If there is no given starting address, the

readin program leaves the computer in LIMBO.

6-23

Note: Metabits are not set by the readin program. They are cleared

wherever the readin program stores new words.

Note also: The special block for register 27 comes before the program
on the tape. Program material that is to go in register 27 therefore super-
cedes this special block created by Mi.

6-3.5 M4 PORMAT VARIATIONS - DEC, OCT, T=CR, T=TAB, RC STORE, XXX

weDECIMAL (== DEC)
wr(OCTAL (== 0CT)

A1l numerals in an M4 manuscript are considered to be of the same numeral
system unless they are followed by a period (in which case, the other numeral
system is used). DEC and OCT remain effective until changed and are not saved
for inclusion in the Directive. M preserves Decimal Integers by reproducing
them with & "following period". Octal is the "normal" mode - CLEAN or CODARO
160000 (Pushbutton) will reset the numeral interpretation to Octal. Note also
that the right hand numeral in a SKEM bit designation is always Decimal.

rrT=CR
wr T=TAB

When a table of constants is part of a manuscript,.it may be easier to type it in
several columns by "tabulation". "T=CR" allows this by making TAB a word termi-
nator similar to Carriage Return (CR). In this mode, tabs can not be used with-
in words. T=TAB returns M4t to normal.

Note: These meta-commands are not included on a Directive. A table that

was typed in - several columns will be reproduced as one column on the Directive.

wwRC STORE (==RC)

RC STORE means "Put the RC BLOCK here". The RC Block will be at the end of
the program if this meta-command is not used. RC STCORE can be inserted via == INS
and need not be deleted for M4 automatically deletes an existing RC STORE when a

new one is inserted.

6-2l October 1961

wwXXX (or Special Key "NO")

XXX has complete control. It wipes out all input information back to the
previous carriage return and forward to the next CR {or tab if T=CR). It can be

used on any line, anywhere even within a comment, but not after backspace.

6-3.6 USE OF SPECIAL KEYS

The top row of keys on the Lincoln Writer has five special keys which have no
machine function or associated character. They are extras, and can be used for
any purpose. The M4 system uses them as sbbreviations for certain meta-commands.
These special keys terminate the line as far as Mk is concerned. If an address
is to be used, it is to be typed first. The keys are assigned as follows:

WORD EXAM (71) LIST

YES (17) MOST RECENT OF TYPE, TDIR, DIR, LIST, PLIST, OR LDIR,

O (16) XX (This works backwards only - It does not delete
forward.)

BEGIN (15) BIN (BINARY STORE)

READ IN (14) LW READ

STOP (76) The stop key means "stop". It is always active. If Mk

is printing too much, if it is "hung-up", or if it is
performing a function that is no longer wanted, the
stop key will return control to the keyboard and stop
whatever is going on.

October 1961 6-25

6-3.7 MAGNETIC TAPE BULK STORAGE - SAVE, READ, TAPE, CORE

The M4 Magnetic Tape Bulk Storage reel contains a copy of the M4 program
itself (in Binary and Directive form, and with 3 Binary back-up copies), and
working space about 30 times the size of S Memory. Working space is assigned in
200 word blocks, the average allotment being 1000 blocks - i.e. one S Memory.

Mk does all the detailed tape coding. A standard tape format is used with an

18 bit check sum for error detecting. Tape malfunction is automatically reported
on the typewriter - the report includes missed data detected by the alarm circuits
(Sequence #41) as well as check sum errors. The users "M} Name" is used to
determine the proper working space, and M4 automatically protects the rest of the
tape. The four Meta-commands listed below permit the user to store and retrieve
his program or other material in Directive Format (Save-Read) or in straight
Binary (Tape-Core).

M4 Answers to Mag Tape Meta-Commands

When Mh can not perform the given command because of programming limitations,
it types NO in red on the Lincoln Writer, and it ignores the command. No data

is transferred.

When ML can and does complete the given command, it tells the user which tape
area was used, and the associated four character identification derived from the
check-sum. The tape area is specified by the block number of the first block and
the block number of the next free block. For example:

0100 - 0107 TY7J
means that blocks 100 through 106 were used. "TY7J" is the identifying word.

If there is a tape equipment malfunction while M4 is in operation, the words
"TAPE ERROR" are printed in red on the Lincoln Writer followed by pertinent data.
This print-out should be saved for the Tape Engineers, and the incident should be
duly reported.

== SAVE lop-200 **SAVE CURRENT DIRECTIVE

If all is well, Mh stores the current directive on Mag tape beginning at the
specified block number (100 in this case), and reports back via the typewriter the
tape area used, and the four character identification. This will be the same
identification as that used on Listings. Saving and retrieving a Directive on
Magnetic tape does not "clean it up" the way it does when paper tape is used. The

6-26 October 1961

Directive comes back exactly as it was. To "clean it up", the meta-command
"RECONVERT" should be used before SAVE. The second block number is protected.
It the directive will not fit in the specified area, Mk types "NO" in red. If
the second number is omitted, the remainder of the user's allotted working space
is assumed to be available. If both numbers are omitted, address "zero" is

assumed. If M4 types "NO", the command has been ignored.

== READ 100 *%READ DIRECTIVE FROM MAG TAPE

If the address given is the start of a Directive, "READ" will clean Mi and
read in the Directive from tape. It will then type the tape location (i.e. first
block and the one after the last block), and the four character identification.

If the address given is not the start of a Directive, "READ" types "NO" in

red and does not clean M4 nor read from tape.

TAPE - CORE (Binary Storage and Retrieval)

TAFE and CORE deal with Binary (i.e. Absolutely Numerical) information and
therefore require two address sections - one for the working space on tape and the
other for core memory. (The word "to" is understood - i.e. it is TO TAPE and
TO EEEE.) Both address sections must be numerical and the tape address comes
first.

weTAPE 200=300 0=17777
(TAPE AREA) (MEMORY AREA, INCLUSIVE)

TAPE copies from core to Tape. Working space on tape is used a block at a
time - i.e. in 200(8) word sections. If the second tape block number is omitted,
the rest of the wuser's allotted working space is assumed to be available. If
the data from core will not fit, none of it is copied and M4 types "NO" in red.

If it does fit, M4 types the first block number, the one after the last, and the
four character identification derived from the check sum that is used on tape.
The rest of a partially filled block is set to zero. The memory address is

inelusive.

wwCORE loo 0-17777
(TAPE ARERA) (MEMORY AREA, INCLUSIVE)

CCRE copies from tape to core until the specified core area is full. If all
is well, M4 will type the usual message - i.e. tape area used, and four character

identification word. If the meta-command asks for words beyond the user's allotted

October 1961 6-27

space, or if the M4 program itself is threatened, M4 types "NO" in red. (M4 is
located at 160000 - 174010.) The identification word will be different if only
part of a section is retrieved or if a program is stored in several pieces and

retrieved by one command.

6-3.8 META-COMMAND SUMMARY

Clean BIN - Binary Store
LW Read CLEAN — Clear M4 Directive Storage
Reconvert L CORE - Tape to Core
Name DEC - Decimal
DEF - Define
Insert R DEL, - Delete
Delete >_ Changes DEMO - Demonstrate
Replace DIR - Directive Punch
Move >, END - End of Multiple Word Meta-Command
EMD - End of Macro Definition
List GOTO - Go To User's Program
Type INS - Insert
Plist LDIR - List Directive on Xerox
Directive punch LIST = Print Listing on Xerox
Tair > Output LW - Lincoln VWriter Read-in
Ldir MOVE - Move Program Block
Binary Store NAME - Set User Identification
Punch Binary OCT - Octal
Goto _J PLIST - Punch Listing
PUN - Punch Binary
Decimal - RC - RC Store
Octal READ - Read Directive from Tape
T=CR REC - Reconvert
T=Tab >- Format REP - Replace
End SAVE - Save Directive on Tape
RC SUMCK - Sum Check
Sumck y TAPE - Core to Tape
TDIR - Type Directive
Save TYPE - Type Listing
Read Mag Tape T=CR - Tab equals Carriage Return
Tape T=TAB - Tab eguals Tab.
Core
Define
ot Macro
Demo

6-28 October 1961

ﬂ&CRO IN%ERUCTIGNS

A macro-instruction is an abbreviation for a flexible subprogram which is written by

the user (as a Macro Definition) and is inserted into the program by Mk wherever the Macro
Instruction is used. The subprogram is written in terms of dummy parameters and when it
is copied by Mk, only those portions that correspond to specified parameters are used.

For example:

If the definition of "DO A,B,C,D" is

wwDEF DO|A,B,C,D
A
B
B
c
0
weEMD

And if the program is:

100 |

LINE 1+ DO|LDA T;,ADD TT, ADD BB, STA CC
LIHE 2~ po|LDB T,

LINE 3— po| .6

Then M4 will produce:

100 |
LINE I= po|LDA T,,ADD TT,ADD B8B,STA CC
LoA T, |oo2401 000112|000100
ADD TT |ooe700 000113 101
ADD TT |ooe700 000113] 102
ADD BB |oos700 coor10| lo03
STA CC |oosa00 ocoo111| 104
LINE 2 pojLoe T,
Lo T, |eo2s02 coo112| 105
LIHNE 3 DO,6
6 |oooooo ocoooo0s | 106
6 |oooooo cooocos| 107

October 1961 6-29

6-l.1 Macro Definitions — Meta-commands "DEFINE" and "EMD"

As shown by the example above, two meta-commands are used with Macro Definitions —
ww DEFINE (DEF is enough) and ww EMD (End of Macro Definition.) A macro definition has
two parts — the abbreviation itself, and the defining subprogram. The Macro Definition

must precede the use of a Macro instruction.

The Mnemonic Abbreviation Line of A Macro Definition

A Macro Definition starts with the "Macro Name" and dummy parameters as follows:

wwDEF pojA,8,C,D

The "Macro Name" here is "DO", the "dummy parameters" are A,B,C and D, and commas were

used as "Macro Terminators”". A Macro Definition must be terminated by the Meta-command

" wwEMD" (End of Macro Definition).

6-4,3 Macro Names

There are two kinds:

a. Any Symex may be used as a Macro Name. It may be used alone, or followed by a
terminator and parameters, (each of which is separated from the other by termi-

nators).

b. A compound character may be used. It may consist of two or three superposed
non-alpha-numeric characters — e.g., E-l or £ or & . It may not be @, @, or 8.
(These are reserved for Mi.) The characters may be typed in any order. A

compound macro name is itself a terminator — i.e. parameters may come before as

well as after. For example:

== DEF A, a[d s —»pous

The Macro Name is [.

6-30 October 1961

6-b b

6-li,5

6-L.6

Dummy Parameters

Dummy Parameters may be any symex (even three letter mnemonic codes and the single
letters A, B, ¢, D and E). A Dummy Parameter may be included as a mnemonic aid and need
not be used in the defining subprogram. Dummy Parameters must be separated by macro

terminators.

Macro Terminators

The following symbols may be used.
L, =+ | o=~ <s> AU/ xv oA
Other symbols may not be used.

The Defining Subprogram

The defining subprogram is written using the Dummy Parameters and must be terminated
by wwEMD (End of Macro Definition). lote the following rules and conventions.

1. Symexes defined by equal sign (=) or by arrow (=) within the macro definition

are not part of the program proper and refer only to the macro subprogram.

2. A symex that is not defined within the MACRO will refer to the main program and
if it's not assigned there, it will be assigned automatically in the RC Block.
(But only if the Macro is used in the program proper.)

3. The single letter symexes A, B, C, D, E will refer to the AE unless they are used
as Dummy Parameters.

k. An instruction in a definition may use a parameter harmlessly so that it will be
left out when the parameter is not used. One way to do this is as follows:

o
LDA T g * (oPY -~ (pP)

("DP" is the dunmy parameter.)

5. A Dummy Parameter may not be used as a tag within the defining subprogram. (You

can, of course, write JPQ DP, but not:
o

D P LDA Tj

6. A line that uses two Dummy Parameters will be left out if either is left out

when the macro is used.

October 1961 6-31

7. A line that uses a dummy parameter may be kept in with that parameter equal to
zero when the parameter is not used. This is done by using another symex that

is set equal to the dummy in question. For example:

LDA DUMI +DUM2

can be written as:

LDA DUM!I + Gs
Gé = DUM2

6=L4.7 Use of Macro Instructions

A macro may be used as a Pseudo Instruction by itself, or "nested" as a parameter of
another macro. It may even be used as a parameter of itself. It may be an RC word.
When used as an RC Word, it will use several registers of the RC Block and the location
of the first of these will be the associated address. Consider the examples below.

Example 1. A Macro used within brackets — i.e. as an "RC Word"

"= DEF TBS |a
o
o
o
[+4
a
werEMD
100|
USE- LbA {Ts=TBS| o} *%s BLANK RC WORDS
LDA TOMM
STA TS5+3

The program is expanded as follows:

100]

USE- LDA {TS=TBS]| 0} | 002400 0o00103|000100
LDA TOMM |oo2400 ooo0r1o]| 101
STA TS+3 |oosaoo coocros| 102

TS~ TBS| 0
0 | eooooo 000000 103
0 |oooooo cooooo| 104
0 |oooooe coocooo| 10s
0 |oooooo oooooe| 106
0 | coo000 000000| 107
TOMM—+ 0 |oocooo coocoo|ooor10

6-32 October 1961

Example 2, A Macro used to generate a table of squares.
If the manuscript is as follows:

wDEF

wEMD

100]|

TABL=

sq|A
A
A

NSQ:{#—TABL}K(#-TABL)
sl (saf (sQ] (NSQ)))

M4 will produce the program shown in the "Plisting" below.

NSQ= (#=TABL) x (#=-TABL)

TABL=000100

wwDEF sQ|A
A
A

= EMD

100|

TABL- sq| (sa] (se] (NsQ))
(NS Q) | oooooo
(NSQ) | 000000
(NSQ) |eooooo
(NSQ) | ooooco
(NS Q) |oocooco
(NS Q) |ooocoo
(NS Q) |ecoooco
(NSQ) |eooooo

warSUUM 025015

October 1961

6-33

oooooo|e0o100

ooooo0! |
000004 |
000011 |
000020 |
000031 |
000044 |

000061 |

101

102

103

104

10§

106

Loz

Example 3. An open subroutine for index memory "integer" multiplication.
The macro below finds the righthand 18 bits of the full product of two X Memory
words (¢ & B), provided that said product is no larger than 17 bils and sign. The
product goes inte X Register "o, "IXX" is cleared, X Register "g" is ruined, and the

symexes "THX" and "FX1" are "used up". (Since symex "S8" is defined within the macro,

it is not "used up".)

TXX=000110 USE=000100

FXi= 1

S=

==DEF MULX,ax8
DPX TXX
1
‘Exquxx

5= szz, TXX
INKa'a
INKB 8
RSKFXITXX
JPXFKIS

m=EMD

100 |

USE~> MULX,1%2
DPX TXX |eo1600 000110000100
Fexx , TXx |o11401 ooo110] 101
‘szz 1.1 TXX |261721 ooo110| 102
INX |5 |o21201 400107| 103
INX 2|2 |oz1202 400107| 104
RSX by, TXX |oo1101 oo0e110| 105
JPX o) S | 400601 000102] 106
» |ecoooz 0ooooa| 107

TXX= 0 |oooooo cooooo0|oooise

mwSUM 037643

6-3k October 1961

Example 4. An open subroutine for "exclusive or" using & compound macro name.

In the macro below, the result goes into X Register "o, TXX is set to (@), c(g),
and X Register "B" is not changed.

the symbols @ , © , and @ are not available as macro names.

BILL= 1

TOMM= 2

== DEF

=EMD

100 |

USE=

TXX=

rwSUM

October 1961

TXX=000106

@8

‘opx, TXX
n2ppx, TXX
»'7com E
KITE TXX
RRSX_E

2
AUXaE

TOMM@BILL

1
DPX BILL TXX

2
h
DPX TOMM TXX

' 7com E
BITE TXX
h

RSX roun &
2

AUX 1omm B

036551

6-35

USE=000100

|ozz1601
|421602
|s7s600
| 404000
|401102

|o21002

000000

An underline was used in the macro name because

000106000100

000106 |
377610
000106 |
377610]|

377610]|

000000 |

101

102

103

108

106

T-1

a2

-3

TX-2 USERS HANDBOOK
CHAPTER T - VARIOUS TABLES

TABLE OF CONTENTS

IN-OUT SEQUENCE NUMBER ASSIGNMENTS

STANDARD CONFIGURATIONS

COPERATION CODE MNEMONLICS

META-COMMAND MNEMONICS

XEROX CHARACTER CODES

LINCOLN WRITER CHARACTER CODES

ML COMMA CHART

AVERAGE DUFATICN OF INSTRUCTIONS

October 1961 T-0

IN-QUT SEQUENCE ASSIGNMENTS FOR TX-2

oo STARTOVER

40 60 DISPLAY NO* 1

41 ALARM, IN-0UT 61 RANDOM NUMBER GENERATOR

42 TRAP 62 PUNCH NO- 2

43 63 PUNCH NO- 12

44 64

45 IBM MAG TAPE 65 LINCOLN WRITER INPUT NO- 1

46 MAG TAPE BULK STORAGE 66 LINCOLN WRITER OUTPUT NO* 1I
47 MISCELLANEOUS INPUTS 67

50 DATRAC 70

51 XEROX 71 LINCOLN WRITER INPUT NO- 2

52 PETR 72 LINCOLN WRITER QUTPUT NO- 2
53 73

54 INTERVAL TIMER 74 PLOTTER

55 LITE PEN 75 MISCELLANEOUS OUTPUTS

56 DISPLAY NO- 2 76

57 77

Table T-1

October 1961

TABLE T-2
STANDARD COMNFIGURATION SET
o Fle] DESCRIPTOR a Fle| DESCRIPTOR
0 co0o 432144I‘ 20 200 f_if__zl‘_t*{
el
1 340 4 3-2 1 J_L 21 230 4 3:2 1 * ‘
2 342 2 1+4 3 \:h 22 232 214 3 ‘/‘//’
3 760 4-3-2-1 ‘_L 23 732 2:1r443 u/
4 761 1+4+3:2 X' 24 733 3.2-1-4 |_|/
5 762 2+1:4-3 \t: 25 730 4:3:2-1 J.:
6 763 3e2+104 \ 26 731 1+4+3-2 XI
7 410 4 3 2-1 * { l 27 605 1-2-3-4 L_‘f\:?g_n
10 411 14 3.2)é(/ 50 600 $:35-2-1 iiil
11 140 4521 i + 31 750 4-3-2-1 ‘
L
12 142 21 4 3 \\‘ 32 670 4321 ;_t
13 160 4 3 21 * 33 320 4 3.2 1 + *
-1 | 255D g i 5
14 161 1 4 3 2 1___\‘.4 34 533 3 2+1 4 /
= - S—]
15 162 21¢1|__, 35 330 4_.:_21I__t
16 163 321 4 1___3 36 331 1 43 2 \
= i L ;
12 202 2143 &3& 57 604 3:4102 AMA
STANDARD FERMUTATIONS
L1 T | B | 7L | RNK | 261 XX || 75X
0 o 3 L 5 6 T
October 1961 Table T-2

¥®
TABLE T-2A
STANDARD CONFIGURATION SET
a Flel DESCRIPTOR a Fle| DESCRIPTOR
L 3 2 1 L 3 21
0 ooo 4321 | | | | 20 200 4. 3.21 | | | |
1 540 4 3.2 } | | 21 230 4 3.2 1 | |
2 342 2 1+4 3 \E\‘t 22 233% g dvd 3 T
3 760 de3e201 '_|‘ 23 671 1040302 /
L 3 2 1 L 3 2 1
4 761 l1ed4e302 \I_l 24 672 2e10403 /
5 762 2010403 \\r__l 25 673 3420104 L...'...I//
o res s | s e sarz 56K
7 410 43 2.1 | | | 27 605 1e2:3e4 L_’;L)gl
L 3 21 Yy 3 2 1
10 a11 1 s se2 DO so eoo aezezex L
11 140 43 2 1 | | 31 750 4930201 L_L
12 142 2 1 4.3 32 730 4.3.2e1 Jl
Sl y =
13 160 435 2 1 | 33 670 4:3.2+1 |
- - [N
h 3 2 1
14 161 1 4352 | \\\l 34 To be assigned by the user
15 162 2 1 4 J \\ 35 n n n n n mn
= e NG
1 ‘ 1 63 s 2 I ‘ l\. : J 5 n n n n 1" mn
To be assigned by the user, but
17 202 2 1+4 3 % 37 also used by Executive System.
(So use hold bit.)
STANDARD PERMUTATICNS
0 1 2 3 b 5) 7

*For use with the TX-2 Executive System Only.

February 1964

Numerical Order Alphabetical Order Supernumerary Mnemonics

0 ADD - 67 (1) mp - nep
1 ADX - 15 1
2 AUX - 10 s S
3 coM - 56 JPS - P
4 - 108 CAB - &2 3
: D3) ook - 6 BRS -thMP
6 - JPK CYB - 61 JPq -7 JMP
7 - JNX DIV - 75 15
10 - AUX DEX - 16 ohd il
11 - RSX DSA - 63 JES -7 JMP
12 - SKX (2) EXA - 5 20
13 EXX - 1b e %
1h - EXX FLF - 31 BRD -~ JMP
15 - ADX FLG - 32 22
12 - mx NS - 55 Jos -23JMP
17 - SKM (3) 105 - b BDS -T7MP
20 - LDE ITA - 41
21 - SPF ITE - Lo o)
22 - SPG M - 5 (Elﬂm{-esz:{_smc
23 JHA - L7 INX - "SKX
24 - LDA JNX - 3
25 - LDB JOV - Lb DEX - MSKX
26 - LIC JPA - L6 SXD - SKX
27 - LDD JPX - 6 6
30 - STE DA - 2k B TSKK
31 - FLF LDB - 25 s¥e - 'skx
32 - FIG LDC - 26 Pl L
33 LDD - 27 e
34 - STA LDE - 20 RXD -7 SKX
35 - STB MUL - 76 30
36 - STC NAB - 66 HEZ = SR
37 - STD oA - 6
Lho - ITE RSY - 11
b1 - ITA SAB - T2
b2 - UNA SCA - TO
43 - SED SCB - 71 Make
L - Jov SED - 43
b5 SKM - 17
e - Jea SKY - 12
by - JNA SFF - 21
50 SPC - 22 Skip
o1 STA - 34
52 STB - 35
53 STC - 36
5ho- EXA STD - 37 Skip
55 - INS STE - 30 on
56 - COM SUB - 77 —
27 - TSD TSD - 5T
0 - CYA TLY - Th S7I 23
61 - CYB UNA - k2 3OBKM
62 - CAB Skip SKN -~"SKM
gﬁ on sne sk
- NOA One < 32
65 - DSA SNZ -°SKM
66 - NAB 33
SHN
67 - ADD ... usm
70 - SCA (CYR - ‘'sKM
71 - SCB _5
75 - SAB MCR SKM
73 MZR - -SKM
Th - TLY =
%5 - DIV Rotate<MNR 3l+SKM
76 - MUL SNR -~ SKM
L sz -2tsiot
1h

OPERATION CODE MNEMONICS

Table 7-3 October 1961

T-% META-COMMAND MNEMONICS

Clean
IW Read Input
Reconvert

Name

Insert
Delete
Replace

>- Changes

Move _J

List

Type

Plist

Directive punch
Tair r Output
Ldir

Binary Store
Punch Binary

Goto _

Decimal
Octal
T=CR
T=Tab > Format
End

RC

Sumck o

Save

Read > Mag Tape

Core

\

Define
EMD

Macro

Demo

October 1961

BIN
CLEAN
CORE
DEC
DEF

DEMO
DIR
END

GOTO
Ins
LDIR
LIST
W
MOVE
NAME
ocT
PLIST
PUN
RC
READ
REC
REP
SAVE
SUMCK
TAPE
TDIR
TYPE
T=CR
T=TAB

Table 7-k

Binary Store

Clear M4 Directive Storage
Tape to Core

Decimal

Define

Delete

Demonstrate

Directive Punch

End of Multiple Word Meta-Command
End of Macro Definition
Go To User's Program
Insert

List Directive on Xerox
Print Listing on Xerox
Lincoln Writer Read-in
Move Program Block

Set User Identification
Octal

Punch Listing

Punch Binary

RC Store

Read Directive from Tape
Reconvert

Replace

Save Directive on Tape
Sum Check

Core to Tape

Type Directive

Tab equals Carriage Return
Tab equals Tab.

XEROX PRINTER CHARACTER CODES

CHARACTER OCTAL CODE CHARACTER OCTAL CODE
A 154 1 122 (107)
B 142 k 324 (034)
c 361 (0se)fo71)346) n 323 (033)
D 352 4 024
E 313 (043) q 111
F 344 (05a4) t 112
G 302 (012) 0 173
H 354 x 174
1 172 (157) ¥ 163
J 144 Z 164
K 143 a 310 (040)
L 332 (0a7)o62)3127) B 311 (041)
M 360 (oss)o7o)(3a4s5) ¥ 333 (063)
N 370 (355) a 203
0 353 € 334 (064)
P 312 (042) A 023
Q 160 (145) 1 001
R 371 (3586) 2 002
S 322 (017)032)307) 3 003
T 153 4 004
u 362 (os57fo72)347) 5 0zo0 (o0os)
v 152 6 021 (006)
W 343 (053) 7 022 (007)
X 161 (146) 8 300 (010)
Y 342 (0s52) 9 301 (011)
z 162 (147) 0 (ZERO) 000
k 132 (117) ? 202
i 133 » (COMMA) 204
< 220 (205) n 120 (105)
> 221 (2068) 2 121 (108)
« (PERIOD) =222 (207) % 113
+ 351 O (CIRCLE) 714 (444)
- 372 (357) ~ 373
v 340 (050) A 341 (051)
" 363 (073) & 364 (074)
| 730 (a4s)as0)715) | 7351 (44s6)461)716)
P 705 (413) U 704 (a14)
} 720 (415)430)705) { 721 (416)431)7056)
- 150 -+ 151
_ 570 (555) = 571 (556)
(140) 141
= 114 = 130 (115)
/ 131 (1186) * 102
u 103 < 104

Wote: Bit 1.9 of the Xerox Character Code is a "size control bit". "1" means large, and

"0" means small. The codes are given above with the "proper' size.

Table T-5 October 1961

0o
01
02
03
04
o5
06
oz
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36

37

October 1961

TX-2 LINCOLN WRITER CODES

o[
READ IN
BEGIN
NO

YES

A n

40

%1

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

7d

75

76

77

= = 1=
™ -

-
>

. ®

CAR RETURN
TAB

BACK SPACE
COLOR BLAC
SUPER
NORMAL

sus

COLOR RED
SPACE

WORD EXAM
LINE FEED
LINE FEED
LOWER CASE
UPPER CASE
STOP

NULLIFY

K

DOWN

UP

T

M4 COMMA CHART

COMMAS BEFORE

COMMAS AFTER

DIAGRAM

0 o * * { * hhk 333 222 111
2 1 / N, e
0 2 ‘{/ BE & =
0 3 /// 333 222 111 -
4 Y ‘ s s oos 10
& B // - 222 111 -
L 2 / & HE & =
1 3 + * ‘ Lkl 333 222 -
8 0 ’ + w208 TIL
. 1 / I 5 5 A
5 £ >§< 222 111 hkb 333
3 e + T i
3 1 \ _ _ - Ll
3 2 \ - b ..
3 3 - - Rl

Table T-T

Getol

s
2l

T7-8 AVERAGE DURATION OF INSTRUCTIONS

This duration chart was made by TH-2 by timing the duration of 8000 repetitions of

each operation with various combinations of memories. The columns are labled as follows:
P MEM - The memory used for the instructions.
OF Code = The instruction being timed.
A - The memory used for intermediate deferred address (if any).
Q@ MEM - The memory used for final operand (if any).
MM -~ Average duration in microseconds.

The abbreviations used within the columns are as follows:

- S memory
- T memory

Flip-Flop part of V memory (A,B,C,ete.)

59 6o

- Toggle Memory

The instructions are listed in numerical order (by op codes).

October 1961 Table T-8

P MEM 0P CODE A Q MEM MMS

5 AOP 167000 g0
T AQP 167000 640
5 I0S o 9.2
T I0S o 7.2
S JMP 7+6
T JMP 546
5 JPA 8.0
T JPA 60
5 JNA 8.0
T JNA 60
S Jov 8+0
T Jov 620
S JNX 9s6
T JNX 746
S JPX 9.6
T JPX 76
9 SKX 10+0
T SKX 8+0
5 SKX 5 20+4
T SKX S 18+4
S SKX T 18 +4
T SKX T 16+4
S AUX S 136
T AU S 11+6
S AUX VFF 12+4
T AUX VFF 10+4
S AUX VT 12+0
T AUX VT 1040
S AUX T 116
T AUX T 9+8
S R5X s 128
T RS X S 10+8
S RSX T 108
T RSX T g2
S RS X VFF I11+6§
iF RS X VFF 9+6
5 RS X VT 11-2
T RS X vT w2
5 ADX S 16+0
- ADX s 1040
5 ADX T 10+0
T ADX T §:2:.0
5 ADX VFF 108
T ADX VFF =y

Table 7-8, pg. 1 October 1961

MEM

7 B T e 7, T Y B R 7 S 7 T R N T 7 T B, T B 7 T B T B O T 7 I BT e T e O e O B B e B L B L I

October 1961

OP CODE

ADX
AD X
DPX
DPX
DPX
DPX
DPX
DPX
DPX
DPX
EXX
EXX
EXX
EXX
EXX
EXX
EXX
EXX
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKM
SKHM
SKHM
SKM
SKM
SKM
SKHM
SKH
SKHM
SKM
SKM
SKM
SKM
SKM
SKM
LDA
LDA

- = = = = =H v owv v wm wn wn wun u

Table 7-8, pg. 2

Q MEM

VT
vT

VFF
VFF
vT
vT

VFF
VFF
VT
VT

VFF
VFF
vT
VT

VFF
VFF
VT
VT

MMS

10+4
8.4
1440
7e6
746
10+0
B4
624
g+0
640
1440
11+2
11-2
10+0
116
9+6
112
9.2
148
946
946
10-8
104
g4
100
g0
25.2
2040
20+0
2142
208
18+8
20+4
18+4
252
18-0
18+0
19+2
1848
168
1448
g6
12-8

P MEM 0P CODE A 0 MEM MMS

S LDA T 518
T LDA T g8
S LDA VFF 6+8
T LDA VFF 5.2
S LDA vT 6+8
T LDA VT 4+8
S LDB S 12-8
T LDB 5 6+4
S LDB T 6+8
T LDB T 8.8
S LDB VFF 68
T LDB VFF 5.2
S LDB VT 68
T LDB vT 4.8
S LbDC S 12-8
T LbC 5 §+4
S LDC T &4
T Loc T g+0
s LDC VFF 68
T LDC VFF 5+2
S Loc vT 88
T Loc vT 48
S LDD S 12+8
T LDD 5 &:+4
S LDD T 6+8
T LDD T g8
S LDD VFF 5.28
T LDD VFF 5.2
S LDD vT 6+8
T LDD vT 4-8
S LDE S 12+8
T LDE S 6.4
S LDE T 6+8
T LDE T g-8
5 LDE VFF 6+8
T LDE VFF 542
S LDE vT 6+8
T LDE vT 4.8
S SPF 1 12+8
T SPF S 9+6
S SPF T 9+6
T SPF T 88
S SPF VFF 10-4
T SPF VFF 634

Table T-8, pg. 3 October 1961

P MEM 0P CODE & Q MEM HMMS

S SPF VT 10+0
T SPF VT 8.0
5 SPG S 12+8
T SPG 5 9486
S SPG T 956
T SPG T g8
S SPG VFF 10+4
T SPG VFF 84
5 SPG VT 10+0
T SPG VT 8+0
S STA s 14+0
T STA S 746
S STA T 6.8
T STA T 10+0
] STA VFF 6+8
T STA VFF 5.2
S STA VT 68
T STA vT q4:8
S sTB S 14+0
T STB S 7:6
S STB T 6+8
] STB T 1040
S STB VFF 6+8
i STB VFF 5e2
S STB VT 68
T STB VT 4+8
S STC S 1440
T STC S 76
S STC T 648
T STC T 10+0
S STC VFF 648
T STC VFF §+2
S STC VT 6-8
T STC VT 4.8
S STD S 140
T STD S 76
S STD T 6:8
T STD T 10+0
5 STD VFF 6+8
T STD VFF 5«2
S STD VT G+ 8
T STD vT 48
S STE S 14-0
T STE S 76

QOctober 1961 Table T-8, pg.

P MEM OP CODE a Q MEHM MM S

s STE T 68
T STE T 10+0
§ STE VFF 6+8
T STE VFF 5.2
- STE vT 68
T STE vT 48
S EXA S 140
¥ EXA S 76
S EXA T 6+8
T EXA M 10+0
S EXA VFF 68
T EXA VFF 5.2
S EXA VT 6+8
T EXA VT 4:8
s ITA S 12-8
T ITA S 6+4
s ITA T 6+8
T ITA T: g8+8
S ITA VFF 68
T ITA VFF 52
S ITA VT 6+8
T ITA VT 4.8
S UNA S 1248
T UNA S 64
S UNA T 6+8
T UNA T g-8
S UNA VFF 6+8
T UNA VFF 52
- UNA VT 6+8
T UNA VT 4.8
-1 DsSA S 12+8
T DSA S o
5 DSA T 68
T DSA T 88
5 DSA VFF 68
T DSA VFF 52
S DSA VT 68
T DSA VT 4.8
S ITE S 12+8
T ITE S 64
S ITE T 68
T ITE T g8
S ITE VFF 6+8
T ITE VFF 5.2

Table 7-8, pg. 5 October 1961

P MEM 0P CODE a Q MEM MMS

S ITE VT 68
T ITE vT 48
S SED S 12:8
T SED S 9+6
S SED T 9+6
T SED T g8
] SED VFF 10+4
T SED VFF 8+4
5 SED VT 10-0
T SED vT 8e0
S FLF] 1440
T FLF S 76
S FLF T 6+8
T FLF T 10-0
S FLF VFF 68
T FLF VFF 60
s FLF VT 68
T FLF VT 4.8
S FLG S 1546
T FLG S g8
s FLG T 8«4
T FLG T 1146
S FLG VFF 84
T FLG VFF 8s0
S FLG VT 8.4
T FLG VT 6+8
S TSD [144
T TSD s g8
S TsD T 746
T TSD T 10+4
S TSD VFF 76
T TSD VFF 88
S TSD VT 746
T TSD vT 8+8
S INS S 15-2
T INS S 8.8
S INS T 6+8
T INS T 112
S INS VFF 6+8
T INS VFF 6+4
-3 INS VT 68
T INS VT 6.0
S COM S 14+8
T COM 5 ged

Table 7-8, pg. 6

October 1

-
O
o)
=

P MEM OP CODE a Q MEM MMS

S COM T 648
T CoM T 10+8
S COM VFF 648
T COM VFF 64
S coM vT 648
T CoM VT 6.0
S ADD S 12-8
T ADD S 624
S ADD T 68
T ADD T g8
S ADD VFF 6+8
T ADD VFF 5.6
S ADD vT 68
T ADD vT 4.8
S SUB S 1248
T sue S 6e4
8 SUB T 6+8
T SuB T 8+8
S SUB VFF 6+8
T SuB VFF 5.6
S suB vT 6+8
T suB VT 4.8
S MUL S 20-8
T MUL S 208
S MUL T 19+6
T MUL T 200
S MUL VFF 19+6
T MUL VFF 20+8
S MUL VT 196
T MUL VT 15-2
s 7 MUL $ 1746
T 7MuL $ 1746
S 7MuL T 16+4
T "MuL T 1542
s "ML VFF 164
T 7MuL VFF 16-0
S 7MuL VT 16+4
T “MuL VT 16+0
S TwuL S 160
T TwuL s 144
s TmuL T 1146
T MuL T 1240
$ FmuL VFF 13+2
T TwuL VFF 1248

Table 7-8, pg. 7 October 1961

e B I Y T R e e B B B B T B B T B T B R I e B B T Y T 7 S 7 N 7 B B S A S

MEM 0P CODE & 0 MEM MMS

IMuL VT 1502
TmuL VT 1248
SMuL s 12+8
SMuL s 112
*MuL T 10+0
JHUL T g8
*nuL VFF 10+0
MuL VFF 946
SmuL VT 10-0
SmuL VT 9+6
DIV s 80+0
DIV S 800
DIV T 772
DIV i 7746
DLV VFF 788
DIV VFF 784
DLV vT 772

DIV vT 784
“prv s 60+8
“prv s 60+8
“prv T 5946
“pIv T 6040
“prv VFF 5946
“prv VFF 60+2
“prIv VT 5946
“prIv VT 5942
Ip1v s 43+2
Ip1v S 432
’nxv T 420
IDIV T 408
Ip1v VFF aze0
Ip1v VFF a1+
Iprv VT 4240
Iprv VT 41+6
*p1v 5 2244
Sp1v s 2244
Sp1v T 19+
®p1v T 20+0
*prv VFF 2142
*prv VFF 208
*prv VT 19+6
3prv VT 2048

TLY s 19+=2

TLY S 192

[60]

October 1961 Table 7-8, pg.

P MEM

- =H A =W =W = -H WM H WM AW AWV =WV =W =W =W =W =W - W - = - - -HWw

OP CODE

TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
1oy
Iroy
froy
iy
ey
iy
L T
*TLy
SrLy
StuLy
TLY
TLY
TLY
TLY
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA

ok NN NN NN NN

3
3
3
3

NN ON N NN

A

Q MEM

VFF
VFF
VT
T

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF

Table 7-8, pg. 9

MMS

16+4
16+8
180
17+6
18+0
17+6
16+-0
160
13-2
13+6
148
14+4
13+-2
14+4
12+8
11+2
10+0
120
100
11+2
100
9+6
12+8
8.0
68
g8
6+8
a0
6+8
a0
12+8
g0
68
g8
6+8
g-0
6+8
g0
12+8
80
G+8
a+8
6-8
8-0

1072
1072
1044

1048

1060
105+6
107 +2
1072
104+4

10448

October 1961

P MEM OP CODE A Q MEM MMS

s 7sca VT 6+8 106+0
T 7scA VT 8.0 105+6
s Isca s 1248 1072
T Isca s 8.0 10742
S Isca T 6-8 104+4
T lscn T 8.8 10448
s tsca VFF 6.8

T Isca VFF 8.0

s Isca vT 6+0 106+0
T Isca vT a0 10546
S JSBA S 12+8 1072
T 3SCA S 8.0 1072
s ®sca T 6+8 10444
T *sca T g8 10448
s *sca VFF 68

T >scA VFF 8.0

S SSCﬁ vT 68 1060
T ®sca VT 8.0 10546
S SCB S 12-8 1072
T SCB S 8.0 1072
S SCB T 68 104+4
T SCB T g8 104+8
S SCB VFF 68 10640
T sce VFF 8.0 10546
5 SCB VT 648 106:0
T SCB VT 8.0 105+6
s SAB s 12+8 1072
T SAB S 8.0 1072
S SAB T 68 10444
T SAB T gs8 104+8
s SAB VFF 68

T SAB VFF 80

S SAB VT 68 10640
T SAB VT g+0 10546
S ?SAB S 12+8 1072
T 7sns s 8.0 1072
5 7sns T 6.8 104+4
T 7sAB T g+8 104+8
5 "sns VFF 6+8

T 7sAB VFF 8.0

s 7snB VT 68 10640
T ?SAB VT g+0 105+6
S 1sas S 12+8 107 +2
T 1sas s 8.0 10742

October 1961 Table 7-8, pg. 10

P MEM 0P CODE a Q MEM MMS

S ISRB T 6.8 1044
T Isas T 8.8 104-8
s Ysas VFF 6+8

T Isps VFF 840

S Ispp VT 68 10640
T ‘sns VT 8+0 10546
s *saB 5 12-8 1072
T Ssas 5 g0 107-2
s 3sns T 6.8 104+ 4
L *sas T 8+8 104+8
s *sas VFF 68

.3 ®sas VFF 840

s ®snB VT 6.8 106+0
i 3saB VT 8.0 10546
s cye 5 1248 1072
T CYB S 80 1072
5 CYB T 6+8 10444
T CYB T g+8 104+8
S CYB VFF 6+8 10640
T cyYe VFF 8.0 105-0
S CYB VT 68 106+0
T cYB vT g+0 1056
S ?CYB S 12+8 1072
T 7cys S 8.0 1072
s 7cyB T 6+8 104-4
T ?CYB T g8 1648
s 7cys VFF 68 10640
T “cys VFF g0 1056
S 7cys VT 6.8 10640
T 7cys . VT 8.0 10546
S 1CYB S 128 107 -2
T Icys s 8.0 107+2
s ‘cvs T 68 1044
T Ieve T 88 104.8
S lCYB VFF 648 106+0
T lCYB VFF 8+0 105+6
S Icve VT 6+8 10640
T Icve VT 840 105+6
s sCYB S 12+8 107 =2
T *cys s 80 10742
s Scys T 6.8 1044
T ECYB T g+8 104+8
s Scye VFF 6-8 106-0
T Scys VFF 8+0 1056

Table 7-8, pg. 11 October 1961

P MEM

- o o W A n -4 n A n A 0 A A - 0 - n A unu - unu - unu -4 - un A0

October 1961

0P CODE

3cys
*cvs
CYA
CYA
CYA
CYA
CYA
CYA
CYA
CYA
CAB
CAB
CAB
CAB
CAB
CAB
CAB
CAB
NOA
NOA
NOA
NOA
NOA
NOA
NOA
NOA
NAB
NAB
NAB
NAB
NAB
NAB
NAB
NAB

a Q MEM

vT
vT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

Table 7-8, pg. 12

MMS

68
80
12-8
80
68
8+8
6+8
80
6+8
80
12+8
8-0
68

g8

8+0

6+8

8.0
152
19+2
18+0
18+4
18+0
1992
180
176
336
336
32+4
3208
32+4
3546
32+4
32.0

106+0
1056
1072
1072
104+4
104+8

38+2

388
1060
10546
1072
1072
1044
1048

58.8
10640
105+6
128
g8+0
68
g-a
Ge8
g+0
6+8
8.0
128
8.0
6+8
8-8
6+8
8.0
68

8+0

7]

T-L

-5

TX-2 USERS HANDBOCK
CHAPTER 7 - VARIOUS TABLES

TABLE OF CONTENTS

IN-OUT SEQUENCE NUMBER ASSIGMMENTS

STANDARD CONFIGURATIONS

OPERATION CODE MNEMONICS

META-COMMAND MNEMONICS

XEROX CHARACTER CODES

LINCOLN WRITER CHARACTER CODES

M4 COMMA CHART

AVERAGE DURATICN COF INSTRUCTIONS

October 1961 T-0

IN-0UT SEQUENCE ASSIGNMENTS FOR TX-2

oo STARTOVER

40 60 DISPLAY NO- 1!

41 ALARM, IN=-OUT 61 RANDOM NUMBER GENERATOR

42 TRAP 62 PUNCH NO-* 2

43 63 PUNCH NO- 1

44 64

45 1BM MAG TAPE 65 LINCOLN WRITER INPUT NO- 1

46 MAG TAPE BULK STORAGE 66 LINCOLN WRITER OUTPUT NO- 1
47 MISCELLANEOUS INPUTS 67

50 DATRAC 70

51 XEROX 71 LINCOLN WRITER INPUT NO- 2

52 PETR 72 LINCOLN WRITER OUTPUT NO- 2
53 73

s4 INTERVAL TIMER 74 PLOTTER

55 LITE PEN 75 MISCELLANEOUS OUTPUTS

56 DISPLAY NO- 2 76

57 77

Table T-1

October 1961

TABLE 7-2
STANDARD CONFIGURATION SET
a Fla| DESCRIPTOR « Flel DESCRIPTOR
[¢] 000 4321**'* 20 200 4 3-21 J_L‘*
1 340 4 3.2 1 J_L 21 230 4 3.2 1 & ‘
2 342 2 1:4 3 \\é_\‘! 22 232 21:43 ‘4/
3 760 4.3.2.1 LL 23 732 2:1+4-3 I.._I/
4 761 1+4:3:2 _I 24 733 3-2-1-4 u/
5 762 2:1:4-3 \1._’ 2s 730 4:35-241 LL
6 763 3-2-1:4 \ 26 731 1-4-3-2 E
7 410 4.3 21 & Vi 27 605 1-2:3-4 o
et o e
10 411 1 4 3.2)\)\/ 30 600 AeSeged i‘in_t‘_t
11 140 4321 i { 31 750 4:3:2-1 $
{ et |
12 142 212:_\‘__‘ 32 670 -4-321.1‘
13 160 a3 2 J_l___{l 33 320 4 5.2 1 L_‘“_il
14 161 143 2 L__\\...n 34 333 3 2:1 4 t_—'_'_l,(’
15 162 21 43 | \, 3s 530 4 3+2 1 v
16 163 szxil___“l 36 331 13_52‘:‘
17 202 2 14 3 LZI%J 37 604 ii'_.l_'i AL
STANDARD PERMUTATIONS
[T S| 7L XKNX | = I XX T X
0 2 3 L 5 6 7
October 1961 Table T-2

Numerical Order Alphabetical Order Supernumerary Mnemonics

0 ADD - 67 (1) P - OJT-IP
1 ADE - 15 1

> AUX - 10 g EM
3 CoM - 56 JPs - “JMP
4 - 108 CAB - 62 3

5 - P (1) CYA - 60 BEE -thMP
6 - JPX CYB - 61 JPq -7 IMP
7 - JNK DIV - 75 15

10 - AUX DPX - 16 R
11 - RsX DSA - 65 JES -7 JMP
12 - SKX (2) EXA - 5k 20

13 EXX - 14 2z '21‘]“?
14 - EXX FLF - 31 BRD -“TaMP
15 - ADX FLG - 32 2p

16 - DPX INS - 55 414 '23JMP
17 - SKM (3) 08 - L BDS -~ -IMP
20 - LDE ITA - 41

21 - SPF ITE - Lo 0
on _ ang M - 5 (E)RE}{—QSE}{-SKK
23 JNA - k47 INX - “SKX
24 - LDA JVX - T 3

25 - LDB JOV - L BEK = hsm:
26 - LIC JPA - L6 SXD - 'SKX
27 - LDD JPL - 6 (&)

30 - STE LDA - 24 i TSKX
31 - FLF LDB - 25 SXG - 'SKX
32 - FIG L - 26 10

RXF -

33 LDD - 27 B
3k - STA LDE - 20 RXD -“"SKX
35 - STB MUL - 76 30

36 - STC NAB - 66 Rl
37 - STD oA - 64 §

Lo - ITE RSX - 11 (3) s - “skM
L1 - TTA SAB - 72 T

2 - UNA SCA - 70 R
43 - SED 8CB - 7L Make MKZ - “SKM
kb - Jov SED - 43 3

Ls SKM - 1T MKN -msm
L& - JPA SKX - 12 SKU -7 SKM
L7 - JnA SPF - 21 R

50 SPG - 22 skip < o
51 STA - 34 SUZ -TSKM
52 STB - 35 sun - L3sxm
53 8TC - 36 =y 50

54 - EXA STD - 37 Skip SKZ -~ SKM
79, =l STE - 30 on szc Lo
56 - COM SUB - TT Zero '< 2z

27 - TSD TSD - 57 S22 -““SKM
0 - CYA TLY - T4 ey 23

61 - CYB UNA - b2 c 305m
62 - CAB Skip |SK¥ -7 SKM
63 on SNC -STsKM
Eh - NOA One < 32

65 - DSA SNZ -~"SKM
66 - NAB 33

&7 - ADD gNN fm
T0 - SCA CYR - 'SKM
71 - SCB .5

75 - SAB MCR 65}@4
73 MZR - ~SKM
T4 - TLY T

5 - DIV Rotate<m 31+sm
76 - MUL SNR -~ SKM
77 - SUB p—L

sur - i

OPERATION CODE MNEMONICS

Table T-3 October 1961

7-4 META-COMMAND MNEMONICS

Clean A BIN - Binary Store
IW Read CLEAN - Clear Mh Directive Storage
} Input
Reconvert CORE - Tape to Core
Name p, DEC - Decimal
DEF - Define
Insert k: DEL - Delete
Delete > Gikagse DEMO - Demonstrate
Replace DIR - Directive Punch
Move W, END - End of Multiple Word Meta-Command
D - End of Macro Definition
List A GOTO - Go To User's Program
Type INS - Insert
Plist LDIR - List Directive on Xerox
Directive punch LIST - Print Listing on Xerox
Tdir } s W - Lincoln Writer Read-in
Ldir MOVE - Move Program Elock
Binary Store NAME - Set User Identification
Punch Binary ocT - Octal
Goto 4 PLIST = Punch Listing
PUN - Punch EBinary
Decimal h RC - RC Store
Octal READ - Read Directive from Tape
T=CR REC - Reconvert
T=Tab &- Tormat REP - Replace
End SAVE - Save Directive on Tape
RC SUMCK - Sum Check
Sumek J TAPE - Core to Tape
TDIR - Type Directive
Save TYFE - Type Listing
Read E’_ S e T=CR - Tab equals Carriage Return
Tape T= - Tab equals Tab.
Core y
Dofips Macro
EMD
Demo

October 1961 Table T-4

CHARACTER

A

V A = N < x E == € A4 D O WO ZT I FR &2 I ommo oo

L et e B

|

C ~

(PERIOD)

XERO% PRINTER CHARACTER CODES

OCTAL CODE

154
142
361
352
313
344
302
354
172
144
143
332
360
370
353
312
160
371
322
153
362
152
343
161
342
162
132
133
220
221
222
351
372
340
363
730
703
720
150
570
140
114
131
103

(ese)o71)(348)

(043)
(0s54)
(or2)

(157)

(o0a7)os2)317)
(ess)o70)345)
(355)

(042)
(145)
(356)
(017)032)307)

(os7)o72)347)

(0s3)
(148)
(052)
(147)
(127)

(205)
(208)
(207)

(357)
(os0)
(e73)
(445)460)715)
(413)
(¢15)4a30)705)

(558)

(118)

i
k

WO OB Om N G ot b W m b = ® A N -~ A W 3

x 2

o

4 —O0= = H

—

m

*
c

CHARACTER

(ZEROD)

(COMMA)

(CIRCLE)

Note: Bit 1.9 of the Yerox Charscter Code is a "size control bit".
The codes are given above with the "proper" size.

"0" means small.

Table 7-5

ocT
122
324
323
024
111
T2
173
174
163
164
310
311
333
203
334
023
001
o0z
003
004
020
021
0z2
300
301
000
202
204
120
121
113
714
373
341
364
731
704
721
151
571
141
130
102
104

AL CODE
(107)
(o34)
(033)

(040)
(041)
(063)

(064)

(00s)
(oos)
(007)
(010)
(011)

(105)
(108)

(444)
(051)
(o7 4)
(aa6fa61)716)
(414)
(416 431)708)

(556)

(115)

"1" means large, and

October 1961

TX=2 LINCOLN WRITER CODES

[+ R+] o = 40 Qd

°r 1y 41 R &

oz 2 | 4z S p

o3 3 | 43 T €

o4 4 [/ 49 U k

05 5 x 45 V >

06 6 # 46 W B

07 7 - 47 X A

10 8 < 50 Y A

1 9 > 51 Z ~

12 7 o5z {

13 o[s3) }

14 READ 1IN 54 + =

15 BEGIN §5 = =

16 NO 56 , !

17 YES 57 o *

20 A n 60 CAR RETURN
21 B c 61 TAB

22 C v 62 BACK SPACE
25 D 4 635 COLOR BLACK
24 E 7Y 64 SUPER

25 F ¢ 65 NORMAL

26 G w 66 SUB

27 H = 67 COLOR RED
30 I 4 70 SPACE

31 J vy 71 WORD EXAM
32 K = 72 LINE FEED DOWN
33 L 7 735 LINE FEED UP
54 Mu 74 LOWER CASE
35 N n 75 UPPER CASE
36 0 4 76 STOP

37 P k 77 NULLIFY

October 1961 Table T-6

T=7 P_L COMMA CHART

COMMAS BEFORE COMMAS AFTER CRAM DTAGRAM EXAMPLE

[=
(=
=
--—
-—
-z
L
I
o
]
)
M3
i
i

o
L
L
o
el
]
o
™
E
1

—
—
\ \ -
1
Y,
D
n
-
W
o
1

Rad
=

Table T-T October 1961

7-8 AVERAGE DURATION OF INSTRUCTIONS

This duration chart was made by TX-2 by timing the duration of 8000 repetitions of

each operation with various combinations of memories. The columns are labled as follows:
P MEM = The memory used for the instructions.
CP Code - The instruction being timed.
A - The memory used for intermediate deferred address (if any).
@ MEM = The memory used for final operand {if any).
MMS - Average duration in microseconds.

The abbreviations used within the columns are as follows:

- S memory
- T memory
Flip-Flop part of V memory (A,B,C,etc.)

=T -

-~ Toggle Memory

The instructions are listed in numerical order (by op codes).

October 1961 Table T-8

P MEM 0P CODE A Q MEM MM3

S AOP 167000 80
T AOP 167000 6:0
5 10s 0 9.2
T 105 0 7e2
S JMP 7+6
T JMP 56
S JPA 80
T JPA 60
S JNA g8-0
T JNA 6+0
] Jov 8+0
T Jov 6.0
5 JNX 9+6
T JHX 7+6
S JPX I
T JPX 7+6
S SKX 10+0
T SKX 8+0
) SKX S 204
T SKX S 18+4
S SKX T 18+4
T SKX T 16+4
S AUX 5 13-6
T AUX S 11+6
5 AUX VFF 12+4
T AUX VFF 10+4
S AUX VT 120
T AUX VT 100
S AUX T 11+6
T AUX T 9+6
S RS X 5 1z-8
T RS X S 10+8
5 RSX T 10-8
T RSX T -8
S RSX VFF 11+6
T RS X VFF 946
g RS X VT 11:-2
T RSX VT 92
5 ADX S 160
T ADX S 10+0
5 ADX T 10+0
T ADX T 12+0
5 ADX VFF 10+8
T ADX VFF g-8

Table 7-8, pg. 1 October 1961

P MEM OP CODE o Q MEM MMS

S ADX VT 1044
T ADX VT 8s+4
S DPX S 14-0
T DPX S 76
S DPX T 746
T DPX T 10+-0
S DPX VFF gea
T DPX VFF 6+4
S DPX VT 8+0
T DPX VT 6+0
S EXX S 1440
T EXX S 1192
5 EXX T 11+2
T EXX T 1040
s EXX VFF 11+6
T EXX VFF 9:86
S EXX VT 11+2
T EXX VT 92
S SKM 5 1448
T SKM 5 96
s SKM T 946
T SKM T 10+8
s SKM VFF 1044
T SKM VFF 8+4
S SKM VT $050
T SKM VT &b
S SKM § s 252
T SKM S s 20+0
s SKM s T J—
T SKM s T Siap
S SKM S VFE 208
T SKM S VFF 188
5 SKH S VT 204
T SKHM S VT 184
S SKHM T, 2342
T SKHM T S 180
S SKM T T 18-0
F SKHM T T 182
S SKM T VFF 18+8
T SKM T VFF 1648
S SKM o 1448
T SKM 0 9+6
S LDA S 12-8
T LDA 5 6+4

October 196] Table T-8, pg. 2

P MEM OP CODE a Q MEM MMS

5 LDA T 6+8
T LDA T g8
S LDA VFF 68
T LDA VFF 5.2
S LDA VT 6+8
T LDA VT 48
S LDB S 12+8
T LDB s 64
S LDB T 6+8
1 LDB T g8
S LDB VFF 6+8
T LDB VFF 5.2
S LbB VT 68
T LDB VT 4.8
S LbcC S 12+8
T LDC S 64
S LocC T 68
T LDC T g+8
S LDC VFF 68
T Lpc VFF 502
S LocC vT 68
T LbC VT 4+8
S LDD S 12+8
T LDD S 6+4
s LDD T 6+8
T LDD T 8+8
S LDD VFF 6+8
T LDD VFF 5.2
S LDD VT 68
i3 LDD VT 4.8
S LDE S 12+8
T LDE S 604
] LDE T 6+8
T LDE T g8
S LDE VFF 6+8
) LDE VFF 5.2
S LDE vT 68
T LDE VT 4+8
S SPF s 12+8
T SPF S 9¢6
S SPF T 96
T SPF T 8.8
S SPF VFF 10+4
T SPF VFF 84

Table 7-8, pg. 3 October 1961

P MEM OP CODE B Q MEM MMS

S SPF vT 10+0
T SPF VT 8.0
S SPG S 12+8
T SPG s 9+6
S SPG T 9+6
T SPG T 8.8
$ SPG VFF 10+4
T SPG VFF 8+4
S SPG VT 10-0
T SPG VT 8-0
S STA S 14+0
T STA S 746
S STA T 648
T STA T 10+0
S STA VFF 6+8
T STA VFF 5+2
S STA VT 68
T STA VT 4.8
S STB S 14+0
i STB S 76
S STB T 68
T STB T 100
S STB VFF 6+8
T STB VFF §e2
S STB VT 68
T STB VT 4-8
S STC S 1440
T STC S 7e6
5 STC T 6+8
T STC T 10-0
S STC VFF 648
T STC VFF 5.2
S S$TC VT 6.8
T STC VT 4.8
s STD 5 140
T STD S 746
S STD T 68
T STD T 10-0
S STD VFF 68
T STD VFF §5e2
S STD VT 68
T STD VT qe8
S STE 5 14-0
T STE 5 76

October 1961 Table 7-8, pg. 4

P MEM OP CODE o Q MEM MMS

S STE T 68
T STE T 10:0
-1 STE VFF 6:8
T STE VFF 5.2
H] STE vT 6+8
T STE VT 4.8
S EXA S 140
T EXA S 76
S EXA T 68
T EXA T 10+0
S EXA VFF 68
T EXA VFF 562
S EXA VT 6+8
T EXA vT 448
S ITA S 12+8
T ITA S 6ed
S ITA T 608
T ITA T 88
5 ITA VFF 68
T ITA VFF 52
S ITA vT 608
T ITA VT 4.8
S UNA s 128
T UNA S Geaq
S UNA T 6+8
T UNA T 8+8
s UNA VFF 68
T UNA VFF 52
S UNA VT 68
T UNA VT 4.8
] DSA S 12+8
T DSA 5 6+4
S DSA T 68
T DSA : T 8+8
S DSA VFF 68
T DSA VFF 5.2
S DSA VT 6+8
T DSA VT 4.8
H ITE S 1248
T ITE 5 64
S ITE T 6.8
T ITE T g8
5 ITE VFF 6-8
T ITE VFF 52

Table T-8, pg. 5 October 1961

P HMEM 0P CODE a Q MEM MMS

S ITE VT 6+8
T ITE VT 48
S SED S 12+8
T SED H 9+6
S SED T 9+6
T SED T 8s8
S SED VFF 10+4
T SED VFF 84
] SED VT 10-0
T SED VT 8.0
S FLF 5 140
T FLF S 76
S FLF T 6+8
T FLF T 10-0
S FLF VFF 68
T FLF VFF 6.0
S FLF vT 68
T FLF VT 4.8
§ FLG S 15+6
T FLG S g+8
S FLG T 8:4
T FLG T 1146
S FLG VFF 84
T FLG VFF 8+0
S FLG VT 8+4
T FLG VT 68
S TSD 5 14+4
T TSD S g8
S TSD T 746
T TSD T 10-4
S TSD VFF 76
T TSD VFF 8.8
S TSD vT 746
T TSD VT g+8
S INS 5 152
T INS S 8.8
S INS T 6+8
T INS T 11+2
-1 INS VFF 68
T INS VFF 64
S INS VT 6+8
T INS VT 60
5 COM S 14+8
T COM S 8e4g

October 1961 Table T7-8, pg. 6

P MEM

e L I T 7 T T R T B T T 7 T O T R I I 7 I T T 7 T O 7 T T 7 T B 7 e T T T 7 L I - T B B I 2 R B T]

0P CODE

COM
COM
COM
COM
COM
CoM
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
“MuL
7 MUL
7MuL
”MUL
7 MuL
" MuL
MUL
MUL
MUL
MUL
MUL
MUL
TmuL
TmuL

[R . T |

1

Table 7-8, pg. T

Q MEM MMS

T 6+8
T 10-8
VFF 6+8
VFF 64
vT 68
VT 6+0
S 12-8
S 6+4
T 6+8
T 8.8
VFF 68
VFF 546
VT 6+8
vT 4.8
S 12+8
S 64
T 68
T g8
VFF 6+8
VFF 56
vT 6+8
VT 4.8
S 20+8
S 20+8
T 19+6
T 200
VFF 19+6
VFF 208
VT 19°+6
vT 192
S 17+6
S 17 +6
T 1644
T 152
VFF 16+4
VFF 16+0
vT 16+4
VT 16+0
S 16+0
S 144
T 11+6
T 1290
VFF 13+2
VFF 12+8

October 1961

P MEM Op CODE a Q MEM MMS

s TmuL VT 1342
T TMuL VT 1248
s SMuL 5 12+8
T *MuL s 112
s *MuL T 1040
T *MuL T g-a
s *MuL VFF 1040
T *MuL VFF 946
s S MuL VT 100
T *MuL vT 946
S DIV S 800
T DIV S 80+0
s DIV T 772
T DIV g 7 776
s DIV VFF 78+8
T DIV VFF 78+4
S DIV VT 772
T DIV VT 784
S 7DIV s 50+8
T “prv s 60+8
s “pIv T 5946
T “pIv T 60-0
$ “prv VEF 5946
T “p1v VFF 608
s “p1v VT 5945
T “prv VT 592
s Iprv s 432
T IDIV S 432
s Iprv T 4240
T tprv T 40-8
s Iorv VFF 4z+0
T Iprv VFF a1+
5 Iprv VT a2.0
T Iprv VT 416
s *prIv s 2244
T *pIv 5 2244
5 Spr1v T 19+6
T *prv T 200
5 *prv VFF 212
T Sprv VFF 208
s *prv VT 19+6
T *prv vT 208
S TLY S 19+2
T TLY 5 19+2

October 1961 Table 7-8, pg. 8

P MEM

B L L L 7, T T Ly S L R I T 7 I T 7, T T T R 7 e 7 T 7 e R I I BT T O T 7 R B

0P CODE

TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
TLY
"Ly
rey
Iroy
froy
Tty
Troy
Tty
Troy
IrLy
1Ly
SrLy
1Ly

TLY
1Ly
Sty
SrLy
SrLy
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA

7
7
7

7
7
7
7

3

b I B I I R |

A

Q MEM

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
VT
VT

VFF
VFF
vT
VT

VFF
VFF

Table 7-8, pg. 9

HHS

16+4
168
180
17 +86
18+0
17 +6
16+0
16+0
152
136
14+8
14+4
132
144
12+8
11-2
10-0
12+0
100
112
10+0
9+6
12+8
8+0
68
88
6+ 8
8+0
68
80
l2+8
80
6+8
8.8
6+8
8+0
68
80
l12+8
8«0
6+8
8+8
68

8.0

1072
1072
104+ 4

10448

10640
10546
10742
107+2
104+4
104+8

October 1961

P MEM

B L S L s T 7 e T 7 7 T 7 T B, TR B 7 T B T B T I L L T T BT e B e B B B B B I B

October 1961

0P CODE

7sca
7sca
1sca
Isca
Isea
Isca
‘sca
AseA
Isca
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCA
SCB
SCB
SCB
SCB
sCB
SCB
SCB
SCB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB

7snB

7snB

7shAB
7 SAB
7sAB
7saB
SAB
SAB
Tsas
‘saB

W o e e L N

7
7

A Q MEM MMS

VT 6-8
VT 8+0
S 12-8
S 8.0
T 6+8
T 88
VFF 68
VFF 80
VT 608
VT 8.0
5 12+8
S 8:0
T 6+8
T 8.8
VFF 68
VFF 8.0
vT 6+8
VT a-0
S 12+8
5 8+0
T 68
T g8
VFF 68
VFF 8.0
VT 6+8
VT 8+0
S 128
b 80
T 6+8
T 8+8
VFF 6+8
VFF 8+0
VT 6+8
VT 8.0
S 12+8
S 8+0
T 6+8
T g+8
VFF 6+8
VFF 8+0
vT 6+8
VT 80
12+8

8+0

Table 7-8, pg. 10

106+0
10546
10742
1072
104+4
10458

1060
105+6
1072
1072
104+4
104-8

106+0
105-6
1072
1072
104+4
104+8
106+0
1056
106+0
1056
1072
1072
1044
104+8

10640
1056
1072
1072
104+:4
104-8

106+0
105+6
1072
1072

P MEM 0P CODE a Q MEM MMS

S Ysas T 6+8 104+ 4
T tsas T 8.8 104-8
s Isas VFF 68

T Isae VFF 8+0

S IsaB VT 648 1060
T !sns vT 80 105+6
5 *sAB s 128 107+2
T 3SAB S 8.0 107-2
3 3sas T 68 10444
T *saB T 8.8 104+ 8
s ®sas VFF 68

T *saB VFF 8.0

s 3saB VT 648 1060
T dsas VT 8.0 105+6
S cYs S 128 1072
T CYs 5 8+0 107+ 2
S cYs T 68 1044
T cYs T g8 104+8
S cYs VFF 6+8 106+-0
T cYe VFF g0 105+ 0
S cYs VT 68 1060
T cYB VT g0 1056
5 7cvs s 1248 10742
T “cys s 8.0 107-2
s 7cvs T 6.8 104+4
T 7cys T 8.8 10448
s 7cys VFF 6+8 10640
T 7cys VFF 840 105¢6
s 7cys VT 6-8 10640
T “cve VT 80 1055
S Icvs s 12+8 107 =2
T Iﬁya S 80 I07 2
g Teys T 6+8 1044
T Icvs T g8 104s8
S Ievs VFF 68 106=0
T leyp VEF 8.0 105+5
S ey VT 6+8 1060
T Leve VT 80 10526
s Scvs s 12+8 1072
T *cys S 8.0 1072
$ *cys T 68 §640d
T Scys T -8 104+8
5 3cye VFF 6-8 10640
T Scye VFF 890 1055

Table 7-8, pg. 11 October 1961

P MEM

= v A v A4 v A v A A A AWV W = = W = N = WL = L =W = WL = W

October 1961

0P CODE

Scvs
Scvs
CYA
CYA
CYA
CYA
CYA
CYA
CYA
CYA
CAB
CAB
CAB
CAB
CAB
CAB
CAB
CAB
NOA
NOA
NOA
NOA
NOA
NOA
NOA
NOA
NAB
NAB
NAB
NAB
NAB
NAB
NAB
NAB

a

Q MEM

VT
VT

VFF
VFF
VT
VT

VFF
VFF
vT
vT

VFF
VFF
VT
vT

VFF
VFF
VT
VT

Table 7-8, pg. 12

336
324
3248
3244
3348
3244
32.0

106+-0
10546
1072
1072
10444
104+8

382

388
1060
10546
107+2
107+2
10444
104.8

388
1060
105+6

128
&0
68
8.8
6+8
g0
6+8
8+0

12+8
8+0
6+8
8+8
68
g+0
6+8
8+0

